Trade-offs in soil fertility management on arable farms
Crop production and soil fertility management implies a multitude of decisions and activities on crop choice, rotation design and nutrient management. In practice, the choices to be made and the resulting outcomes are subject to a wide range of objectives and constraints. Objectives are economic as...
Saved in:
Published in | Agricultural systems Vol. 157; pp. 292 - 302 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-521X 1873-2267 |
DOI | 10.1016/j.agsy.2016.09.013 |
Cover
Loading…
Abstract | Crop production and soil fertility management implies a multitude of decisions and activities on crop choice, rotation design and nutrient management. In practice, the choices to be made and the resulting outcomes are subject to a wide range of objectives and constraints. Objectives are economic as well as environmental, for instance sequestering carbon in agricultural soils or reducing nitrogen losses. Constraints originate from biophysical and institutional conditions that may restrict the possibilities for choosing crops or using specific cultivation and fertilization practices. To explore the consequences of management interventions to increase the supply of organic C to the soil on income and N losses, we developed the linear programming model NutMatch. The novelty of the model is the coherent description of mutual interdependencies amongst a broad range of sustainability indicators related to soil fertility management in arable cropping, enabling the quantification of synergies and trade-offs between objectives. NutMatch was applied to four different crop rotations subjected to four fertiliser strategies differing in the use of the organic fertilisers cattle slurry, pig slurry or compost, next to mineral fertiliser. Each combination of rotation and fertiliser strategy contributed differently to financial return, N emissions and organic matter inputs into the soil.
Our model calculations show that, at the rotational level, crop residues, cattle slurry and compost each substantially contributed to SOC accumulation (range 200-450 kg C ha-1 yr-1), while contributions of pig slurry and cover crops were small (20-50 kg C ha-1 yr-1). The use of compost and pig slurry resulted in increases of 0.61-0.73 and 3.15-3.38 kg N2O-N per 100 kg extra SOC accumulated, respectively, with the other fertilizers taking an intermediate position. From a GHG emission perspective, the maximum acceptable increase is 0.75 kg N2O-N per 100 kg extra SOC accumulated, which was only met by compost. Doubling the winter wheat area combined with the cultivation of cover crops to increase SOC accumulation resulted in a net GHG emission benefit, but was associated with a financial trade-off of 2.30-3.30 euro per kg SOC gained.
Our model calculations suggest that trade-offs between C inputs and emissions of greenhouse gases (notably N2O) or other pollutants (NO3, NH3) can be substantial. Due to the many data from a large variety of sources incorporated in the model, the trade-offs are uncertain. Our model-based explorations provide insight in soil carbon sequestration options and their limitations vis-a-vis other objectives.
•Trade-offs between C accumulation and N emissions can be substantial.•C accumulation via slurry application is entirely offset by increased N2O emissions.•Application of compost resulted in a net GHG emission benefit.•Changing rotation design to increase C accumulation has a financial trade-off. |
---|---|
AbstractList | Crop production and soil fertility management implies a multitude of decisions and activities on crop choice, rotation design and nutrient management. In practice, the choices to be made and the resulting outcomes are subject to a wide range of objectives and constraints. Objectives are economic as well as environmental, for instance sequestering carbon in agricultural soils or reducing nitrogen losses. Constraints originate from biophysical and institutional conditions that may restrict the possibilities for choosing crops or using specific cultivation and fertilization practices. To explore the consequences of management interventions to increase the supply of organic C to the soil on income and N losses, we developed the linear programming model NutMatch. The novelty of the model is the coherent description of mutual interdependencies amongst a broad range of sustainability indicators related to soil fertility management in arable cropping, enabling the quantification of synergies and trade-offs between objectives. NutMatch was applied to four different crop rotations subjected to four fertiliser strategies differing in the use of the organic fertilisers cattle slurry, pig slurry or compost, next to mineral fertiliser. Each combination of rotation and fertiliser strategy contributed differently to financial return, N emissions and organic matter inputs into the soil.
Our model calculations show that, at the rotational level, crop residues, cattle slurry and compost each substantially contributed to SOC accumulation (range 200-450 kg C ha-1 yr-1), while contributions of pig slurry and cover crops were small (20-50 kg C ha-1 yr-1). The use of compost and pig slurry resulted in increases of 0.61-0.73 and 3.15-3.38 kg N2O-N per 100 kg extra SOC accumulated, respectively, with the other fertilizers taking an intermediate position. From a GHG emission perspective, the maximum acceptable increase is 0.75 kg N2O-N per 100 kg extra SOC accumulated, which was only met by compost. Doubling the winter wheat area combined with the cultivation of cover crops to increase SOC accumulation resulted in a net GHG emission benefit, but was associated with a financial trade-off of 2.30-3.30 euro per kg SOC gained.
Our model calculations suggest that trade-offs between C inputs and emissions of greenhouse gases (notably N2O) or other pollutants (NO3, NH3) can be substantial. Due to the many data from a large variety of sources incorporated in the model, the trade-offs are uncertain. Our model-based explorations provide insight in soil carbon sequestration options and their limitations vis-a-vis other objectives.
•Trade-offs between C accumulation and N emissions can be substantial.•C accumulation via slurry application is entirely offset by increased N2O emissions.•Application of compost resulted in a net GHG emission benefit.•Changing rotation design to increase C accumulation has a financial trade-off. Crop production and soil fertility management implies a multitude of decisions and activities on crop choice, rotation design and nutrient management. In practice, the choices to be made and the resulting outcomes are subject to a wide range of objectives and constraints. Objectives are economic as well as environmental, for instance sequestering carbon in agricultural soils or reducing nitrogen losses. Constraints originate from biophysical and institutional conditions that may restrict the possibilities for choosing crops or using specific cultivation and fertilization practices. To explore the consequences of management interventions to increase the supply of organic C to the soil on income and N losses, we developed the linear programming model NutMatch. The novelty of the model is the coherent description of mutual interdependencies amongst a broad range of sustainability indicators related to soil fertility management in arable cropping, enabling the quantification of synergies and trade-offs between objectives. NutMatch was applied to four different crop rotations subjected to four fertiliser strategies differing in the use of the organic fertilisers cattle slurry, pig slurry or compost, next to mineral fertiliser. Each combination of rotation and fertiliser strategy contributed differently to financial return, N emissions and organic matter inputs into the soil.Our model calculations show that, at the rotational level, crop residues, cattle slurry and compost each substantially contributed to SOC accumulation (range 200-450 kg C ha-1 yr-1), while contributions of pig slurry and cover crops were small (20-50 kg C ha-1 yr-1). The use of compost and pig slurry resulted in increases of 0.61-0.73 and 3.15-3.38 kg N2O-N per 100 kg extra SOC accumulated, respectively, with the other fertilizers taking an intermediate position. From a GHG emission perspective, the maximum acceptable increase is 0.75 kg N2O-N per 100 kg extra SOC accumulated, which was only met by compost. Doubling the winter wheat area combined with the cultivation of cover crops to increase SOC accumulation resulted in a net GHG emission benefit, but was associated with a financial trade-off of 2.30-3.30 euro per kg SOC gained.Our model calculations suggest that trade-offs between C inputs and emissions of greenhouse gases (notably N2O) or other pollutants (NO3, NH3) can be substantial. Due to the many data from a large variety of sources incorporated in the model, the trade-offs are uncertain. Our model-based explorations provide insight in soil carbon sequestration options and their limitations vis-a-vis other objectives. |
Author | Bos, Jules F.F.P. ten Berge, Hein F.M. Verhagen, Jan van Ittersum, Martin K. |
Author_xml | – sequence: 1 givenname: Jules F.F.P. surname: Bos fullname: Bos, Jules F.F.P. email: Jules.Bos@vogelbescherming.nl organization: Wageningen Plant Research, Agrosystems research, P.O. Box 16, NL-6700 AA Wageningen, The Netherlands – sequence: 2 givenname: Hein F.M. surname: ten Berge fullname: ten Berge, Hein F.M. organization: Wageningen Plant Research, Agrosystems research, P.O. Box 16, NL-6700 AA Wageningen, The Netherlands – sequence: 3 givenname: Jan surname: Verhagen fullname: Verhagen, Jan organization: Wageningen Plant Research, Agrosystems research, P.O. Box 16, NL-6700 AA Wageningen, The Netherlands – sequence: 4 givenname: Martin K. surname: van Ittersum fullname: van Ittersum, Martin K. organization: Plant Production Systems, Wageningen University & Research, P.O. Box 430, NL-6700 AK Wageningen, The Netherlands |
BookMark | eNp9kE1r3DAQhkVIIZs0fyAnH3uxqw9_SKWXEtomEOglhd6GsTwOWmRpK3kb9t9XZnvqIZd5B2ae4Z33ml2GGIixO8EbwUX_cd_gSz41svQNNw0X6oLthB5ULWU_XLIdV1zXnRS_rth1znvOuRFc79jwnHCiOs5zrlyocnS-mimtzrv1VC0Y8IUWCmsVQ4UJR0_VjGnJ79m7GX2m2396w35--_p8_1A__fj-eP_lqbZKt2vdyk7zuZWkxNR3Rmit5Mi1RmWEEi2SEGjsWOa9MpqGEQe1PWGsmqeBrLphn853X4uR4EIpEDBZlyGiA-_GhOkEr8cEwW9yOI4ZOsFN2xb4wxk-pPj7SHmFxWVL3mOgeMwghTad6nSvy6o-r9oUc040g3Urri6GNaHzIDhsQcMetqBh8wjcQAm6oPI_9JDcsrl6E_p8hqiE98dRgmwdBUuTS2RXmKJ7C_8LdWCZtQ |
CitedBy_id | crossref_primary_10_1111_ejss_13483 crossref_primary_10_1016_j_jclepro_2020_124622 crossref_primary_10_3390_agronomy11061078 crossref_primary_10_1021_acs_est_1c08660 crossref_primary_10_1080_17583004_2018_1457907 crossref_primary_10_1016_j_agee_2024_109054 crossref_primary_10_1016_j_resenv_2025_100214 crossref_primary_10_1016_j_scitotenv_2019_06_070 crossref_primary_10_1038_srep40366 crossref_primary_10_1016_j_jclepro_2019_03_192 crossref_primary_10_1007_s13593_024_00980_6 crossref_primary_10_33584_jnzg_2020_82_426 crossref_primary_10_3390_su13137154 crossref_primary_10_3934_geosci_2023034 crossref_primary_10_3389_fsufs_2021_706113 crossref_primary_10_1007_s13593_023_00880_1 crossref_primary_10_1016_j_gloenvcha_2019_101983 crossref_primary_10_3389_fenvs_2020_575466 |
Cites_doi | 10.17660/ActaHortic.2010.852.9 10.1890/13-2126.1 10.1016/j.cosust.2012.06.005 10.1016/S1161-0301(03)00002-9 10.1111/j.1365-2389.2010.01342.x 10.1111/gcb.12551 10.1051/agro/2010007 10.3763/ijas.2009.0419 10.1097/ss.0b013e31815cc498 10.1023/A:1025195826663 10.1016/j.geoderma.2009.06.007 10.1016/j.agee.2015.07.003 10.1007/s10705-004-5085-z 10.1016/S0308-521X(01)00049-X 10.1111/sum.12151 10.1038/nclimate1458 10.1016/j.geoderma.2007.12.012 10.1016/j.still.2005.11.002 10.1111/j.1365-2486.2010.02349.x 10.1016/S1161-0301(00)00078-2 10.1046/j.1365-2389.2000.00319.x 10.1038/nclimate2292 10.1038/nature17174 10.2136/sssaj2009.0412 10.1088/1748-9326/9/10/105011 10.1016/j.agsy.2007.03.001 10.1016/j.agsy.2012.02.005 10.1111/gcb.12274 10.1016/j.agee.2006.12.006 10.1016/j.eja.2008.01.009 10.1016/j.agee.2014.03.038 10.1016/j.agsy.2012.03.012 10.1016/S1161-0301(97)00047-6 10.1016/j.agee.2014.10.024 10.1016/S0308-521X(98)00033-X 10.1016/j.foodpol.2010.11.025 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Wageningen University & Research |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Wageningen University & Research |
DBID | AAYXX CITATION 7S9 L.6 QVL |
DOI | 10.1016/j.agsy.2016.09.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2267 |
EndPage | 302 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_510944 10_1016_j_agsy_2016_09_013 S0308521X16305364 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 3R3 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 0R 1 8P AAPBV ABPTK ADALY G- HZ IPNFZ K KM M QVL |
ID | FETCH-LOGICAL-c384t-42580f42e31d65918832b088a391314ae11a9cb2e36398e7ba7320169c3fd7ec3 |
IEDL.DBID | .~1 |
ISSN | 0308-521X |
IngestDate | Thu Jul 22 20:32:49 EDT 2021 Tue Aug 05 09:13:07 EDT 2025 Tue Jul 01 04:29:11 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Fri Feb 23 02:29:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | nitrogen losses greenhouse gases linear programming climate change mitigation carbon sequestration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-42580f42e31d65918832b088a391314ae11a9cb2e36398e7ba7320169c3fd7ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2189535868 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_510944 proquest_miscellaneous_2189535868 crossref_citationtrail_10_1016_j_agsy_2016_09_013 crossref_primary_10_1016_j_agsy_2016_09_013 elsevier_sciencedirect_doi_10_1016_j_agsy_2016_09_013 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Agricultural systems |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Janssen, van Ittersum (bb0090) 2007; 94 Poeplau, Don (bb0135) 2015; 200 KWIN-AGV (bb0105) 2012 Powlson, Gregory, Whalley, Quinton, Hopkins, Whitmore, Hirsh, Goulding (bb0140) 2011; 36 Lal, Follett, Stewart, Kimble (bb0110) 2007; 172 Ryals, Hartman, Parton, DeLonge, Silver (bb0175) 2015; 25 de Ruijter, Huijsmans, van Zanten, Asman, van Pul (bb0170) 2013 Lassaletta, Billen, Grizetti, Anglande, Garnier (bb0115) 2014; 9 Lehtinen, Schlatter, Baumgarten, Bechini, Krüger, Grignani, Zavattaro, Costamagna, Spiegel (bb0120) 2014; 30 Schröder, van Dijk, Hoek (bb0185) 2011 van Dijk, Burgers, ten Berge, van Dam, van Geel, van der Schoot (bb0205) 2007 Lugato, Bampa, Panagos, Montanarella, Jones (bb0125) 2014; 20 van Ittersum, Rabbinge, van Latesteijn (bb0210) 1998; 58 Hoben, Gehl, Millar, Grace, Robertson (bb0080) 2011; 17 Powlson, Stirling, Jat, Gerard, Palm, Sanchez, Cassman (bb0150) 2014; 4 de Haan, van Geel (bb0060) 2013 de Willigen, Janssen, Heesmans, Conijn, Velthof, Chardon (bb0220) 2008 Groot, Oomen, Rossing (bb0055) 2012; 110 van der Hoek, van Schijndel, Kuikman (bb0200) 2007 Yang, Janssen (bb0235) 2000; 51 Triberti, Nastri, Giordani, Comellini, Baldoni, Toderi (bb0195) 2008; 29 Reay, Davidson, Smith, Smith, Melillo, Dentener, Crutzen (bb0155) 2012; 2 ten Berge, Radersma, Burgers (bb0030) 2010; 852 Viaud, Angers, Walter (bb0215) 2010; 74 Janzen, Beauchemin, Bruinsma, Campbell, Desjardins, Ellert, Smith (bb0095) 2003; 67 Batlle-Aguilar, Brovelli, Porporato, Barry (bb0015) 2010; 31 Schröder, Neeteson (bb0180) 2008; 144 Blair, Faulkner, Till, Poulton (bb0035) 2006; 91 Hengsdijk, van Ittersum (bb0070) 2003; 19 Yang (bb0225) 1996 Jones, Rees, Skiba, Ball (bb0100) 2007; 121 Glithero, Ramsden, Wilson (bb0050) 2012; 109 ten Berge, van Ittersum, Rossing, van de Ven, Schans, van de Sanden (bb0025) 2000; 13 Reijneveld, van Wensem, Oenema (bb0160) 2009; 152 Bell, Hinton, Cloy, Topp, Rees, Cardenas, Scott, Webster, Ashton, Whitmore, Williams, Balshaw, Paine, Goulding, Chadwick (bb0020) 2015; 212 Hillier, Hawes, Squire, Hilton, Wale, Smith (bb0075) 2009; 7 RIVM (bb0165) 2012 Contant, Paustian, Del Grosso, Parton (bb0045) 2005; 71 Chen, Li, Hu, Shi (bb0040) 2013; 19 Paustian, Lehmann, Ogle, Reay, Robertson, Smith (bb0130) 2016; 532 Huijsmans, Hol (bb0085) 2012 Hengsdijk, van Ittersum (bb0065) 2002; 71 Ball, Griffiths (bb0010) 2014; 189 Yang, Janssen (bb0230) 1997; 7 Amundson, Asefaw Berhe, Hopmans, Olson, Sztein, Sparks (bb0005) 2015 Powlson, Whitmore, Goulding (bb0145) 2011; 62 Smith (bb0190) 2012; 4 Batlle-Aguilar (10.1016/j.agsy.2016.09.013_bb0015) 2010; 31 Hillier (10.1016/j.agsy.2016.09.013_bb0075) 2009; 7 Huijsmans (10.1016/j.agsy.2016.09.013_bb0085) 2012 Poeplau (10.1016/j.agsy.2016.09.013_bb0135) 2015; 200 Powlson (10.1016/j.agsy.2016.09.013_bb0150) 2014; 4 Smith (10.1016/j.agsy.2016.09.013_bb0190) 2012; 4 ten Berge (10.1016/j.agsy.2016.09.013_bb0030) 2010; 852 ten Berge (10.1016/j.agsy.2016.09.013_bb0025) 2000; 13 Paustian (10.1016/j.agsy.2016.09.013_bb0130) 2016; 532 de Ruijter (10.1016/j.agsy.2016.09.013_bb0170) 2013 Blair (10.1016/j.agsy.2016.09.013_bb0035) 2006; 91 Reay (10.1016/j.agsy.2016.09.013_bb0155) 2012; 2 Lassaletta (10.1016/j.agsy.2016.09.013_bb0115) 2014; 9 Ryals (10.1016/j.agsy.2016.09.013_bb0175) 2015; 25 Bell (10.1016/j.agsy.2016.09.013_bb0020) 2015; 212 Chen (10.1016/j.agsy.2016.09.013_bb0040) 2013; 19 Hengsdijk (10.1016/j.agsy.2016.09.013_bb0065) 2002; 71 Yang (10.1016/j.agsy.2016.09.013_bb0225) 1996 van Dijk (10.1016/j.agsy.2016.09.013_bb0205) 2007 Lal (10.1016/j.agsy.2016.09.013_bb0110) 2007; 172 Schröder (10.1016/j.agsy.2016.09.013_bb0185) 2011 Hoben (10.1016/j.agsy.2016.09.013_bb0080) 2011; 17 Amundson (10.1016/j.agsy.2016.09.013_bb0005) 2015 Yang (10.1016/j.agsy.2016.09.013_bb0230) 1997; 7 Lehtinen (10.1016/j.agsy.2016.09.013_bb0120) 2014; 30 Hengsdijk (10.1016/j.agsy.2016.09.013_bb0070) 2003; 19 Jones (10.1016/j.agsy.2016.09.013_bb0100) 2007; 121 de Willigen (10.1016/j.agsy.2016.09.013_bb0220) 2008 Janssen (10.1016/j.agsy.2016.09.013_bb0090) 2007; 94 Yang (10.1016/j.agsy.2016.09.013_bb0235) 2000; 51 Ball (10.1016/j.agsy.2016.09.013_bb0010) 2014; 189 Powlson (10.1016/j.agsy.2016.09.013_bb0145) 2011; 62 Reijneveld (10.1016/j.agsy.2016.09.013_bb0160) 2009; 152 Lugato (10.1016/j.agsy.2016.09.013_bb0125) 2014; 20 Contant (10.1016/j.agsy.2016.09.013_bb0045) 2005; 71 Triberti (10.1016/j.agsy.2016.09.013_bb0195) 2008; 29 Groot (10.1016/j.agsy.2016.09.013_bb0055) 2012; 110 Glithero (10.1016/j.agsy.2016.09.013_bb0050) 2012; 109 Viaud (10.1016/j.agsy.2016.09.013_bb0215) 2010; 74 Powlson (10.1016/j.agsy.2016.09.013_bb0140) 2011; 36 Schröder (10.1016/j.agsy.2016.09.013_bb0180) 2008; 144 van Ittersum (10.1016/j.agsy.2016.09.013_bb0210) 1998; 58 de Haan (10.1016/j.agsy.2016.09.013_bb0060) 2013 RIVM (10.1016/j.agsy.2016.09.013_bb0165) 2012 Janzen (10.1016/j.agsy.2016.09.013_bb0095) 2003; 67 KWIN-AGV (10.1016/j.agsy.2016.09.013_bb0105) 2012 van der Hoek (10.1016/j.agsy.2016.09.013_bb0200) 2007 |
References_xml | – year: 1996 ident: bb0225 article-title: Modelling organic matter and exploring options for organic matter management in arable farming in northern China – year: 2013 ident: bb0060 article-title: Fertiliser recommendations for arable crops and field grown vegetables – volume: 532 start-page: 49 year: 2016 end-page: 57 ident: bb0130 article-title: Climate-smart soils publication-title: Nature – volume: 7 start-page: 107 year: 2009 end-page: 118 ident: bb0075 article-title: The carbon footprints of food crop production publication-title: Int. J. Agric. Sustain. – year: 2012 ident: bb0105 article-title: Quantitative information arable farming and field grown vegetables – volume: 7 start-page: 211 year: 1997 end-page: 219 ident: bb0230 article-title: Analysis of impact of farming practices on dynamics of soil organic matter in northern China publication-title: Eur. J. Agron. – volume: 36 start-page: S72 year: 2011 end-page: S87 ident: bb0140 article-title: Soil management in relation to sustainable agriculture and ecosystem services publication-title: Food Policy – volume: 20 start-page: 3557 year: 2014 end-page: 3567 ident: bb0125 article-title: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices publication-title: Glob. Chang. Biol. – volume: 25 start-page: 531 year: 2015 end-page: 545 ident: bb0175 article-title: Long-term climate change mitigation potential with organic matter management on grasslands publication-title: Ecol. Appl. – year: 2015 ident: bb0005 article-title: Soil and human security in the 21st century – year: 2007 ident: bb0200 article-title: Direct and indirect nitrous oxide emissions from agricultural soils, 1990 - 2003 publication-title: Background document on the calculation method for the Dutch National Inventory Report, RIVM report 680125003/2007, Bilthoven – year: 2011 ident: bb0185 article-title: Modelling nitrogen application standards and water quality of farms publication-title: Report 415 – volume: 62 start-page: 42 year: 2011 end-page: 55 ident: bb0145 article-title: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false publication-title: Eur. J. Soil Sci. – volume: 29 start-page: 13 year: 2008 end-page: 20 ident: bb0195 article-title: Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? publication-title: Eur. J. Agron. – volume: 152 start-page: 231 year: 2009 end-page: 238 ident: bb0160 article-title: Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004 publication-title: Geoderma – volume: 74 start-page: 1847 year: 2010 end-page: 1860 ident: bb0215 article-title: Toward landscape-scale modelling of soil organic matter dynamics in agroecosystems publication-title: Soil Sci. Soc. Am. J. – year: 2013 ident: bb0170 article-title: Ammonia emission from standing crops and crop residues publication-title: Contribution to total ammonia emission in the Netherlands, report 535 – volume: 71 start-page: 239 year: 2005 end-page: 248 ident: bb0045 article-title: Nitrogen pools and fluxes in grassland soils sequestering carbon publication-title: Nutr. Cycl. Agroecosyst. – volume: 71 start-page: 231 year: 2002 end-page: 247 ident: bb0065 article-title: A goal-oriented approach to identify and engineer land use systems publication-title: Agric. Syst. – volume: 200 start-page: 33 year: 2015 end-page: 41 ident: bb0135 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 9 start-page: 1 year: 2014 end-page: 9 ident: bb0115 article-title: 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland publication-title: Environ. Res. Lett. – year: 2007 ident: bb0205 article-title: Effects of reduced N supply on marketable yield and nitrogen uptake of arable and vegetable crops, Report 366 – volume: 4 start-page: 539 year: 2012 end-page: 544 ident: bb0190 article-title: Soils and climate change publication-title: Curr. Opin. Environ. Sustain. – volume: 852 start-page: 85 year: 2010 end-page: 96 ident: bb0030 article-title: Feed the crop or feed the soil? A case study in leek (Allium porrum L.) publication-title: Acta Hortic. – volume: 109 start-page: 53 year: 2012 end-page: 64 ident: bb0050 article-title: Farm-systems assessment of bioenergy feedstock production: integrating bio-economic models and life cycle approaches publication-title: Agric. Syst. – volume: 17 start-page: 1140 year: 2011 end-page: 1152 ident: bb0080 article-title: Nonlinear nitrous oxide (N2O) response to nitrogen fertiliser in on-farm corn crops of the US Midwest publication-title: Glob. Chang. Biol. – volume: 91 start-page: 30 year: 2006 end-page: 38 ident: bb0035 article-title: Long-term management impacts on soil C, N and physical fertility. Part I: Broadbalk experiment publication-title: Soil Tillage Res. – volume: 51 start-page: 517 year: 2000 end-page: 529 ident: bb0235 article-title: A mono-component model of carbon mineralization with a dynamic rate constant publication-title: Eur. J. Soil Sci. – volume: 19 start-page: 549 year: 2003 end-page: 562 ident: bb0070 article-title: Formalizing agro-ecological engineering for future-oriented land use studies publication-title: Eur. J. Agron. – volume: 30 start-page: 524 year: 2014 end-page: 538 ident: bb0120 article-title: Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils publication-title: Soil Use Manag. – volume: 189 start-page: 171 year: 2014 end-page: 180 ident: bb0010 article-title: Seasonal nitrous oxide emissions from field soils under reduced tillage, compost application or organic farming publication-title: Agric. Ecosyst. Environ. – volume: 31 start-page: 251 year: 2010 end-page: 274 ident: bb0015 article-title: Modelling soil carbon and nitrogen cycles during land use change. A review publication-title: Agron. Sustain. Develop. – year: 2012 ident: bb0085 article-title: Ammonia volatilisation after manure application in winter wheat on clay soil, Report 446 – volume: 19 start-page: 2956 year: 2013 end-page: 2964 ident: bb0040 article-title: Soil nitrous oxide emissions following crop residue addition: a meta-analysis publication-title: Glob. Chang. Biol. – volume: 121 start-page: 74 year: 2007 end-page: 83 ident: bb0100 article-title: Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland publication-title: Agric. Ecosyst. Environ. – volume: 13 start-page: 263 year: 2000 end-page: 277 ident: bb0025 article-title: Farming options for The Netherlands explored by multi-objective modelling publication-title: Eur. J. Agron. – volume: 2 start-page: 410 year: 2012 end-page: 416 ident: bb0155 article-title: Global agriculture and nitrous oxide emissions publication-title: Nat. Clim. Chang. – year: 2008 ident: bb0220 article-title: Decomposition and accumulation of organic matter in soil publication-title: Comparison of some models, Report 1726 – volume: 94 start-page: 622 year: 2007 end-page: 636 ident: bb0090 article-title: Assessing farm innovations and responses to policies: a review of bio-economic farm models publication-title: Agric. Syst. – volume: 212 start-page: 134 year: 2015 end-page: 147 ident: bb0020 article-title: Nitrous oxide emissions from fertilised UK arable soils: fluxes, emission factors and mitigation publication-title: Agric. Ecosyst. Environ. – volume: 4 start-page: 678 year: 2014 end-page: 683 ident: bb0150 article-title: Limited potential of no-till agriculture for climate change mitigation publication-title: Nat. Clim. Chang. – volume: 58 start-page: 309 year: 1998 end-page: 330 ident: bb0210 article-title: Exploratory land use studies and their role in strategic policy making publication-title: Agric. Syst. – volume: 172 start-page: 943 year: 2007 end-page: 956 ident: bb0110 article-title: Soil carbon sequestration to mitigate climate change and advance food security publication-title: Soil Sci. – year: 2012 ident: bb0165 article-title: Agricultural practice and water quality in the Netherlands in the 1992-2010 period, report 680716007/2012 – volume: 110 start-page: 63 year: 2012 end-page: 77 ident: bb0055 article-title: Multi-objective optimization and design of farming systems publication-title: Agric. Syst. – volume: 144 start-page: 418 year: 2008 end-page: 425 ident: bb0180 article-title: Nutrient management regulations in The Netherlands publication-title: Geoderma – volume: 67 start-page: 85 year: 2003 end-page: 102 ident: bb0095 article-title: The fate of nitrogen in agroecosystems: an illustration using Canadian estimates publication-title: Nutr. Cycl. Agroecosyst. – year: 1996 ident: 10.1016/j.agsy.2016.09.013_bb0225 – year: 2008 ident: 10.1016/j.agsy.2016.09.013_bb0220 article-title: Decomposition and accumulation of organic matter in soil – volume: 852 start-page: 85 year: 2010 ident: 10.1016/j.agsy.2016.09.013_bb0030 article-title: Feed the crop or feed the soil? A case study in leek (Allium porrum L.) publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2010.852.9 – volume: 25 start-page: 531 year: 2015 ident: 10.1016/j.agsy.2016.09.013_bb0175 article-title: Long-term climate change mitigation potential with organic matter management on grasslands publication-title: Ecol. Appl. doi: 10.1890/13-2126.1 – volume: 4 start-page: 539 year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0190 article-title: Soils and climate change publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2012.06.005 – volume: 19 start-page: 549 year: 2003 ident: 10.1016/j.agsy.2016.09.013_bb0070 article-title: Formalizing agro-ecological engineering for future-oriented land use studies publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(03)00002-9 – volume: 62 start-page: 42 year: 2011 ident: 10.1016/j.agsy.2016.09.013_bb0145 article-title: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01342.x – volume: 20 start-page: 3557 year: 2014 ident: 10.1016/j.agsy.2016.09.013_bb0125 article-title: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12551 – volume: 31 start-page: 251 year: 2010 ident: 10.1016/j.agsy.2016.09.013_bb0015 article-title: Modelling soil carbon and nitrogen cycles during land use change. A review publication-title: Agron. Sustain. Develop. doi: 10.1051/agro/2010007 – volume: 7 start-page: 107 year: 2009 ident: 10.1016/j.agsy.2016.09.013_bb0075 article-title: The carbon footprints of food crop production publication-title: Int. J. Agric. Sustain. doi: 10.3763/ijas.2009.0419 – volume: 172 start-page: 943 year: 2007 ident: 10.1016/j.agsy.2016.09.013_bb0110 article-title: Soil carbon sequestration to mitigate climate change and advance food security publication-title: Soil Sci. doi: 10.1097/ss.0b013e31815cc498 – year: 2007 ident: 10.1016/j.agsy.2016.09.013_bb0200 article-title: Direct and indirect nitrous oxide emissions from agricultural soils, 1990 - 2003 – volume: 67 start-page: 85 year: 2003 ident: 10.1016/j.agsy.2016.09.013_bb0095 article-title: The fate of nitrogen in agroecosystems: an illustration using Canadian estimates publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1025195826663 – volume: 152 start-page: 231 year: 2009 ident: 10.1016/j.agsy.2016.09.013_bb0160 article-title: Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.007 – volume: 212 start-page: 134 year: 2015 ident: 10.1016/j.agsy.2016.09.013_bb0020 article-title: Nitrous oxide emissions from fertilised UK arable soils: fluxes, emission factors and mitigation publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.07.003 – year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0085 – volume: 71 start-page: 239 year: 2005 ident: 10.1016/j.agsy.2016.09.013_bb0045 article-title: Nitrogen pools and fluxes in grassland soils sequestering carbon publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-004-5085-z – volume: 71 start-page: 231 year: 2002 ident: 10.1016/j.agsy.2016.09.013_bb0065 article-title: A goal-oriented approach to identify and engineer land use systems publication-title: Agric. Syst. doi: 10.1016/S0308-521X(01)00049-X – volume: 30 start-page: 524 year: 2014 ident: 10.1016/j.agsy.2016.09.013_bb0120 article-title: Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils publication-title: Soil Use Manag. doi: 10.1111/sum.12151 – volume: 2 start-page: 410 year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0155 article-title: Global agriculture and nitrous oxide emissions publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1458 – year: 2015 ident: 10.1016/j.agsy.2016.09.013_bb0005 – year: 2013 ident: 10.1016/j.agsy.2016.09.013_bb0060 – volume: 144 start-page: 418 year: 2008 ident: 10.1016/j.agsy.2016.09.013_bb0180 article-title: Nutrient management regulations in The Netherlands publication-title: Geoderma doi: 10.1016/j.geoderma.2007.12.012 – volume: 91 start-page: 30 year: 2006 ident: 10.1016/j.agsy.2016.09.013_bb0035 article-title: Long-term management impacts on soil C, N and physical fertility. Part I: Broadbalk experiment publication-title: Soil Tillage Res. doi: 10.1016/j.still.2005.11.002 – volume: 17 start-page: 1140 year: 2011 ident: 10.1016/j.agsy.2016.09.013_bb0080 article-title: Nonlinear nitrous oxide (N2O) response to nitrogen fertiliser in on-farm corn crops of the US Midwest publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02349.x – volume: 13 start-page: 263 year: 2000 ident: 10.1016/j.agsy.2016.09.013_bb0025 article-title: Farming options for The Netherlands explored by multi-objective modelling publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(00)00078-2 – volume: 51 start-page: 517 year: 2000 ident: 10.1016/j.agsy.2016.09.013_bb0235 article-title: A mono-component model of carbon mineralization with a dynamic rate constant publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2000.00319.x – volume: 4 start-page: 678 year: 2014 ident: 10.1016/j.agsy.2016.09.013_bb0150 article-title: Limited potential of no-till agriculture for climate change mitigation publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2292 – volume: 532 start-page: 49 year: 2016 ident: 10.1016/j.agsy.2016.09.013_bb0130 article-title: Climate-smart soils publication-title: Nature doi: 10.1038/nature17174 – volume: 74 start-page: 1847 year: 2010 ident: 10.1016/j.agsy.2016.09.013_bb0215 article-title: Toward landscape-scale modelling of soil organic matter dynamics in agroecosystems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0412 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.agsy.2016.09.013_bb0115 article-title: 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/10/105011 – volume: 94 start-page: 622 year: 2007 ident: 10.1016/j.agsy.2016.09.013_bb0090 article-title: Assessing farm innovations and responses to policies: a review of bio-economic farm models publication-title: Agric. Syst. doi: 10.1016/j.agsy.2007.03.001 – volume: 109 start-page: 53 year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0050 article-title: Farm-systems assessment of bioenergy feedstock production: integrating bio-economic models and life cycle approaches publication-title: Agric. Syst. doi: 10.1016/j.agsy.2012.02.005 – volume: 19 start-page: 2956 year: 2013 ident: 10.1016/j.agsy.2016.09.013_bb0040 article-title: Soil nitrous oxide emissions following crop residue addition: a meta-analysis publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12274 – year: 2007 ident: 10.1016/j.agsy.2016.09.013_bb0205 – volume: 121 start-page: 74 year: 2007 ident: 10.1016/j.agsy.2016.09.013_bb0100 article-title: Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.12.006 – year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0105 – year: 2013 ident: 10.1016/j.agsy.2016.09.013_bb0170 article-title: Ammonia emission from standing crops and crop residues – volume: 29 start-page: 13 year: 2008 ident: 10.1016/j.agsy.2016.09.013_bb0195 article-title: Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2008.01.009 – year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0165 – volume: 189 start-page: 171 year: 2014 ident: 10.1016/j.agsy.2016.09.013_bb0010 article-title: Seasonal nitrous oxide emissions from field soils under reduced tillage, compost application or organic farming publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.03.038 – volume: 110 start-page: 63 year: 2012 ident: 10.1016/j.agsy.2016.09.013_bb0055 article-title: Multi-objective optimization and design of farming systems publication-title: Agric. Syst. doi: 10.1016/j.agsy.2012.03.012 – volume: 7 start-page: 211 year: 1997 ident: 10.1016/j.agsy.2016.09.013_bb0230 article-title: Analysis of impact of farming practices on dynamics of soil organic matter in northern China publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(97)00047-6 – year: 2011 ident: 10.1016/j.agsy.2016.09.013_bb0185 article-title: Modelling nitrogen application standards and water quality of farms – volume: 200 start-page: 33 year: 2015 ident: 10.1016/j.agsy.2016.09.013_bb0135 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.10.024 – volume: 58 start-page: 309 year: 1998 ident: 10.1016/j.agsy.2016.09.013_bb0210 article-title: Exploratory land use studies and their role in strategic policy making publication-title: Agric. Syst. doi: 10.1016/S0308-521X(98)00033-X – volume: 36 start-page: S72 year: 2011 ident: 10.1016/j.agsy.2016.09.013_bb0140 article-title: Soil management in relation to sustainable agriculture and ecosystem services publication-title: Food Policy doi: 10.1016/j.foodpol.2010.11.025 |
SSID | ssj0009108 |
Score | 2.287515 |
Snippet | Crop production and soil fertility management implies a multitude of decisions and activities on crop choice, rotation design and nutrient management. In... |
SourceID | wageningen proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 292 |
SubjectTerms | agricultural soils ammonia Carbon sequestration cattle manure Climate change mitigation composts cover crops crop production crop residues crop rotation farms greenhouse gas emissions Greenhouse gases income Linear programming mineral fertilizers nitrates nitrogen Nitrogen losses nitrous oxide nutrient management organic matter pig manure pollutants soil fertility winter wheat |
Title | Trade-offs in soil fertility management on arable farms |
URI | https://dx.doi.org/10.1016/j.agsy.2016.09.013 https://www.proquest.com/docview/2189535868 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F510944 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS-QwGA-iFz3Iuqs4vsiCN6nTTPpIjoMo4y56WYW5hbRJZGRMpZ1B9uLf7ve1qY-DHjwV2qSk37vJL78QcgxqtpkpHWggL-AHxcSRcLGJRFpIJo02VuN8x9V1NrlN_kzT6Qo56_fCIKwyxP4uprfROtwZBmkOH2ez4T9kWoHkM4WKAiwpQ05QZK8Dmz59foN5QDoU3UqCiLB12DjTYbz0XfMf4V1Zy3XK-GfJ6V3xuf4Efu7bjU_vEtHFD7IZKkg67ga5RVas_0k2xnd1YNGwv0gOGcjYqHKuoTNPm2o2pw4B1Fhz04dXxAutPNU1bp6iTtcPzTa5vTi_OZtE4YSEqOQiWUTgcCJ2ychyZrJUMgH-WUDc0FwyzhJtGdOyLOA5FCLC5oXOOX6uLLkzuS35Dln1lbe7hMbaQekKKTMfFYlhIy1wbZo7bZF1zpQDwnrRqDLQh-MpFnPV48TuFYpT4ftVLBWIc0BOXvs8duQZX7ZOe4mrDyagILp_2e93rx4FvoELHtrbatkoKF9kylORiQHhb3pTHo9pahQya4e5MvW0rJWf4wXcoFFgwjJJ9r45on2yPsLs32L-Dsjqol7aQ6hdFsVRa5xHZG18-Xdy_QKViu8R |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kztB0KPpE3ScLdCsEiyYlUaMRNHCaxEsTwBtBiWTgwKECyUbQf987mUrSoRk6CZBIgTre4xN5_A7gG06zy23tcQaKCn9QbJoon9pEZVXJS2usM7TecbbI5xfy5zJb7sHhcBaG0iqj79_59N5bxzuTKM3JzWo1-UVMKxh8logoUJNy-QT2iZ1KjmB_dnwyX9xz7_K-MB21T6hDPDuzS_Myl91vyvDKe7pTLv4Vnx7gz4NbNPXQn316EIuOXsDzCCLZbDfOl7Dnwit4NrtsI5GGew0FBiHrksb7jq0C65rVmnnKoSbYza7vkl5YE5hp6fwU86a97t7AxdGP88N5EoskJLVQcpOgzanUy6kT3OZZyRWaaIWuw4iSCy6N49yUdYXPEYsoV1SmEPS5ZS28LVwt3sIoNMG9A5Yaj-gVo2YxraTlU6Noe1p444h4ztZj4INodB0ZxKmQxVoPqWJXmsSp6f06LTWKcwzf7_rc7PgzHm2dDRLXf2mBRgf_aL-vw_RoNA_a8zDBNdtOI4IpM5GpXI1B3M-bDlSpqdNErh2Xy_TtttVhTRe0hE6jFpdSvv_PEX2Bp_Pzs1N9erw4-QAHUwIDfQrgRxht2q37hFBmU32OqvoHyNDxwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trade-offs+in+soil+fertility+management+on+arable+farms&rft.jtitle=Agricultural+systems&rft.au=Bos%2C+Jules+F.F.P&rft.au=Berge%2C+Hein+F.M.%2C+ten&rft.au=Verhagen%2C+Jan&rft.au=Ittersum%2C+Martin+K.%2C+van&rft.date=2017-10-01&rft.issn=0308-521X&rft.eissn=1873-2267&rft.volume=157&rft_id=info:doi/10.1016%2Fj.agsy.2016.09.013&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_510944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-521X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-521X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-521X&client=summon |