Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats

This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed...

Full description

Saved in:
Bibliographic Details
Published inJournal of dairy science Vol. 104; no. 2; pp. 1304 - 1317
Main Authors Kilari, Bhanu Priya, Mudgil, Priti, Azimullah, Sheikh, Bansal, Nidhi, Ojha, Shreesh, Maqsood, Sajid
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.
AbstractList This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.
Author Azimullah, Sheikh
Kilari, Bhanu Priya
Maqsood, Sajid
Mudgil, Priti
Bansal, Nidhi
Ojha, Shreesh
Author_xml – sequence: 1
  givenname: Bhanu Priya
  surname: Kilari
  fullname: Kilari, Bhanu Priya
  organization: Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
– sequence: 2
  givenname: Priti
  surname: Mudgil
  fullname: Mudgil, Priti
  organization: Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
– sequence: 3
  givenname: Sheikh
  surname: Azimullah
  fullname: Azimullah, Sheikh
  organization: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates
– sequence: 4
  givenname: Nidhi
  surname: Bansal
  fullname: Bansal, Nidhi
  organization: ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, QLD 4072, Australia
– sequence: 5
  givenname: Shreesh
  surname: Ojha
  fullname: Ojha, Shreesh
  email: shreeshojha@uaeu.ac.ae
  organization: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates
– sequence: 6
  givenname: Sajid
  surname: Maqsood
  fullname: Maqsood, Sajid
  email: sajid.m@uaeu.ac.ae
  organization: Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33272578$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URKeFLUvkZZHI4Mc4cZaoKg-pEgvKho3l2DfFJbGDr6di-DH8VjyksGNlH_s7R7r3nJGTmCIQ8pyzreStfn3ncSuYYA3vd1w8IhuuhGok7_UJ2TAmRMMkE6fkDPGuSi6YekJOpRSdUJ3ekF9X4wiu0DRSZ2eY6Bymb3TJqUCI9OvB5zQd0BZAam9tiFjq4wL5djo4mIN9tcopLMGv2kZPLWJyobo8TT-CtyXcA8WSAZHW2ONtKelnKpWK9OLTzZeXTYh-76rBBztACY5mW_ApeTzaCeHZw3lOPr-9url831x_fPfh8s1146TelUaCkjs5qo71auwGNcie9VZ50Y-uVUp3Wik_gB98KxSTA9e8r3_KWe6t1FKek4s1t07-fQ9YzBzQwTTZCGmPRuzarq3b64_odkVdTogZRrPkMNt8MJyZYyemdmKOnZg_nVTDi4fs_TCD_4f_LaECegWgTngfIBt0AWJdRsi1G-NT-F_2bxLUn5U
CitedBy_id crossref_primary_10_1007_s40200_022_01112_1
crossref_primary_10_3389_fimmu_2022_855342
crossref_primary_10_1039_D1FO01174J
crossref_primary_10_1016_j_sjbs_2021_09_067
crossref_primary_10_3934_agrfood_2022048
crossref_primary_10_3168_jds_2023_23733
crossref_primary_10_1155_2022_8260379
crossref_primary_10_3168_jds_2021_20934
crossref_primary_10_3389_fnut_2023_1118923
crossref_primary_10_1155_2022_8553539
crossref_primary_10_3389_fmicb_2022_943930
crossref_primary_10_3389_fnut_2022_854725
crossref_primary_10_1016_j_foodchem_2021_131444
crossref_primary_10_3168_jds_2022_22701
crossref_primary_10_3389_fnut_2023_1298046
crossref_primary_10_3390_antiox12061291
crossref_primary_10_1186_s42779_023_00205_3
crossref_primary_10_1080_13880209_2022_2079678
crossref_primary_10_1016_j_foodres_2023_113278
crossref_primary_10_3390_life12070990
crossref_primary_10_3389_fnut_2021_819278
crossref_primary_10_3390_foods10020468
crossref_primary_10_5851_kosfa_2023_e27
crossref_primary_10_1016_j_jff_2024_106227
crossref_primary_10_3390_antiox10050788
crossref_primary_10_1016_j_foodres_2022_111254
crossref_primary_10_1016_j_jff_2023_105835
crossref_primary_10_3389_fnut_2022_987552
Cites_doi 10.21010/ajtcam.v14i4.13
10.3168/jds.2019-17355
10.31788/RJC.2019.1215059
10.1186/1476-511X-12-46
10.1016/j.foodchem.2018.11.142
10.1007/s00394-015-0974-2
10.1080/10408398.2015.1136590
10.1108/NFS-07-2015-0085
10.1016/j.fct.2018.07.028
10.1016/j.biopha.2016.12.134
10.1016/j.lwt.2015.08.043
10.1017/S0007114508184689
10.1016/j.jcjd.2017.10.023
10.3168/jds.2019-16606
10.3390/nu9080801
10.1016/j.peptides.2014.09.001
10.2337/diabetes.52.12.2867
10.3923/ajbmb.2013.151.158
10.3892/ijmm.2012.1051
10.1111/1471-0307.12383
10.1016/j.tifs.2016.01.022
10.1038/ejcn.2011.98
10.1017/S002202991600042X
10.1016/j.diabres.2020.108072
10.1016/j.foodchem.2018.03.082
10.1016/j.fbio.2018.09.010
10.1042/CS19990109
10.1016/j.jff.2019.04.039
10.9755/ejfa.2015-04-122
10.1016/j.biopha.2017.01.076
10.1016/j.foodres.2018.01.068
10.1093/clinchem/18.6.499
10.1016/j.jff.2014.09.010
10.1016/j.jep.2015.04.032
10.1016/S0168-8227(02)00103-1
10.20960/nh.1163
10.3168/jds.2018-14586
10.1016/j.diabres.2018.11.006
ContentType Journal Article
Copyright 2021 American Dairy Science Association
Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 American Dairy Science Association
– notice: Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.3168/jds.2020-19412
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3198
EndPage 1317
ExternalDocumentID 10_3168_jds_2020_19412
33272578
S002203022030998X
Genre Journal Article
GroupedDBID ---
--K
-~X
.GJ
0R~
0SF
186
18M
1B1
29K
2WC
36B
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
8VB
AABVA
AAEDT
AAEDW
AAFTH
AAIAV
AALRI
AAQFI
AAQXK
AAWRB
AAXUO
ABCQX
ABJCF
ABJNI
ABUWG
ABVKL
ACGFO
ACGFS
ACIWK
ADBBV
ADMUD
ADPAM
AEGXH
AENEX
AESVU
AFKRA
AFKWA
AFRAH
AFTJW
AGZHU
AHMBA
AI.
AIAGR
AITUG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMRAJ
ASPBG
ATCPS
AVWKF
AZFZN
BELOY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DU5
E3Z
EBS
EBU
EDH
EJD
EMB
F5P
FDB
FEDTE
FGOYB
FYUFA
GBLVA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HZ~
K1G
L6V
L7B
M0K
M1P
M41
M7S
N9A
NCXOZ
NHB
O9-
OK1
P2P
PATMY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QII
QWB
R2-
ROL
RWL
S0X
SEL
SES
SSZ
SV3
TAE
TDS
TWZ
U5U
UHB
UKHRP
VH1
WOQ
XH2
XOL
ZGI
ZL0
ZXP
~KM
AAHBH
ADMHG
ADVLN
AFJKZ
AKRWK
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c384t-3e5343f57095f7b5b3909a5d29fc65587855dbedbd62503b181929f5ca1da3833
IEDL.DBID ABVKL
ISSN 0022-0302
IngestDate Fri Oct 25 04:11:37 EDT 2024
Thu Sep 26 19:45:40 EDT 2024
Wed Oct 16 00:44:08 EDT 2024
Fri Feb 23 02:48:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords protein hydrolysates
diabetes mellitus
streptozotocin
camel milk
hypoglycemia
Language English
License Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-3e5343f57095f7b5b3909a5d29fc65587855dbedbd62503b181929f5ca1da3833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.journalofdairyscience.org/article/S002203022030998X/pdf
PMID 33272578
PQID 2467621293
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2467621293
crossref_primary_10_3168_jds_2020_19412
pubmed_primary_33272578
elsevier_sciencedirect_doi_10_3168_jds_2020_19412
PublicationCentury 2000
PublicationDate February 2021
2021-Feb
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of dairy science
PublicationTitleAlternate J Dairy Sci
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Manaer, Yu, Zhang, Xiao, Nabi (bib25) 2015; 169
Aligita, Muhsinin, Susilawati, Dahlia, Pratiwi, Aprilliani, Artarini, Adnyana (bib5) 2019; 12
Ayoub, Palakkott, Ashraf, Iratni (bib7) 2018; 146
Ejtahed, Naslaji, Mirmiran, Yeganeh, Hedayati, Azizi, Movahedi (bib12) 2015; 13
Osman, Goda, Abdel-Hamid, Badran, Otte (bib33) 2016; 65
Grossman, Roscoe, Shack (bib16) 2018; 42
Mudgil, Kamal, Yuen, Maqsood (bib29) 2018; 259
Korish, Abdel Gader, Alhaider (bib21) 2020; 103
Abdel-Hamid, Osman, El-Hadary, Romeih, Sitohy, Li (bib1) 2020; 103
Ismail, Ahmad, Sestili, Hussain, Akram, Ismail, Akhtar (bib18) 2018; 26
Venkatakrishnan, Chiu, Wang (bib40) 2019; 57
Nongonierma, Cadamuro, Le Gouic, Mudgil, Maqsood, FitzGerald (bib31) 2019; 279
Singleton, Smith, Russell, Feldman (bib37) 2003; 52
Huang, Hung, Jao, Tung, Hsu (bib17) 2014; 11
Nna, Abu Bakar, Md Lazin, Mohamed (bib30) 2018; 120
Corrêa, Daroit, Fontoura, Meira, Segalin, Brandelli (bib10) 2014; 61
Khan, Alzohairy, Mohieldein (bib20) 2013; 3
Anjani, Damayanthi, Handharyani (bib6) 2018
Sultan, Huma, Butt, Aleem, Abbas (bib38) 2018; 58
El Said, El Sayed, Tantawy (bib13) 2010; 1
Merzouk, Madani, Chabane Sari, Prost, Bouchenak, Belleville (bib28) 2000; 98
Patil, Mandal, Tomar, Anand (bib34) 2015; 54
Williams, Karuranga, Malanda, Saeedi, Basit, Besançon, Bommer, Esteghamati, Ogurtsova, Zhang, Colagiuri (bib42) 2020; 162
Meena, Rajput, Pandey, Sharma, Singh (bib27) 2016; 83
Ghanbari, Nejati, Khazaei (bib15) 2016; 18
Mansour, Nassan, Saleh, Soliman (bib26) 2017; 14
Risbud, Bhonde (bib35) 2002; 58
Tanaka, Mochizuki, Fukaya, Shimada, Goda (bib39) 2009; 102
Malik, Al-Senaidy, Skrzypczak-Jankun, Jankun (bib24) 2012; 30
Sayed, Badr, Omar, Abd El-Rahim, Mahmoud (bib36) 2017; 88
Ma, Guo, Sun, Zhuang (bib23) 2017; 9
Ben Slama-Ben Salem, Ktari, Bkhairia, Nasri, Mora, Kallel, Hamdi, Jamoussi, Boudaouara, El-Feki, Toldrá, Nasri (bib9) 2018; 106
Friedewald, Levy, Fredrickson (bib14) 1972; 18
Agrawal, Jain, Shah, Chopra, Agarwal (bib2) 2011; 65
Badr (bib8) 2013; 12
Nongonierma, FitzGerald (bib32) 2016; 50
Dubey, Lal, Mittal, Kapur (bib11) 2016; 28
Kumar, Verma, Chatli, Singh, Kumar, Mehta, Malav (bib22) 2016; 46
Yahya, Alhaj, Al-Khalifah (bib43) 2017; 34
Al-Numair (bib3) 2010; 8
Alhaj, Metwalli, Ismail, Ali, Al-Khalifa, Kanekanian (bib4) 2017; 71
Kamal, Jafar, Mudgil, Murali, Amin, Maqsood (bib19) 2018; 101
Vinothiya, Ashokkumar (bib41) 2017; 87
Merzouk (10.3168/jds.2020-19412_bib28) 2000; 98
Alhaj (10.3168/jds.2020-19412_bib4) 2017; 71
Tanaka (10.3168/jds.2020-19412_bib39) 2009; 102
Grossman (10.3168/jds.2020-19412_bib16) 2018; 42
Badr (10.3168/jds.2020-19412_bib8) 2013; 12
Singleton (10.3168/jds.2020-19412_bib37) 2003; 52
Yahya (10.3168/jds.2020-19412_bib43) 2017; 34
Ghanbari (10.3168/jds.2020-19412_bib15) 2016; 18
Nna (10.3168/jds.2020-19412_bib30) 2018; 120
Al-Numair (10.3168/jds.2020-19412_bib3) 2010; 8
Ejtahed (10.3168/jds.2020-19412_bib12) 2015; 13
Kamal (10.3168/jds.2020-19412_bib19) 2018; 101
Kumar (10.3168/jds.2020-19412_bib22) 2016; 46
Malik (10.3168/jds.2020-19412_bib24) 2012; 30
Nongonierma (10.3168/jds.2020-19412_bib32) 2016; 50
Huang (10.3168/jds.2020-19412_bib17) 2014; 11
El Said (10.3168/jds.2020-19412_bib13) 2010; 1
Meena (10.3168/jds.2020-19412_bib27) 2016; 83
Manaer (10.3168/jds.2020-19412_bib25) 2015; 169
Venkatakrishnan (10.3168/jds.2020-19412_bib40) 2019; 57
Abdel-Hamid (10.3168/jds.2020-19412_bib1) 2020; 103
Dubey (10.3168/jds.2020-19412_bib11) 2016; 28
Mansour (10.3168/jds.2020-19412_bib26) 2017; 14
Sayed (10.3168/jds.2020-19412_bib36) 2017; 88
Corrêa (10.3168/jds.2020-19412_bib10) 2014; 61
Friedewald (10.3168/jds.2020-19412_bib14) 1972; 18
Risbud (10.3168/jds.2020-19412_bib35) 2002; 58
Khan (10.3168/jds.2020-19412_bib20) 2013; 3
Ma (10.3168/jds.2020-19412_bib23) 2017; 9
Mudgil (10.3168/jds.2020-19412_bib29) 2018; 259
Sultan (10.3168/jds.2020-19412_bib38) 2018; 58
Ismail (10.3168/jds.2020-19412_bib18) 2018; 26
Ayoub (10.3168/jds.2020-19412_bib7) 2018; 146
Osman (10.3168/jds.2020-19412_bib33) 2016; 65
Ben Slama-Ben Salem (10.3168/jds.2020-19412_bib9) 2018; 106
Williams (10.3168/jds.2020-19412_bib42) 2020; 162
Aligita (10.3168/jds.2020-19412_bib5) 2019; 12
Korish (10.3168/jds.2020-19412_bib21) 2020; 103
Nongonierma (10.3168/jds.2020-19412_bib31) 2019; 279
Anjani (10.3168/jds.2020-19412_bib6) 2018
Vinothiya (10.3168/jds.2020-19412_bib41) 2017; 87
Patil (10.3168/jds.2020-19412_bib34) 2015; 54
Agrawal (10.3168/jds.2020-19412_bib2) 2011; 65
References_xml – volume: 259
  start-page: 46
  year: 2018
  end-page: 54
  ident: bib29
  article-title: Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates
  publication-title: Food Chem.
  contributor:
    fullname: Maqsood
– volume: 57
  start-page: 425
  year: 2019
  end-page: 438
  ident: bib40
  article-title: Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism
  publication-title: J. Funct. Foods
  contributor:
    fullname: Wang
– volume: 146
  start-page: 305
  year: 2018
  end-page: 312
  ident: bib7
  article-title: The molecular basis of the anti-diabetic properties of camel milk
  publication-title: Diabetes Res. Clin. Pract.
  contributor:
    fullname: Iratni
– volume: 162
  year: 2020
  ident: bib42
  article-title: Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas
  publication-title: Diabetes Res. Clin. Pract.
  contributor:
    fullname: Colagiuri
– volume: 30
  start-page: 585
  year: 2012
  end-page: 592
  ident: bib24
  article-title: A study of the anti-diabetic agents of camel milk
  publication-title: Int. J. Mol. Med.
  contributor:
    fullname: Jankun
– volume: 279
  start-page: 70
  year: 2019
  end-page: 79
  ident: bib31
  article-title: Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation
  publication-title: Food Chem.
  contributor:
    fullname: FitzGerald
– volume: 61
  start-page: 48
  year: 2014
  end-page: 55
  ident: bib10
  article-title: Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities
  publication-title: Peptides
  contributor:
    fullname: Brandelli
– volume: 98
  start-page: 21
  year: 2000
  end-page: 30
  ident: bib28
  article-title: Time course of changes in serum glucose, insulin, lipids and tissue lipase activities in macrosomic offspring of rats with streptozotocin-induced diabetes
  publication-title: Clin. Sci. (Lond.)
  contributor:
    fullname: Belleville
– volume: 13
  year: 2015
  ident: bib12
  article-title: Effect of camel milk on blood sugar and lipid profile of patients with type 2 diabetes: A pilot clinical trial
  publication-title: Int. J. Endocrinol. Metab.
  contributor:
    fullname: Movahedi
– volume: 58
  start-page: 155
  year: 2002
  end-page: 165
  ident: bib35
  article-title: Models of pancreatic regeneration in diabetes
  publication-title: Diabetes Res. Clin. Pract.
  contributor:
    fullname: Bhonde
– volume: 169
  start-page: 269
  year: 2015
  end-page: 274
  ident: bib25
  article-title: Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin
  publication-title: J. Ethnopharmacol.
  contributor:
    fullname: Nabi
– volume: 65
  start-page: 480
  year: 2016
  end-page: 486
  ident: bib33
  article-title: Antibacterial peptides generated by alcalase hydrolysis of goat whey
  publication-title: Lebensm. Wiss. Technol.
  contributor:
    fullname: Otte
– volume: 12
  start-page: 157
  year: 2019
  end-page: 167
  ident: bib5
  article-title: Antidiabetic activity of okra (
  publication-title: Rasayan J. Chem.
  contributor:
    fullname: Adnyana
– volume: 3
  start-page: 151
  year: 2013
  end-page: 158
  ident: bib20
  article-title: Antidiabetic effects of camel milk in streptozotocin-induced diabetic rats
  publication-title: Am. J. Biochem. Mol. Biol.
  contributor:
    fullname: Mohieldein
– volume: 52
  start-page: 2867
  year: 2003
  end-page: 2873
  ident: bib37
  article-title: Microvascular complications of impaired glucose tolerance
  publication-title: Diabetes
  contributor:
    fullname: Feldman
– volume: 88
  start-page: 542
  year: 2017
  end-page: 552
  ident: bib36
  article-title: Camel whey protein improves oxidative stress and histopathological alterations in lymphoid organs through Bcl-XL/Bax expression in a streptozotocin-induced type 1 diabetic mouse model
  publication-title: Biomed. Pharmacother.
  contributor:
    fullname: Mahmoud
– volume: 46
  start-page: 217
  year: 2016
  end-page: 227
  ident: bib22
  article-title: Camel milk: Alternative milk for human consumption and its health benefits
  publication-title: Nutr. Food Sci.
  contributor:
    fullname: Malav
– volume: 14
  start-page: 108
  year: 2017
  end-page: 119
  ident: bib26
  article-title: Protective effect of camel milk as anti-diabetic supplement: Biochemical, molecular and immunohistochemical study
  publication-title: Afr. J. Tradit. Complement. Altern. Med.
  contributor:
    fullname: Soliman
– volume: 9
  start-page: 801
  year: 2017
  ident: bib23
  article-title: Anti-diabetic effects of phenolic extract from rambutan peels (
  publication-title: Nutrients
  contributor:
    fullname: Zhuang
– volume: 1
  start-page: 30
  year: 2010
  end-page: 43
  ident: bib13
  article-title: Effect of camel milk on oxidative stresses in experimentally induced diabetic rabbits
  publication-title: Vet. Res. Forum
  contributor:
    fullname: Tantawy
– volume: 42
  start-page: S154
  year: 2018
  end-page: S161
  ident: bib16
  article-title: Complementary and alternative medicine for diabetes
  publication-title: Can. J. Diabetes
  contributor:
    fullname: Shack
– volume: 34
  start-page: 416
  year: 2017
  end-page: 421
  ident: bib43
  article-title: Antihypertensive effect of fermented skim camel (
  publication-title: Nutr. Hosp.
  contributor:
    fullname: Al-Khalifah
– volume: 106
  start-page: 952
  year: 2018
  end-page: 963
  ident: bib9
  article-title: In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from
  publication-title: Food Res. Int.
  contributor:
    fullname: Nasri
– volume: 12
  start-page: 46
  year: 2013
  ident: bib8
  article-title: Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: the critical role of β-defensin-1,-2 and-3
  publication-title: Lipids Health Dis.
  contributor:
    fullname: Badr
– volume: 18
  start-page: 362
  year: 2016
  ident: bib15
  article-title: Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats
  publication-title: Cell J.
  contributor:
    fullname: Khazaei
– volume: 26
  start-page: 73
  year: 2018
  end-page: 79
  ident: bib18
  article-title: Camel's milk concentrate inhibits streptozotocin induced diabetes
  publication-title: Food Biosci.
  contributor:
    fullname: Akhtar
– volume: 87
  start-page: 640
  year: 2017
  end-page: 652
  ident: bib41
  article-title: Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats
  publication-title: Biomed. Pharmacother.
  contributor:
    fullname: Ashokkumar
– volume: 28
  start-page: 164
  year: 2016
  ident: bib11
  article-title: Therapeutic potential of camel milk
  publication-title: Emir. J. Food Agric.
  contributor:
    fullname: Kapur
– volume: 120
  start-page: 305
  year: 2018
  end-page: 320
  ident: bib30
  article-title: Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin–induced diabetic rats
  publication-title: Food Chem. Toxicol.
  contributor:
    fullname: Mohamed
– volume: 50
  start-page: 26
  year: 2016
  end-page: 43
  ident: bib32
  article-title: Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides
  publication-title: Trends Food Sci. Technol.
  contributor:
    fullname: FitzGerald
– volume: 58
  start-page: 105
  year: 2018
  end-page: 115
  ident: bib38
  article-title: Therapeutic potential of dairy bioactive peptides: A contemporary perspective
  publication-title: Crit. Rev. Food Sci. Nutr.
  contributor:
    fullname: Abbas
– volume: 71
  start-page: 27
  year: 2017
  end-page: 35
  ident: bib4
  article-title: Angiotensin converting enzyme-inhibitory activity and antimicrobial effect of fermented camel milk (
  publication-title: Int. J. Dairy Technol.
  contributor:
    fullname: Kanekanian
– volume: 83
  start-page: 412
  year: 2016
  end-page: 419
  ident: bib27
  article-title: Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats
  publication-title: J. Dairy Res.
  contributor:
    fullname: Singh
– volume: 102
  start-page: 221
  year: 2009
  end-page: 225
  ident: bib39
  article-title: The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading
  publication-title: Br. J. Nutr.
  contributor:
    fullname: Goda
– volume: 101
  start-page: 8711
  year: 2018
  end-page: 8720
  ident: bib19
  article-title: Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation
  publication-title: J. Dairy Sci.
  contributor:
    fullname: Maqsood
– volume: 18
  start-page: 499
  year: 1972
  end-page: 502
  ident: bib14
  article-title: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge
  publication-title: Clin. Chem.
  contributor:
    fullname: Fredrickson
– volume: 103
  start-page: 30
  year: 2020
  end-page: 41
  ident: bib21
  article-title: Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats
  publication-title: J. Dairy Sci.
  contributor:
    fullname: Alhaider
– volume: 11
  start-page: 235
  year: 2014
  end-page: 242
  ident: bib17
  article-title: Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats
  publication-title: J. Funct. Foods
  contributor:
    fullname: Hsu
– volume: 103
  start-page: 1884
  year: 2020
  end-page: 1893
  ident: bib1
  article-title: Hepatoprotective action of papain-hydrolyzed buffalo milk protein on carbon tetrachloride oxidative stressed albino rats
  publication-title: J. Dairy Sci.
  contributor:
    fullname: Li
– volume: 8
  start-page: 77
  year: 2010
  end-page: 81
  ident: bib3
  article-title: Type II diabetic rats and the hypolipidemic effect of camel milk
  publication-title: J. Food Agriculture Environment & Behavior
  contributor:
    fullname: Al-Numair
– year: 2018
  ident: bib6
  article-title: Antidiabetic potential of purple okra (
  contributor:
    fullname: Handharyani
– volume: 54
  start-page: 863
  year: 2015
  end-page: 880
  ident: bib34
  article-title: Food protein-derived bioactive peptides in management of type 2 diabetes
  publication-title: Eur. J. Nutr.
  contributor:
    fullname: Anand
– volume: 65
  start-page: 1048
  year: 2011
  end-page: 1052
  ident: bib2
  article-title: Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial
  publication-title: Eur. J. Clin. Nutr.
  contributor:
    fullname: Agarwal
– volume: 8
  start-page: 77
  year: 2010
  ident: 10.3168/jds.2020-19412_bib3
  article-title: Type II diabetic rats and the hypolipidemic effect of camel milk
  publication-title: J. Food Agriculture Environment & Behavior
  contributor:
    fullname: Al-Numair
– volume: 14
  start-page: 108
  year: 2017
  ident: 10.3168/jds.2020-19412_bib26
  article-title: Protective effect of camel milk as anti-diabetic supplement: Biochemical, molecular and immunohistochemical study
  publication-title: Afr. J. Tradit. Complement. Altern. Med.
  doi: 10.21010/ajtcam.v14i4.13
  contributor:
    fullname: Mansour
– volume: 103
  start-page: 1884
  year: 2020
  ident: 10.3168/jds.2020-19412_bib1
  article-title: Hepatoprotective action of papain-hydrolyzed buffalo milk protein on carbon tetrachloride oxidative stressed albino rats
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17355
  contributor:
    fullname: Abdel-Hamid
– volume: 12
  start-page: 157
  year: 2019
  ident: 10.3168/jds.2020-19412_bib5
  article-title: Antidiabetic activity of okra (Abelmoschus esculentus L.) fruit extract
  publication-title: Rasayan J. Chem.
  doi: 10.31788/RJC.2019.1215059
  contributor:
    fullname: Aligita
– volume: 12
  start-page: 46
  year: 2013
  ident: 10.3168/jds.2020-19412_bib8
  article-title: Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: the critical role of β-defensin-1,-2 and-3
  publication-title: Lipids Health Dis.
  doi: 10.1186/1476-511X-12-46
  contributor:
    fullname: Badr
– volume: 279
  start-page: 70
  year: 2019
  ident: 10.3168/jds.2020-19412_bib31
  article-title: Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.11.142
  contributor:
    fullname: Nongonierma
– volume: 54
  start-page: 863
  year: 2015
  ident: 10.3168/jds.2020-19412_bib34
  article-title: Food protein-derived bioactive peptides in management of type 2 diabetes
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-015-0974-2
  contributor:
    fullname: Patil
– volume: 58
  start-page: 105
  year: 2018
  ident: 10.3168/jds.2020-19412_bib38
  article-title: Therapeutic potential of dairy bioactive peptides: A contemporary perspective
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2015.1136590
  contributor:
    fullname: Sultan
– volume: 46
  start-page: 217
  year: 2016
  ident: 10.3168/jds.2020-19412_bib22
  article-title: Camel milk: Alternative milk for human consumption and its health benefits
  publication-title: Nutr. Food Sci.
  doi: 10.1108/NFS-07-2015-0085
  contributor:
    fullname: Kumar
– volume: 120
  start-page: 305
  year: 2018
  ident: 10.3168/jds.2020-19412_bib30
  article-title: Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin–induced diabetic rats
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2018.07.028
  contributor:
    fullname: Nna
– volume: 1
  start-page: 30
  year: 2010
  ident: 10.3168/jds.2020-19412_bib13
  article-title: Effect of camel milk on oxidative stresses in experimentally induced diabetic rabbits
  publication-title: Vet. Res. Forum
  contributor:
    fullname: El Said
– volume: 87
  start-page: 640
  year: 2017
  ident: 10.3168/jds.2020-19412_bib41
  article-title: Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.12.134
  contributor:
    fullname: Vinothiya
– volume: 65
  start-page: 480
  year: 2016
  ident: 10.3168/jds.2020-19412_bib33
  article-title: Antibacterial peptides generated by alcalase hydrolysis of goat whey
  publication-title: Lebensm. Wiss. Technol.
  doi: 10.1016/j.lwt.2015.08.043
  contributor:
    fullname: Osman
– volume: 18
  start-page: 362
  year: 2016
  ident: 10.3168/jds.2020-19412_bib15
  article-title: Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats
  publication-title: Cell J.
  contributor:
    fullname: Ghanbari
– volume: 102
  start-page: 221
  year: 2009
  ident: 10.3168/jds.2020-19412_bib39
  article-title: The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114508184689
  contributor:
    fullname: Tanaka
– volume: 42
  start-page: S154
  year: 2018
  ident: 10.3168/jds.2020-19412_bib16
  article-title: Complementary and alternative medicine for diabetes
  publication-title: Can. J. Diabetes
  doi: 10.1016/j.jcjd.2017.10.023
  contributor:
    fullname: Grossman
– volume: 13
  year: 2015
  ident: 10.3168/jds.2020-19412_bib12
  article-title: Effect of camel milk on blood sugar and lipid profile of patients with type 2 diabetes: A pilot clinical trial
  publication-title: Int. J. Endocrinol. Metab.
  contributor:
    fullname: Ejtahed
– volume: 103
  start-page: 30
  year: 2020
  ident: 10.3168/jds.2020-19412_bib21
  article-title: Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-16606
  contributor:
    fullname: Korish
– volume: 9
  start-page: 801
  year: 2017
  ident: 10.3168/jds.2020-19412_bib23
  article-title: Anti-diabetic effects of phenolic extract from rambutan peels (Nephelium lappaceum) in high-fat diet and streptozotocin-induced diabetic mice
  publication-title: Nutrients
  doi: 10.3390/nu9080801
  contributor:
    fullname: Ma
– volume: 61
  start-page: 48
  year: 2014
  ident: 10.3168/jds.2020-19412_bib10
  article-title: Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities
  publication-title: Peptides
  doi: 10.1016/j.peptides.2014.09.001
  contributor:
    fullname: Corrêa
– volume: 52
  start-page: 2867
  year: 2003
  ident: 10.3168/jds.2020-19412_bib37
  article-title: Microvascular complications of impaired glucose tolerance
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.12.2867
  contributor:
    fullname: Singleton
– volume: 3
  start-page: 151
  year: 2013
  ident: 10.3168/jds.2020-19412_bib20
  article-title: Antidiabetic effects of camel milk in streptozotocin-induced diabetic rats
  publication-title: Am. J. Biochem. Mol. Biol.
  doi: 10.3923/ajbmb.2013.151.158
  contributor:
    fullname: Khan
– volume: 30
  start-page: 585
  year: 2012
  ident: 10.3168/jds.2020-19412_bib24
  article-title: A study of the anti-diabetic agents of camel milk
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2012.1051
  contributor:
    fullname: Malik
– volume: 71
  start-page: 27
  year: 2017
  ident: 10.3168/jds.2020-19412_bib4
  article-title: Angiotensin converting enzyme-inhibitory activity and antimicrobial effect of fermented camel milk (Camelus dromedarius)
  publication-title: Int. J. Dairy Technol.
  doi: 10.1111/1471-0307.12383
  contributor:
    fullname: Alhaj
– volume: 50
  start-page: 26
  year: 2016
  ident: 10.3168/jds.2020-19412_bib32
  article-title: Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2016.01.022
  contributor:
    fullname: Nongonierma
– volume: 65
  start-page: 1048
  year: 2011
  ident: 10.3168/jds.2020-19412_bib2
  article-title: Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/ejcn.2011.98
  contributor:
    fullname: Agrawal
– volume: 83
  start-page: 412
  year: 2016
  ident: 10.3168/jds.2020-19412_bib27
  article-title: Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats
  publication-title: J. Dairy Res.
  doi: 10.1017/S002202991600042X
  contributor:
    fullname: Meena
– volume: 162
  year: 2020
  ident: 10.3168/jds.2020-19412_bib42
  article-title: Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2020.108072
  contributor:
    fullname: Williams
– year: 2018
  ident: 10.3168/jds.2020-19412_bib6
  contributor:
    fullname: Anjani
– volume: 259
  start-page: 46
  year: 2018
  ident: 10.3168/jds.2020-19412_bib29
  article-title: Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.03.082
  contributor:
    fullname: Mudgil
– volume: 26
  start-page: 73
  year: 2018
  ident: 10.3168/jds.2020-19412_bib18
  article-title: Camel's milk concentrate inhibits streptozotocin induced diabetes
  publication-title: Food Biosci.
  doi: 10.1016/j.fbio.2018.09.010
  contributor:
    fullname: Ismail
– volume: 98
  start-page: 21
  year: 2000
  ident: 10.3168/jds.2020-19412_bib28
  article-title: Time course of changes in serum glucose, insulin, lipids and tissue lipase activities in macrosomic offspring of rats with streptozotocin-induced diabetes
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS19990109
  contributor:
    fullname: Merzouk
– volume: 57
  start-page: 425
  year: 2019
  ident: 10.3168/jds.2020-19412_bib40
  article-title: Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2019.04.039
  contributor:
    fullname: Venkatakrishnan
– volume: 28
  start-page: 164
  year: 2016
  ident: 10.3168/jds.2020-19412_bib11
  article-title: Therapeutic potential of camel milk
  publication-title: Emir. J. Food Agric.
  doi: 10.9755/ejfa.2015-04-122
  contributor:
    fullname: Dubey
– volume: 88
  start-page: 542
  year: 2017
  ident: 10.3168/jds.2020-19412_bib36
  article-title: Camel whey protein improves oxidative stress and histopathological alterations in lymphoid organs through Bcl-XL/Bax expression in a streptozotocin-induced type 1 diabetic mouse model
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.01.076
  contributor:
    fullname: Sayed
– volume: 106
  start-page: 952
  year: 2018
  ident: 10.3168/jds.2020-19412_bib9
  article-title: In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2018.01.068
  contributor:
    fullname: Ben Slama-Ben Salem
– volume: 18
  start-page: 499
  year: 1972
  ident: 10.3168/jds.2020-19412_bib14
  article-title: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/18.6.499
  contributor:
    fullname: Friedewald
– volume: 11
  start-page: 235
  year: 2014
  ident: 10.3168/jds.2020-19412_bib17
  article-title: Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2014.09.010
  contributor:
    fullname: Huang
– volume: 169
  start-page: 269
  year: 2015
  ident: 10.3168/jds.2020-19412_bib25
  article-title: Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.04.032
  contributor:
    fullname: Manaer
– volume: 58
  start-page: 155
  year: 2002
  ident: 10.3168/jds.2020-19412_bib35
  article-title: Models of pancreatic regeneration in diabetes
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/S0168-8227(02)00103-1
  contributor:
    fullname: Risbud
– volume: 34
  start-page: 416
  year: 2017
  ident: 10.3168/jds.2020-19412_bib43
  article-title: Antihypertensive effect of fermented skim camel (Camelus dromedarius) milk on spontaneously hypertensive rats
  publication-title: Nutr. Hosp.
  doi: 10.20960/nh.1163
  contributor:
    fullname: Yahya
– volume: 101
  start-page: 8711
  year: 2018
  ident: 10.3168/jds.2020-19412_bib19
  article-title: Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-14586
  contributor:
    fullname: Kamal
– volume: 146
  start-page: 305
  year: 2018
  ident: 10.3168/jds.2020-19412_bib7
  article-title: The molecular basis of the anti-diabetic properties of camel milk
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.11.006
  contributor:
    fullname: Ayoub
SSID ssj0021205
Score 2.5331032
Snippet This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia,...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1304
SubjectTerms Animals
Antioxidants - therapeutic use
Blood Glucose - analysis
camel milk
Camelus - metabolism
diabetes mellitus
Diabetes Mellitus, Experimental - blood
Diabetes Mellitus, Experimental - drug therapy
Diabetes Mellitus, Experimental - pathology
hypoglycemia
Hypoglycemic Agents - therapeutic use
Hypolipidemic Agents - therapeutic use
Insulin-Secreting Cells - pathology
Lipid Peroxidation - drug effects
Liver - chemistry
Liver - pathology
Male
Malondialdehyde - metabolism
Milk - metabolism
Milk Proteins - therapeutic use
Oxidative Stress - drug effects
protein hydrolysates
Protein Hydrolysates - therapeutic use
Rats
streptozotocin
Title Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats
URI https://dx.doi.org/10.3168/jds.2020-19412
https://www.ncbi.nlm.nih.gov/pubmed/33272578
https://search.proquest.com/docview/2467621293
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZe9kOY233ka0dGhTawUxiybKlY1paQvdxWTLCLkZfztQ6dkhdaPbH9G_tk-UUdshlF2MJyTJ6z0-_n_zeE0LHCbE80xKsn05VBNZPgh2kw4glgHW5UFy3UWnff6TjaXI1Y7MeOt_Ewni3ys72B5veWuuuZtDN5mDpnI_xJQQe216ANMyeoV0C6BeUfXd09uvrtyfeFZPgyegd132HkLvRn9g0uDY-ZTcwKODyMdm2Nm3Dnu0adPkKvezAIx6F99tDPVvtoxej-apLoGEP0ENIR4zrAmu5sCVeuPIGt9kYXIX_rM2qLte3HmBiOZcOwCFULu1qXq61XTj5JRRLF06OhbKsDJadEK3B9b0zbbJwHMJMMDzW3y2b-m_dQKsKn_6c_P4cAdkHtTE47O46jUHXbl-j6eXF5HwcdWcwRJrypImoZTShBcsAihWZYoqKoZDMEFHolDGeccaMskYZIFJDqmKfYE0UTMvYSGC_9A3aqerKvkM4FQkpOEAiw7NEKCsUSbjfRJGECpvKPjrZzH6-DKk2cqAoXk45yCn3cspbOfVRvBFO_o-y5LAObO3zaSPFHL4g_1tEVra-gzawVqTE454-ehvE-zQ-pSTzRu39f4z4AT0n3gGmdfE-RDvN6s4eAYJp1MdOQx8Bkbvvkw
link.rule.ids 315,783,787,27583,27938,27939,45677
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGdgAOiM_R8WUkJEAiamPHiX0sE1Nh3S50qOJi-SvFLE2qLpMofwx_K89xOolDL1yi2LLjyO_l-fdz3ntG6E1GHC-MAutncp2A9VNgB-koYRlgXS40N11U2tl5PrnIvszZfA8db2Nhgltlb_ujTe-sdV8z7GdzuPI-xPgSAo_tLkAa5rfQAaCBAhjYwfjjt9PpDe9KSfRkDI7roUPM3RhObBr-tCFlNzAo4PIp2bU27cKe3Rp0ch_d68EjHsf3e4D2XP0Q3R0v1n0CDfcI_YnpiHFTYqOWrsJLX13iLhuDr_GPjV031eYqAEysFsoDOITKlVsvqo1xS68-xGLl48mxUFa1xaoXorO4-eVtlywcxzATDI8Nd6u2-d200KrG777Ovr9PgOyD2lgcd3e9waBrV4_Rxcmn2fEk6c9gSAzlWZtQx2hGS1YAFCsLzTQVI6GYJaI0OWO84IxZ7ay2QKRGVKchwZoomVGpVcB-6RO0Xze1e4pwLjJScoBElheZ0E5okvGwiaIIFS5XA_R2O_tyFVNtSKAoQU4S5CSDnGQnpwFKt8KR_yiLhHVgZ5_XWylK-ILCbxFVu-Ya2sBakZOAewboMIr3ZnxKSRGM2tF_jPgK3Z7MzqZy-vn89Bm6Q4IzTOfu_Rztt-tr9wLQTKtf9tr6F_gh8oE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+camel+milk+protein+hydrolysates+against+hyperglycemia%2C+hyperlipidemia%2C+and+associated+oxidative+stress+in+streptozotocin+%28STZ%29-induced+diabetic+rats&rft.jtitle=Journal+of+dairy+science&rft.au=Kilari%2C+Bhanu+Priya&rft.au=Mudgil%2C+Priti&rft.au=Azimullah%2C+Sheikh&rft.au=Bansal%2C+Nidhi&rft.date=2021-02-01&rft.issn=0022-0302&rft.volume=104&rft.issue=2&rft.spage=1304&rft.epage=1317&rft_id=info:doi/10.3168%2Fjds.2020-19412&rft.externalDBID=n%2Fa&rft.externalDocID=10_3168_jds_2020_19412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon