Automated Assessment of Photoreceptor Visibility in Adaptive Optics Split-Detection Images Using Edge Detection

Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which...

Full description

Saved in:
Bibliographic Details
Published inTranslational vision science & technology Vol. 11; no. 5; p. 25
Main Authors Chen, Min, Jiang, Yu You, Gee, James C., Brainard, David H., Morgan, Jessica I. W.
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 24.05.2022
Online AccessGet full text

Cover

Loading…
Abstract Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which can lead to variability in analyses of the photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires manual assessment of photoreceptor visibility across overlapping images, a laborious and time-consuming task. We propose an automated measure for quantification of photoreceptor visibility in AOSLO. Our method detects salient edge features, which can represent visible photoreceptor boundaries in each image. We evaluate our measure against two human graders and two standard automated image quality assessment algorithms. We evaluate the accuracy of pairwise ordering (PO) and the correlation of ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five subjects with choroideremia. The proposed measure had high association with manual assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is comparable with intergrader reliability (PO = 0.76, OR = 0.75) and outperforms the top standard approach (PO = 0.57; OR = 0.46). Our edge-based measure can automatically assess photoreceptor visibility and order overlapping images within AOSLO montages. This can significantly reduce the manual labor required to generate high-quality AOSLO montages and enables higher throughput for quantitative studies of photoreceptors. Automated assessment of photoreceptor visibility allows us to more rapidly quantify photoreceptor morphology in the living eye. This has applications to ophthalmic medicine by allowing detailed characterization of retinal degenerations, thus yielding potential biomarkers of treatment safety and efficacy.
AbstractList Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which can lead to variability in analyses of the photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires manual assessment of photoreceptor visibility across overlapping images, a laborious and time-consuming task. We propose an automated measure for quantification of photoreceptor visibility in AOSLO. Our method detects salient edge features, which can represent visible photoreceptor boundaries in each image. We evaluate our measure against two human graders and two standard automated image quality assessment algorithms. We evaluate the accuracy of pairwise ordering (PO) and the correlation of ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five subjects with choroideremia. The proposed measure had high association with manual assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is comparable with intergrader reliability (PO = 0.76, OR = 0.75) and outperforms the top standard approach (PO = 0.57; OR = 0.46). Our edge-based measure can automatically assess photoreceptor visibility and order overlapping images within AOSLO montages. This can significantly reduce the manual labor required to generate high-quality AOSLO montages and enables higher throughput for quantitative studies of photoreceptors. Automated assessment of photoreceptor visibility allows us to more rapidly quantify photoreceptor morphology in the living eye. This has applications to ophthalmic medicine by allowing detailed characterization of retinal degenerations, thus yielding potential biomarkers of treatment safety and efficacy.
Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which can lead to variability in analyses of the photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires manual assessment of photoreceptor visibility across overlapping images, a laborious and time-consuming task.PurposeAdaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which can lead to variability in analyses of the photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires manual assessment of photoreceptor visibility across overlapping images, a laborious and time-consuming task.We propose an automated measure for quantification of photoreceptor visibility in AOSLO. Our method detects salient edge features, which can represent visible photoreceptor boundaries in each image. We evaluate our measure against two human graders and two standard automated image quality assessment algorithms.MethodsWe propose an automated measure for quantification of photoreceptor visibility in AOSLO. Our method detects salient edge features, which can represent visible photoreceptor boundaries in each image. We evaluate our measure against two human graders and two standard automated image quality assessment algorithms.We evaluate the accuracy of pairwise ordering (PO) and the correlation of ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five subjects with choroideremia. The proposed measure had high association with manual assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is comparable with intergrader reliability (PO = 0.76, OR = 0.75) and outperforms the top standard approach (PO = 0.57; OR = 0.46).ResultsWe evaluate the accuracy of pairwise ordering (PO) and the correlation of ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five subjects with choroideremia. The proposed measure had high association with manual assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is comparable with intergrader reliability (PO = 0.76, OR = 0.75) and outperforms the top standard approach (PO = 0.57; OR = 0.46).Our edge-based measure can automatically assess photoreceptor visibility and order overlapping images within AOSLO montages. This can significantly reduce the manual labor required to generate high-quality AOSLO montages and enables higher throughput for quantitative studies of photoreceptors.ConclusionsOur edge-based measure can automatically assess photoreceptor visibility and order overlapping images within AOSLO montages. This can significantly reduce the manual labor required to generate high-quality AOSLO montages and enables higher throughput for quantitative studies of photoreceptors.Automated assessment of photoreceptor visibility allows us to more rapidly quantify photoreceptor morphology in the living eye. This has applications to ophthalmic medicine by allowing detailed characterization of retinal degenerations, thus yielding potential biomarkers of treatment safety and efficacy.Translational RelevanceAutomated assessment of photoreceptor visibility allows us to more rapidly quantify photoreceptor morphology in the living eye. This has applications to ophthalmic medicine by allowing detailed characterization of retinal degenerations, thus yielding potential biomarkers of treatment safety and efficacy.
Author Brainard, David H.
Chen, Min
Jiang, Yu You
Morgan, Jessica I. W.
Gee, James C.
Author_xml – sequence: 1
  givenname: Min
  surname: Chen
  fullname: Chen, Min
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Yu You
  surname: Jiang
  fullname: Jiang, Yu You
  organization: Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: James C.
  surname: Gee
  fullname: Gee, James C.
  organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: David H.
  surname: Brainard
  fullname: Brainard, David H.
  organization: Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 5
  givenname: Jessica I. W.
  surname: Morgan
  fullname: Morgan, Jessica I. W.
  organization: Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA, Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35608855$$D View this record in MEDLINE/PubMed
BookMark eNptkUtr3DAUhUVIyHvXddGyi3qq98ibwpAmaSCQQB5bIUvXExXbci3NQP59NCQdklBtzoHz6V7p3iO0O8QBEPpCyYxSNf-R1ykXN5MzJnfQIaNKVEzWdPedP0CnKf0h5SgthVD76IBLRbSW8hDFxSrH3mbweJESpNTDkHFs8e1TzHECB2MR_BhSaEIX8jMOA154O-awBnxTxCV8N5ak-gUZXA5xwFe9XULCDykMS3zul4C32Qnaa22X4PRNj9HDxfn92e_q-uby6mxxXTmuRa5Yq0F72nClQHKobU2kFcrXZM4pAdXMmQBeU08cb4TntKHKth5apRkrMD9GP1_rjqumB-_KrybbmXEKvZ2eTbTBfEyG8GSWcW1qKiThvBT49lZgin9XkLLpQ3LQdXaAuEqGKaVrSuZCF_Tr-17bJv-mXIDvr4CbYkoTtFuEErPZo9nssTgjDdvg7BPuQrab6ZWXhu7_l14A5MukVw
CitedBy_id crossref_primary_10_1167_iovs_65_12_6
crossref_primary_10_1364_BOE_516477
crossref_primary_10_1167_iovs_65_14_6
crossref_primary_10_1097_IAE_0000000000003995
crossref_primary_10_1016_j_survophthal_2023_09_006
Cites_doi 10.1364/BOE.7.004899
10.1364/BOE.9.004317
10.1109/TPAMI.1986.4767851
10.1111/ceo.2014.42.issue-9
10.1167/iovs.18-25880
10.1007/978-3-031-02238-8
10.1146/vision.2015.1.issue-1
10.1167/iovs.17-21904
10.1016/j.oret.2019.05.002
10.1007/s11432-019-2757-1
10.1109/NCC.2015.7084843
10.1111/opo.12289
10.1109/TIP.2012.2214050
10.1364/BOE.2.001757
10.1167/tvst.6.2.9
10.1167/iovs.10-6479
10.1371/journal.pone.0167526
10.1007/978-3-642-14366-3
10.2307/2334029
10.1167/iovs.14-14542
10.1371/journal.pone.0174617
10.1364/BOE.10.006476
10.1167/tvst.9.2.40
10.1167/iovs.13-13454
ContentType Journal Article
Copyright Copyright 2022 The Authors 2022
Copyright_xml – notice: Copyright 2022 The Authors 2022
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1167/tvst.11.5.25
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Automated Assessment of Photoreceptor Visibility
EISSN 2164-2591
ExternalDocumentID PMC9145033
35608855
10_1167_tvst_11_5_25
Genre Journal Article
GroupedDBID 53G
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
M~E
OK1
RPM
TRV
FRP
NPM
7X8
5PM
ID FETCH-LOGICAL-c384t-2f8e8d1b366e53e9a905a46d907310e6b724e391d0c3b4d31b16afdef6822a903
ISSN 2164-2591
IngestDate Thu Aug 21 13:59:27 EDT 2025
Fri Jul 11 07:52:15 EDT 2025
Wed Feb 19 02:26:24 EST 2025
Thu Apr 24 22:56:57 EDT 2025
Tue Jul 01 02:11:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-2f8e8d1b366e53e9a905a46d907310e6b724e391d0c3b4d31b16afdef6822a903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1167/tvst.11.5.25
PMID 35608855
PQID 2668910748
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9145033
proquest_miscellaneous_2668910748
pubmed_primary_35608855
crossref_primary_10_1167_tvst_11_5_25
crossref_citationtrail_10_1167_tvst_11_5_25
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220524
PublicationDateYYYYMMDD 2022-05-24
PublicationDate_xml – month: 5
  year: 2022
  text: 20220524
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Translational vision science & technology
PublicationTitleAlternate Transl Vis Sci Technol
PublicationYear 2022
Publisher The Association for Research in Vision and Ophthalmology
Publisher_xml – name: The Association for Research in Vision and Ophthalmology
References Sun (bib4) 2016; 11
Zhai (bib17) 2020; 63
Morgan (bib9) 2021; 62
Bedggood (bib24) 2017; 12
Morgan (bib6) 2014; 55
Dubra (bib21) 2011; 2
Scoles (bib3) 2014; 55
Venkatanath (bib19) 2015
Bidaut Garnier (bib13) 2014; 42
Wang (bib16) 2006
Georgiou (bib7) 2019; 60
Tanna (bib15) 2017; 58
Chen (bib12) 2019; 10
Tuten (bib5) 2019; 3
Canny (bib20) 1986
Morgan (bib1) 2016; 36
Salmon (bib22) 2017; 6
Mittal (bib18) 2012; 21
Chen (bib10) 2016; 7
Roorda (bib2) 2015; 1
Talcott (bib8) 2011; 52
Morgan (bib14) 2020; 9
Dubra (bib23) 2010; 6204
Bradley (bib25) 1952; 39
Davidson (bib11) 2018; 9
References_xml – volume: 7
  start-page: 4899
  issue: 12
  year: 2016
  ident: bib10
  article-title: Multi-modal automatic montaging of adaptive optics retinal images
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.004899
– volume: 9
  start-page: 4317
  issue: 9
  year: 2018
  ident: bib11
  article-title: Fast adaptive optics scanning light ophthalmoscope retinal montaging
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.9.004317
– start-page: 679
  issue: 6
  year: 1986
  ident: bib20
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767851
– volume: 42
  start-page: 833
  issue: 9
  year: 2014
  ident: bib13
  article-title: Reliability of cone counts using an adaptive optics retinal camera
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.2014.42.issue-9
– volume: 60
  start-page: 383
  issue: 1
  year: 2019
  ident: bib7
  article-title: Adaptive optics retinal imaging in CNGA3-associated achromatopsia: retinal characterization, interocular symmetry, and intrafamilial variability
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-25880
– start-page: 1
  volume-title: Modern Image Quality Assessment: Synthesis Lectures on Image, Video, and Multimedia Processing
  year: 2006
  ident: bib16
  doi: 10.1007/978-3-031-02238-8
– volume: 1
  start-page: 19
  year: 2015
  ident: bib2
  article-title: Adaptive optics ophthalmoscopy
  publication-title: Annu Rev Vis Sci
  doi: 10.1146/vision.2015.1.issue-1
– volume: 58
  start-page: 3608
  issue: 9
  year: 2017
  ident: bib15
  article-title: Reliability and repeatability of cone density measurements in patients with Stargardt disease and RPGR-associated retinopathy
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-21904
– volume: 3
  start-page: 888
  year: 2019
  ident: bib5
  article-title: Visual function at the atrophic border in choroideremia assessed with adaptive optics microperimetry
  publication-title: Ophthalmol Retina
  doi: 10.1016/j.oret.2019.05.002
– volume: 63
  start-page: 211301
  issue: 11
  year: 2020
  ident: bib17
  article-title: Perceptual image quality assessment: a survey
  publication-title: Sci China Inform Sci
  doi: 10.1007/s11432-019-2757-1
– start-page: 1
  volume-title: 2015 Twenty First National Conference on Communications (NCC)
  year: 2015
  ident: bib19
  article-title: Blind image quality evaluation using perception based features
  doi: 10.1109/NCC.2015.7084843
– volume: 36
  start-page: 218
  year: 2016
  ident: bib1
  article-title: The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1111/opo.12289
– volume: 21
  start-page: 4695
  issue: 12
  year: 2012
  ident: bib18
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2214050
– volume: 2
  start-page: 1757
  year: 2011
  ident: bib21
  article-title: Reflective afocal broadband adaptive optics scanning ophthalmoscope
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.2.001757
– volume: 6
  start-page: 9
  year: 2017
  ident: bib22
  article-title: An automated reference frame selection (ARFS) algorithm for cone imaging with adaptive optics scanning light ophthalmoscopy
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.6.2.9
– volume: 52
  start-page: 2219
  issue: 5
  year: 2011
  ident: bib8
  article-title: Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.10-6479
– volume: 11
  start-page: e0167526
  year: 2016
  ident: bib4
  article-title: Multimodal imaging of photoreceptor structure in choroideremia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0167526
– volume: 6204
  start-page: 60
  year: 2010
  ident: bib23
  article-title: Registration of 2D images from fast scanning ophthalmic instruments
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-642-14366-3
– volume: 62
  start-page: 47
  issue: 8
  year: 2021
  ident: bib9
  article-title: Cone mosaic integrity in choroideremia following gene augmentation via subretinal injection of AAV2-hCHM
  publication-title: Invest Ophthalmol Vis Sci
– volume: 39
  start-page: 324
  issue: 3/4
  year: 1952
  ident: bib25
  article-title: Rank analysis of incomplete block designs: I. The method of paired comparisons
  publication-title: Biometrika
  doi: 10.2307/2334029
– volume: 55
  start-page: 4244
  year: 2014
  ident: bib3
  article-title: In vivo imaging of human cone photoreceptor inner segments
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.14-14542
– volume: 12
  start-page: e0174617
  year: 2017
  ident: bib24
  article-title: De-warping of images and improved eye tracking for the scanning laser ophthalmoscope
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174617
– volume: 10
  start-page: 6476
  issue: 12
  year: 2019
  ident: bib12
  article-title: Automatic longitudinal montaging of adaptive optics retinal images using constellation matching
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.10.006476
– volume: 9
  start-page: 40
  issue: 2
  year: 2020
  ident: bib14
  article-title: Cone identification in choroideremia: repeatability, reliability, and automation through use of a convolutional neural network
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.9.2.40
– volume: 55
  start-page: 6381
  year: 2014
  ident: bib6
  article-title: High-resolution adaptive optics retinal imaging of cellular structure in choroideremia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-13454
SSID ssj0000685446
Score 2.2189991
Snippet Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 25
Title Automated Assessment of Photoreceptor Visibility in Adaptive Optics Split-Detection Images Using Edge Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/35608855
https://www.proquest.com/docview/2668910748
https://pubmed.ncbi.nlm.nih.gov/PMC9145033
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIqFeEIjX8pKR4LTykoftJMelFJVKhQMtKqfISWw1UpusWocDF_46YzvxJttWAi6RFXu9UuaL_c3kmzFCbxVV5igTQTiXAQH-X5GMRpKwUsLuklZFXJmA_tEXfnBCD0_Z6Wz2e6Ra6nSxLH_dmFfyP1aFe2BXkyX7D5b1k8INaIN94QoWhutf2XjV6RYYJ3DGlS-waUVtZy240tIoVtrLxfe6l8DaFL9VJdZWLvR1bSs0fwMWqslHqaU7NPzzhTBlH5yUYN8kc_m-MZG1e9z5EEl0GeqLIUfIwElfi9nv9YkgR7UH5GHdh6t_dAtYd7wYqFcHGQXvJoz7wZxmIUZS_D6xoo9ZgLsbMOJSpZfSrm0ReGkEPK9wshCHI8Cx8arKbl7sufncrH9eaWgv2XI6DEy1vrCGj4HVpamrBrxVXHvouoPuRuBnRCOf3G3lKQN_eUiY4Mn78b_tonvD76es5pqrsq24HVGY4wfofu974JUD0kM0k80j1HoQ4Q2IcKvwBER4AyJcN3gAEXYgwlsgwg5E2IIIGxBh3_cYnXzaP947IP0pHKSMU6pJpFKZVmERw9vMYpmJLGCC8iqDzSEMJC-SiMo4C6ugjAtaxWERcqEqqThwTxgcP0E7TdvIZwgrCnRcKVNSUdGSlkJwWbAoS4JQlMB852gxPMW87EvUm5NSznPrqvIkN48fWjnLIxj9zo9eu9Ist4x7Mxgkh7XTfBATjWy7qxzIaZoZRXI6R0-dgfxMg2XnKJmYzg8wddmnPU19ZuuzZyE14oDnt875Au1u3oqXaEdfdvIVcFtdvLb4-wNnc6sp
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Assessment+of+Photoreceptor+Visibility+in+Adaptive+Optics+Split-Detection+Images+Using+Edge+Detection&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Chen%2C+Min&rft.au=Jiang%2C+Yu+You&rft.au=Gee%2C+James+C&rft.au=Brainard%2C+David+H&rft.date=2022-05-24&rft.eissn=2164-2591&rft.volume=11&rft.issue=5&rft.spage=25&rft_id=info:doi/10.1167%2Ftvst.11.5.25&rft_id=info%3Apmid%2F35608855&rft.externalDocID=35608855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon