miR-24-3p secreted as extracellular vesicle cargo by cardiomyocytes inhibits fibrosis in human cardiac microtissues
Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investiga...
Saved in:
Published in | Cardiovascular research Vol. 121; no. 1; pp. 143 - 156 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investigated whether miR-24-3p plays similar roles in human models.
Gain- and loss-of-function experiments were performed using human induced pluripotent stem cell-derived cardiomyocytes (hCM) and primary hCF under normoxic or ischaemia-simulating conditions. hCM-derived extracellular vesicles (EVs) were added to hCF. Similar experiments were performed using three-dimensional human cardiac microtissues and ex vivo cultured human cardiac slices. hCF transfection with miR-24-3p mimic prevented TGFβ1-mediated induction of FURIN, CCND1, and SMAD4-miR-24-3p target genes participating in TGFβ1-dependent fibrogenesis-regulating hCF-to-myofibroblast conversion. hCM secreted miR-24-3p as EV cargo. hCM-derived EVs modulated hCF activation. Ischaemia-simulating conditions induced miR-24-3p depletion in hCM-EVs and microtissues. Similarly, hypoxia down-regulated miR-24-3p in cardiac slices. Analyses of clinical samples revealed decreased miR-24-3p levels in circulating EVs in patients with acute myocardial infarction (AMI), compared with healthy subjects. Post-mortem RNAScope analysis showed miR-24-3p down-regulation in myocardium from patients with AMI, compared with patients who died from non-cardiac diseases. Berberine, a plant-derived agent with miR-24-3p-stimulatory activity, increased miR-24-3p contents in hCM-EVs, down-regulated FURIN, CCND1, and SMAD4, and inhibited fibrosis in cardiac microtissues.
These findings suggest that hCM may control hCF activation through miR-24-3p secreted as EV cargo. Ischaemia impairs this mechanism, favouring fibrosis. |
---|---|
AbstractList | Graphical Abstract Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investigated whether miR-24-3p plays similar roles in human models. Gain- and loss-of-function experiments were performed using human induced pluripotent stem cell-derived cardiomyocytes (hCM) and primary hCF under normoxic or ischaemia-simulating conditions. hCM-derived extracellular vesicles (EVs) were added to hCF. Similar experiments were performed using three-dimensional human cardiac microtissues and ex vivo cultured human cardiac slices. hCF transfection with miR-24-3p mimic prevented TGFβ1-mediated induction of FURIN, CCND1, and SMAD4-miR-24-3p target genes participating in TGFβ1-dependent fibrogenesis-regulating hCF-to-myofibroblast conversion. hCM secreted miR-24-3p as EV cargo. hCM-derived EVs modulated hCF activation. Ischaemia-simulating conditions induced miR-24-3p depletion in hCM-EVs and microtissues. Similarly, hypoxia down-regulated miR-24-3p in cardiac slices. Analyses of clinical samples revealed decreased miR-24-3p levels in circulating EVs in patients with acute myocardial infarction (AMI), compared with healthy subjects. Post-mortem RNAScope analysis showed miR-24-3p down-regulation in myocardium from patients with AMI, compared with patients who died from non-cardiac diseases. Berberine, a plant-derived agent with miR-24-3p-stimulatory activity, increased miR-24-3p contents in hCM-EVs, down-regulated FURIN, CCND1, and SMAD4, and inhibited fibrosis in cardiac microtissues. These findings suggest that hCM may control hCF activation through miR-24-3p secreted as EV cargo. Ischaemia impairs this mechanism, favouring fibrosis. Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investigated whether miR-24-3p plays similar roles in human models.BACKGROUND AND AIMSCardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investigated whether miR-24-3p plays similar roles in human models.Gain- and loss-of-function experiments were performed using human induced pluripotent stem cell-derived cardiomyocytes (hCM) and primary hCF under normoxic or ischaemia-simulating conditions. hCM-derived extracellular vesicles (EVs) were added to hCF. Similar experiments were performed using three-dimensional human cardiac microtissues and ex vivo-cultured human cardiac slices.hCF transfection with miR-24-3p mimic prevented TGFβ1-mediated induction of FURIN, CCND1 and SMAD4-miR-24-3p target genes participating in TGFβ1-dependent fibrinogenesis -, regulating hCF-to-myofibroblast conversion. hCM secreted miR-24-3p as EV cargo. hCM-derived EVs modulated hCF activation. Ischaemia-simulating conditions induced miR-24-3p depletion in hCM-EVs and microtissues. Similarly, hypoxia downregulated miR-24-3p in cardiac slices. Analyses of clinical samples revealed decreased miR-24-3p levels in circulating EVs in acute myocardial infarction (AMI) patients, compared with healthy subjects. Post-mortem RNAScope analysis showed miR-24-3p downregulation in myocardium from AMI patients, compared with patients who died from noncardiac diseases. Berberin, a plant-derived agent with miR-24-3p-stimulatory activity, increased miR-24-3p contents in hCM-EVs, downregulated FURIN, CCND1 and SMAD4, and inhibited fibrosis in cardiac microtissues.METHODS AND RESULTSGain- and loss-of-function experiments were performed using human induced pluripotent stem cell-derived cardiomyocytes (hCM) and primary hCF under normoxic or ischaemia-simulating conditions. hCM-derived extracellular vesicles (EVs) were added to hCF. Similar experiments were performed using three-dimensional human cardiac microtissues and ex vivo-cultured human cardiac slices.hCF transfection with miR-24-3p mimic prevented TGFβ1-mediated induction of FURIN, CCND1 and SMAD4-miR-24-3p target genes participating in TGFβ1-dependent fibrinogenesis -, regulating hCF-to-myofibroblast conversion. hCM secreted miR-24-3p as EV cargo. hCM-derived EVs modulated hCF activation. Ischaemia-simulating conditions induced miR-24-3p depletion in hCM-EVs and microtissues. Similarly, hypoxia downregulated miR-24-3p in cardiac slices. Analyses of clinical samples revealed decreased miR-24-3p levels in circulating EVs in acute myocardial infarction (AMI) patients, compared with healthy subjects. Post-mortem RNAScope analysis showed miR-24-3p downregulation in myocardium from AMI patients, compared with patients who died from noncardiac diseases. Berberin, a plant-derived agent with miR-24-3p-stimulatory activity, increased miR-24-3p contents in hCM-EVs, downregulated FURIN, CCND1 and SMAD4, and inhibited fibrosis in cardiac microtissues.These findings suggest that hCM may control hCF activation through miR-24-3p secreted as EV cargo. Ischaemia impairs this mechanism, favouring fibrosis.CONCLUSIONSThese findings suggest that hCM may control hCF activation through miR-24-3p secreted as EV cargo. Ischaemia impairs this mechanism, favouring fibrosis. |
Author | Veltrop, Rogier J A Malatesta, Paolo Mohammed, Shafeeq Senesi, Giorgia Hjortnaes, Jesper Barile, Lucio Raimondi, Andrea Torre, Tiziano Camici, Giovanni G Lodrini, Alessandra M Bolis, Sara Goumans, Marie-José Balbi, Carolina Paneni, Francesco Mosole, Simone Kubat, Bela Vassalli, Giuseppe Ceresa, Davide |
Author_xml | – sequence: 1 givenname: Giorgia surname: Senesi fullname: Senesi, Giorgia – sequence: 2 givenname: Alessandra M surname: Lodrini fullname: Lodrini, Alessandra M – sequence: 3 givenname: Shafeeq surname: Mohammed fullname: Mohammed, Shafeeq – sequence: 4 givenname: Simone surname: Mosole fullname: Mosole, Simone – sequence: 5 givenname: Jesper orcidid: 0000-0002-6722-918X surname: Hjortnaes fullname: Hjortnaes, Jesper – sequence: 6 givenname: Rogier J A surname: Veltrop fullname: Veltrop, Rogier J A – sequence: 7 givenname: Bela surname: Kubat fullname: Kubat, Bela – sequence: 8 givenname: Davide surname: Ceresa fullname: Ceresa, Davide – sequence: 9 givenname: Sara surname: Bolis fullname: Bolis, Sara – sequence: 10 givenname: Andrea surname: Raimondi fullname: Raimondi, Andrea – sequence: 11 givenname: Tiziano surname: Torre fullname: Torre, Tiziano – sequence: 12 givenname: Paolo surname: Malatesta fullname: Malatesta, Paolo – sequence: 13 givenname: Marie-José surname: Goumans fullname: Goumans, Marie-José – sequence: 14 givenname: Francesco surname: Paneni fullname: Paneni, Francesco – sequence: 15 givenname: Giovanni G surname: Camici fullname: Camici, Giovanni G – sequence: 16 givenname: Lucio surname: Barile fullname: Barile, Lucio – sequence: 17 givenname: Carolina orcidid: 0000-0002-7394-1173 surname: Balbi fullname: Balbi, Carolina – sequence: 18 givenname: Giuseppe surname: Vassalli fullname: Vassalli, Giuseppe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39527589$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1r3DAUFCWl2SQ99V50LBS3-rStUymhXxAIhNyFPp6zKra1leQl--8rs5vSlhzEk57mzUgzF-hsjjMg9IaSD5Qo_tHtU10GmOAv0IZ2UjacCXmGNoSQvml5y8_RRc4_61HKTrxC51xJ1slebVCewl3DRMN3OINLUMBjkzE8lmQcjOMymoT3kIMbATuTHiK2h3XjQ5wO0R0KZBzmbbChZDwEm2IOawdvl8nMR6RxeAouxRJyXiBfoZeDGTO8PtVLdP_1y_319-bm9tuP6883jeO9KA3zRlEiht5Sy70hrveSDtx7RSQDKVrbKqV821IBjNrBta0QlHRKSWpB8kv06Ui7W-wE3sFc_zTqXQqTSQcdTdD_3sxhqx_iXlOqVK8orwzvTgwp_qoPL3oKeXXFzBCXrDllfSeqHqvQt3-L_VF5croC6BFQfcg5waBdKKaEuGqHUVOi1zR1TVOf0qwz7_-beaJ9Dv0b0HOlag |
CitedBy_id | crossref_primary_10_1002_cpz1_70068 |
Cites_doi | 10.3390/ijms24021801 10.1038/s41586-022-05060-x 10.1111/jcmm.12393 10.7150/thno.82543 10.3389/fphar.2021.617922 10.1073/pnas.0805038105 10.1007/s00018-019-03220-3 10.1093/cvr/cvu184 10.1002/jev2.12404 10.1111/j.1582-4934.2012.01523.x 10.3389/fcvm.2020.588347 10.1080/13880209.2022.2048029 10.1038/s41551-020-0539-4 10.1038/srep42657 10.1093/cvr/cvaa324 10.1161/CIRCRESAHA.117.311441 10.1161/CIRCRESAHA.109.201400 10.1161/CIRCULATIONAHA.112.094524 10.1016/j.cardiores.2006.10.002 10.1016/j.stemcr.2021.06.014 10.3390/ijms17020156 10.1161/CIRCULATIONAHA.111.039008 10.1002/jev2.12461 10.1101/cshperspect.a022210 10.1172/JCI70577 10.1016/j.phrs.2022.106124 10.1038/s41580-020-0251-y 10.1080/20013078.2019.1703244 10.3389/fcvm.2022.854314 10.1371/journal.pone.0057800 10.1038/s41598-019-41491-9 10.1038/s41596-021-00497-2 10.1161/CIRCULATIONAHA.119.042559 10.3390/genes13081390 10.1016/j.metabol.2008.01.013 10.1038/nature07511 10.18632/aging.102813 10.1038/nbt.2005 10.1016/j.bbamcr.2019.118538 10.3389/fcell.2019.00249 10.1002/ptr.7592 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 2024 |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/cvr/cvae243 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1755-3245 |
EndPage | 156 |
ExternalDocumentID | PMC11998913 39527589 10_1093_cvr_cvae243 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Swiss Heart Foundation grantid: FF21017 – fundername: Fondazione Leonardo – fundername: Fondazione Cecilia Augusta – fundername: ; – fundername: ; grantid: FF21017 |
GroupedDBID | --- -E4 .2P .I3 .ZR 08P 0R~ 18M 1TH 29B 2WC 4.4 48X 5GY 5RE 5VS 5WD 6J9 70D AABZA AACZT AAJKP AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABEJV ABEUO ABGNP ABHFT ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACUFI ACUTO ACYHN ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K E3Z EBS EE~ ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KSI KSN L7B LMP M-Z MHKGH MJL N9A NGC NOMLY NOYVH NQ- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM Q1. Q5Y RD5 ROL ROX RPZ RUSNO RW1 RXO SEL TCURE TEORI TJX WH7 X7H YAYTL YKOAZ YXANX ~91 CGR CUY CVF ECM EIF NPM 53G 7X8 5PM |
ID | FETCH-LOGICAL-c384t-2da9104f8b1b3da0c8d51f3dd9052e546b6999d6614e21bfc66441079951be53 |
ISSN | 0008-6363 1755-3245 |
IngestDate | Thu Aug 21 18:31:09 EDT 2025 Fri Jul 11 04:53:31 EDT 2025 Fri Apr 18 01:24:28 EDT 2025 Tue Jul 01 05:06:55 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Myocardial infarction Extracellular vesicles Cardiac fibrosis Cardiomyocytes microRNA Microtissues |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-2da9104f8b1b3da0c8d51f3dd9052e546b6999d6614e21bfc66441079951be53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conflict of interest: none declared. Carolina Balbi and Giuseppe Vassalli contributed equally to the study. |
ORCID | 0000-0002-7394-1173 0000-0002-6722-918X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11998913 |
PMID | 39527589 |
PQID | 3128749952 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11998913 proquest_miscellaneous_3128749952 pubmed_primary_39527589 crossref_citationtrail_10_1093_cvr_cvae243 crossref_primary_10_1093_cvr_cvae243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Apr-15 |
PublicationDateYYYYMMDD | 2025-04-15 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-Apr-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: UK |
PublicationTitle | Cardiovascular research |
PublicationTitleAlternate | Cardiovasc Res |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Okubo (2025041515291196800_cvae243-B26) 2021; 16 O’Brien (2025041515291196800_cvae243-B39) 2020; 21 Goumans (2025041515291196800_cvae243-B2) 2018; 10 Sun (2025041515291196800_cvae243-B13) 2017; 121 Qu (2025041515291196800_cvae243-B17) 2017; 7 Liu (2025041515291196800_cvae243-B33) 2020; 12 Yuan (2025041515291196800_cvae243-B9) 2019; 7 Saadat (2025041515291196800_cvae243-B22) 2020; 7 Snider (2025041515291196800_cvae243-B4) 2009; 105 Ma (2025041515291196800_cvae243-B19) 2023; 13 Zheng (2025041515291196800_cvae243-B29) 2019; 54 Schimmel (2025041515291196800_cvae243-B8) 2020; 141 Frangogiannis (2025041515291196800_cvae243-B1) 2021; 117 Fiedler (2025041515291196800_cvae243-B42) 2011; 124 Zhang (2025041515291196800_cvae243-B5) 2023; 24 Pan (2025041515291196800_cvae243-B11) 2012; 126 Catalano (2025041515291196800_cvae243-B28) 2020; 9 Leptidis (2025041515291196800_cvae243-B20) 2013; 8 Shao (2025041515291196800_cvae243-B40) 2020; 77 Zhang (2025041515291196800_cvae243-B18) 2022; 177 Bujak (2025041515291196800_cvae243-B30) 2007; 74 Pianezzi (2025041515291196800_cvae243-B37) 2020; 1867 Bang (2025041515291196800_cvae243-B14) 2014; 124 Thum (2025041515291196800_cvae243-B7) 2008; 456 Kuppe (2025041515291196800_cvae243-B21) 2022; 608 Tijsen (2025041515291196800_cvae243-B12) 2014; 104 Richards (2025041515291196800_cvae243-B31) 2020; 4 Tian (2025041515291196800_cvae243-B35) 2023; 37 Meki (2025041515291196800_cvae243-B32) 2021; 12 Guo (2025041515291196800_cvae243-B41) 2015; 19 Bracco Gartner (2025041515291196800_cvae243-B3) 2022; 9 Campostrini (2025041515291196800_cvae243-B23) 2021; 16 van Rooij (2025041515291196800_cvae243-B10) 2008; 105 Jia (2025041515291196800_cvae243-B34) 2022; 60 Liao (2025041515291196800_cvae243-B36) 2018; 16 Altomare (2025041515291196800_cvae243-B38) 2016; 18 Zhao (2025041515291196800_cvae243-B43) 2022; 13 Verjans (2025041515291196800_cvae243-B6) 2019; 9 Dubois (2025041515291196800_cvae243-B25) 2011; 29 Prieto-Vila (2025041515291196800_cvae243-B15) 2024; 13 Welsh (2025041515291196800_cvae243-B24) 2024; 13 Yin (2025041515291196800_cvae243-B44) 2008; 57 Wang (2025041515291196800_cvae243-B16) 2012; 16 Rinnerthaler (2025041515291196800_cvae243-B27) 2016; 17 |
References_xml | – volume: 24 start-page: 1801 year: 2023 ident: 2025041515291196800_cvae243-B5 article-title: Noncoding RNAs: master regulator of fibroblast to myofibroblast transition in fibrosis publication-title: Int J Mol Sci doi: 10.3390/ijms24021801 – volume: 608 start-page: 766 year: 2022 ident: 2025041515291196800_cvae243-B21 article-title: Spatial multi-omic map of human myocardial infarction publication-title: Nature doi: 10.1038/s41586-022-05060-x – volume: 19 start-page: 103 year: 2015 ident: 2025041515291196800_cvae243-B41 article-title: Cardiomyocyte-specific role of miR-24 in promoting cell survival publication-title: J Cell Mol Med doi: 10.1111/jcmm.12393 – volume: 13 start-page: 3826 year: 2023 ident: 2025041515291196800_cvae243-B19 article-title: Therapeutic silencing of lncRNA RMST alleviates cardiac fibrosis and improves heart function after myocardial infarction in mice and swine publication-title: Theranostics doi: 10.7150/thno.82543 – volume: 12 start-page: 617922 year: 2021 ident: 2025041515291196800_cvae243-B32 article-title: Heart slices to model cardiac physiology publication-title: Front Pharmacol doi: 10.3389/fphar.2021.617922 – volume: 105 start-page: 13027 year: 2008 ident: 2025041515291196800_cvae243-B10 article-title: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0805038105 – volume: 77 start-page: 937 year: 2020 ident: 2025041515291196800_cvae243-B40 article-title: Knockout of beta-2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell-induced immune rejection publication-title: Cell Mol Life Sci doi: 10.1007/s00018-019-03220-3 – volume: 104 start-page: 61 year: 2014 ident: 2025041515291196800_cvae243-B12 article-title: The microRNA-15 family inhibits the TGFβ-pathway in the heart publication-title: Cardiovasc Res doi: 10.1093/cvr/cvu184 – volume: 13 start-page: e12404 year: 2024 ident: 2025041515291196800_cvae243-B24 article-title: Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches publication-title: J Extracell Vesicles doi: 10.1002/jev2.12404 – volume: 16 start-page: 2150 year: 2012 ident: 2025041515291196800_cvae243-B16 article-title: MicroRNA-24 regulates cardiac fibrosis after myocardial infarction publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2012.01523.x – volume: 7 start-page: 588347 year: 2020 ident: 2025041515291196800_cvae243-B22 article-title: Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2020.588347 – volume: 60 start-page: 652 year: 2022 ident: 2025041515291196800_cvae243-B34 article-title: Berberine alleviates myocardial ischemia-reperfusion injury by inhibiting inflammatory response and oxidative stress: the key function of miR-26b-5p-mediated PTGS2/MAPK signal transduction publication-title: Pharm Biol doi: 10.1080/13880209.2022.2048029 – volume: 4 start-page: 446 year: 2020 ident: 2025041515291196800_cvae243-B31 article-title: Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-0539-4 – volume: 7 start-page: 42657 year: 2017 ident: 2025041515291196800_cvae243-B17 article-title: MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium publication-title: Sci Rep doi: 10.1038/srep42657 – volume: 117 start-page: 1450 year: 2021 ident: 2025041515291196800_cvae243-B1 article-title: Cardiac fibrosis publication-title: Cardiovasc Res doi: 10.1093/cvr/cvaa324 – volume: 121 start-page: 628 year: 2017 ident: 2025041515291196800_cvae243-B13 article-title: A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.311441 – volume: 105 start-page: 934 year: 2009 ident: 2025041515291196800_cvae243-B4 article-title: Origin of cardiac fibroblasts and the role of periostin publication-title: Circ Res doi: 10.1161/CIRCRESAHA.109.201400 – volume: 126 start-page: 840 year: 2012 ident: 2025041515291196800_cvae243-B11 article-title: MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.094524 – volume: 74 start-page: 184 year: 2007 ident: 2025041515291196800_cvae243-B30 article-title: The role of TGF-beta signaling in myocardial infarction and cardiac remodeling publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2006.10.002 – volume: 16 start-page: 1906 year: 2021 ident: 2025041515291196800_cvae243-B26 article-title: Expression dynamics of HAND1/2 in in vitro human cardiomyocyte differentiation publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2021.06.014 – volume: 17 start-page: 156 year: 2016 ident: 2025041515291196800_cvae243-B27 article-title: miR-16-5p is a stably-expressed housekeeping MicroRNA in breast cancer tissues from primary tumors and from metastatic sites publication-title: Int J Mol Sci doi: 10.3390/ijms17020156 – volume: 124 start-page: 720 year: 2011 ident: 2025041515291196800_cvae243-B42 article-title: MicroRNA-24 regulates vascularity after myocardial infarction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.039008 – volume: 13 start-page: e12461 year: 2024 ident: 2025041515291196800_cvae243-B15 article-title: Adult cardiomyocytes-derived EVs for the treatment of cardiac fibrosis publication-title: J Extracell Vesicles doi: 10.1002/jev2.12461 – volume: 10 start-page: a022210 year: 2018 ident: 2025041515291196800_cvae243-B2 article-title: TGF-β Signaling in control of cardiovascular function publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022210 – volume: 16 start-page: 2499 year: 2018 ident: 2025041515291196800_cvae243-B36 article-title: Berberine inhibits cardiac remodeling of heart failure after myocardial infarction by reducing myocardial cell apoptosis in rats publication-title: Exp Ther Med – volume: 124 start-page: 2136 year: 2014 ident: 2025041515291196800_cvae243-B14 article-title: Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy publication-title: J Clin Invest doi: 10.1172/JCI70577 – volume: 177 start-page: 106124 year: 2022 ident: 2025041515291196800_cvae243-B18 article-title: MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2022.106124 – volume: 21 start-page: 585 year: 2020 ident: 2025041515291196800_cvae243-B39 article-title: RNA delivery by extracellular vesicles in mammalian cells and its applications publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0251-y – volume: 9 start-page: 1703244 year: 2020 ident: 2025041515291196800_cvae243-B28 article-title: Inhibiting extracellular vesicles formation and release: a review of EV inhibitors publication-title: J Extracell Vesicles doi: 10.1080/20013078.2019.1703244 – volume: 9 start-page: 854314 year: 2022 ident: 2025041515291196800_cvae243-B3 article-title: Pirfenidone has anti-fibrotic effects in a tissue-engineered model of human cardiac fibrosis publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2022.854314 – volume: 8 start-page: e57800 year: 2013 ident: 2025041515291196800_cvae243-B20 article-title: A deep sequencing approach to uncover the miRNOME in the human heart publication-title: PLoS One doi: 10.1371/journal.pone.0057800 – volume: 54 start-page: 1061 year: 2019 ident: 2025041515291196800_cvae243-B29 article-title: Inhibition of multiple myeloma–derived exosomes uptake suppresses the functional response in bone marrow stromal cell publication-title: Int J Oncol – volume: 9 start-page: 6055 year: 2019 ident: 2025041515291196800_cvae243-B6 article-title: Functional screening identifies MicroRNAs as multi-cellular regulators of heart failure publication-title: Sci Rep doi: 10.1038/s41598-019-41491-9 – volume: 16 start-page: 2213 year: 2021 ident: 2025041515291196800_cvae243-B23 article-title: Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells publication-title: Nat Protoc doi: 10.1038/s41596-021-00497-2 – volume: 18 start-page: iv67 year: 2016 ident: 2025041515291196800_cvae243-B38 article-title: Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade publication-title: Europace – volume: 141 start-page: 751 year: 2020 ident: 2025041515291196800_cvae243-B8 article-title: Natural compound library screening identifies new molecules for the treatment of cardiac fibrosis and diastolic dysfunction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.042559 – volume: 13 start-page: 1390 year: 2022 ident: 2025041515291196800_cvae243-B43 article-title: New insights into the functions of MicroRNAs in cardiac fibrosis: from mechanisms to therapeutic strategies publication-title: Genes (Basel) doi: 10.3390/genes13081390 – volume: 57 start-page: 712 year: 2008 ident: 2025041515291196800_cvae243-B44 article-title: Efficacy of berberine in patients with type 2 diabetes mellitus publication-title: Metabolism doi: 10.1016/j.metabol.2008.01.013 – volume: 456 start-page: 980 year: 2008 ident: 2025041515291196800_cvae243-B7 article-title: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts publication-title: Nature doi: 10.1038/nature07511 – volume: 12 start-page: 3298 year: 2020 ident: 2025041515291196800_cvae243-B33 article-title: Berberine promotes XIAP-mediated cells apoptosis by upregulation of miR-24-3p in acute lymphoblastic leukemia publication-title: Aging (Albany NY) doi: 10.18632/aging.102813 – volume: 29 start-page: 1011 year: 2011 ident: 2025041515291196800_cvae243-B25 article-title: SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2005 – volume: 1867 start-page: 118538 year: 2020 ident: 2025041515291196800_cvae243-B37 article-title: Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2019.118538 – volume: 7 start-page: 249 year: 2019 ident: 2025041515291196800_cvae243-B9 article-title: MiR-144-3p enhances cardiac fibrosis after myocardial infarction by targeting PTEN publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2019.00249 – volume: 37 start-page: 50 year: 2023 ident: 2025041515291196800_cvae243-B35 article-title: Berberine plays a cardioprotective role by inhibiting macrophage Wnt5a/β-catenin pathway in the myocardium of mice after myocardial infarction publication-title: Phytother Res doi: 10.1002/ptr.7592 |
SSID | ssj0005574 |
Score | 2.505549 |
Snippet | Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of... Graphical Abstract |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 143 |
SubjectTerms | Cell Transdifferentiation Cells, Cultured Cyclin D1 - genetics Cyclin D1 - metabolism Extracellular Vesicles - genetics Extracellular Vesicles - metabolism Extracellular Vesicles - pathology Fibrosis Humans Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - pathology MicroRNAs - genetics MicroRNAs - metabolism Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Myofibroblasts - metabolism Myofibroblasts - pathology Original Signal Transduction Smad4 Protein - genetics Smad4 Protein - metabolism Transforming Growth Factor beta1 - metabolism |
Title | miR-24-3p secreted as extracellular vesicle cargo by cardiomyocytes inhibits fibrosis in human cardiac microtissues |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39527589 https://www.proquest.com/docview/3128749952 https://pubmed.ncbi.nlm.nih.gov/PMC11998913 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJSPtiSpsHcdpekQrYIUoByhSb5Ff2UaiyZKkK5U_xN9k_Eia7PawcLEqx2Mlnq_jmfHMGKFjGnOpKQPpJ0kMBookgQBDK5hxHYaZmgpmb1FYfI3PfkSfV2w1Gv3pRS1tG_FO_j6YV_I_XIU-4KvJkv0HznaTQgf8Bv5CCxyG9kY83uTfgjAK6MWkNtqfUR55PQFxW3HjkLcRppe6NmSmBPV5aZRNaSNQN7tS7hobjbXOhTk9yMBwLk15krzwN_fZkVxONiZor7EcqvvK7OkwltXXDer8y9-NGLXBAp_ysjrPuw3gS6nMuZHPr6lrXqiK792yi3Jt3OnOYb3mmda_9o9gQZ3THDDmIwK8zyJk5vjFZW12cjgJYupFm3aid8ZYAOodG8hmlz49AKGTtCSivU2buOrk1_YDVytLXla2Bfy1VP2621f2wy5K0Z3P0xTIU098C90OwR6xWeWrXiwR8-W-_Wf5RFAgPgHiE088VH2u2TNXw3J7es7yPrrnDRT83qHtARrp4iG6s_AhGI9Q3YEOt6DDvMYD0GEPOmxBh8UOD0GHW9DhFnTQgy3osAcd7oPuMVp-_LA8PQv8zR2BpEnUBKHioIZGWSKIoIpPZaIYyahS8ykLNYtiEYNhooxuqEMiMhkbtXxqihMSoRl9go4KANEzhJWW8xnlIiQ0jhIy5bMsyzRJYEKaqSgeo7ftmqbSV7U3l6v8TA9wb4yOu8EXrpjL4WFvWuakIGzN2vFCl9s6pcRcDwFvGY7RU8esbiIKvWB8z8coGbCxG2AKuQ-fFPnaFnQnJtF1Tujzm73fC3R3_6d6iY6aaqtfgWrciNcWln8BRDLE5g |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-24-3p+secreted+as+extracellular+vesicle+cargo+by+cardiomyocytes+inhibits+fibrosis+in+human+cardiac+microtissues&rft.jtitle=Cardiovascular+research&rft.au=Senesi%2C+Giorgia&rft.au=Lodrini%2C+Alessandra+M&rft.au=Mohammed%2C+Shafeeq&rft.au=Mosole%2C+Simone&rft.date=2025-04-15&rft.issn=0008-6363&rft.eissn=1755-3245&rft.volume=121&rft.issue=1&rft.spage=143&rft.epage=156&rft_id=info:doi/10.1093%2Fcvr%2Fcvae243&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_cvr_cvae243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6363&client=summon |