Automatic Single-Image-Based Rain Streaks Removal via Image Decomposition
Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very chall...
Saved in:
Published in | IEEE transactions on image processing Vol. 21; no. 4; pp. 1742 - 1755 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm. |
---|---|
AbstractList | Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm. Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm. |
Author | Li-Wei Kang Yu-Hsiang Fu Chia-Wen Lin |
Author_xml | – sequence: 1 givenname: Li-Wei surname: Kang fullname: Kang, Li-Wei organization: Institute of Information Science, Academia Sinica, Taipei, Taiwan – sequence: 2 givenname: Chia-Wen surname: Lin fullname: Lin, Chia-Wen – sequence: 3 givenname: Yu-Hsiang surname: Fu fullname: Fu, Yu-Hsiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22167628$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1Lw0AQhhdR7IfeBUFy85S6k0022WOtX4GC0va-bDaTsppkazYp-O9NbevBg6cZhud9YZ4ROa1tjYRcAZ0AUHG3St8mAQWYBBALGsUnZAgiBJ_SMDjt9_7kxxCKARk5904phBHwczIIAuAxD5IhSaddayvVGu0tTb0u0U8rtUb_XjnMvYUytbdsG1QfzltgZbeq9LZGeT-Q94DaVhvrTGtsfUHOClU6vDzMMVk9Pa5mL_789TmdTee-ZknY-oEoAIDrQnCMdBYWyCDLMxYWTEeZEIVmXNFEKVA6iOIccx1xTRnTGOeZZmNyu6_dNPazQ9fKyjiNZalqtJ2TIqQJi2KAnrw5kF1WYS43jalU8yWPz_cA3wO6sc41WEhtWrX7pW2UKSVQubMse8tyZ1keLPdB-id47P4ncr2PGET8xTkVgoNg39ahh1A |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_TMM_2019_2938340 crossref_primary_10_1587_transfun_E96_A_1195 crossref_primary_10_1007_s10489_019_01567_5 crossref_primary_10_1109_TIP_2022_3170726 crossref_primary_10_3233_JIFS_220055 crossref_primary_10_1109_TPAMI_2022_3186629 crossref_primary_10_1117_1_JEI_27_6_063024 crossref_primary_10_1109_TIP_2021_3128327 crossref_primary_10_1109_TIP_2020_2993406 crossref_primary_10_14801_jkiit_2020_18_10_87 crossref_primary_10_1016_j_image_2023_117057 crossref_primary_10_1109_TMM_2020_3013383 crossref_primary_10_3390_electronics12112365 crossref_primary_10_1109_TPAMI_2019_2895793 crossref_primary_10_1109_TMM_2024_3387746 crossref_primary_10_1134_S1054661822020201 crossref_primary_10_1007_s40747_024_01711_w crossref_primary_10_1016_j_cviu_2020_103106 crossref_primary_10_1016_j_apm_2019_10_065 crossref_primary_10_1109_ACCESS_2022_3162224 crossref_primary_10_1109_TIP_2017_2691802 crossref_primary_10_1109_TIP_2020_3023773 crossref_primary_10_1109_TIP_2020_2973802 crossref_primary_10_1061_JPEODX_PVENG_1180 crossref_primary_10_1016_j_jvcir_2016_01_015 crossref_primary_10_1007_s00521_022_07226_0 crossref_primary_10_3390_s22145359 crossref_primary_10_1016_j_jvcir_2024_104250 crossref_primary_10_1155_2024_7454928 crossref_primary_10_1007_s11760_023_02538_7 crossref_primary_10_1016_j_jvcir_2024_104136 crossref_primary_10_1109_TCYB_2023_3238640 crossref_primary_10_1016_j_neucom_2020_08_025 crossref_primary_10_3390_rs16142642 crossref_primary_10_1109_TNNLS_2018_2862631 crossref_primary_10_1016_j_cam_2023_115431 crossref_primary_10_1109_TNNLS_2019_2921597 crossref_primary_10_1049_ipr2_70040 crossref_primary_10_1109_TCSVT_2020_2972566 crossref_primary_10_1007_s11042_015_2657_7 crossref_primary_10_1007_s11831_022_09741_8 crossref_primary_10_1109_TMM_2020_2987703 crossref_primary_10_1007_s00521_021_06814_w crossref_primary_10_1007_s10489_021_02485_1 crossref_primary_10_1109_TIM_2023_3343823 crossref_primary_10_3390_s22020551 crossref_primary_10_1049_iet_ipr_2019_1409 crossref_primary_10_1109_TMM_2021_3068833 crossref_primary_10_1007_s11042_023_15276_2 crossref_primary_10_1109_LSP_2018_2889277 crossref_primary_10_1016_j_image_2018_11_008 crossref_primary_10_1109_ACCESS_2020_2976761 crossref_primary_10_1109_TMM_2023_3271829 crossref_primary_10_1007_s11042_023_16972_9 crossref_primary_10_1016_j_eswa_2024_126248 crossref_primary_10_1109_TIP_2020_3048625 crossref_primary_10_1007_s00034_024_02762_7 crossref_primary_10_1016_j_engappai_2023_107411 crossref_primary_10_1016_j_dsp_2021_102985 crossref_primary_10_1007_s11548_016_1434_z crossref_primary_10_1142_S0218001424590067 crossref_primary_10_1007_s11760_023_02649_1 crossref_primary_10_1109_LSP_2021_3134171 crossref_primary_10_3233_JIFS_212342 crossref_primary_10_1007_s00530_024_01348_2 crossref_primary_10_1109_ACCESS_2021_3122450 crossref_primary_10_1007_s00521_023_08899_x crossref_primary_10_3390_app13116387 crossref_primary_10_1016_j_vrih_2022_06_002 crossref_primary_10_3390_s24206724 crossref_primary_10_1016_j_neucom_2021_10_029 crossref_primary_10_1109_TPAMI_2021_3083076 crossref_primary_10_3390_app11157006 crossref_primary_10_1109_ACCESS_2018_2879330 crossref_primary_10_1117_1_JEI_28_3_033018 crossref_primary_10_1109_ACCESS_2020_3003126 crossref_primary_10_1109_TITS_2022_3208372 crossref_primary_10_1016_j_displa_2024_102842 crossref_primary_10_1371_journal_pone_0315146 crossref_primary_10_1016_j_cag_2017_07_034 crossref_primary_10_1016_j_patcog_2024_111004 crossref_primary_10_1088_1757_899X_790_1_012033 crossref_primary_10_1109_ACCESS_2020_2965545 crossref_primary_10_1007_s11263_024_02056_0 crossref_primary_10_1007_s11760_021_02007_z crossref_primary_10_1016_j_patcog_2022_109241 crossref_primary_10_1088_1742_6596_1693_1_012141 crossref_primary_10_3390_make4030035 crossref_primary_10_1007_s11263_020_01425_9 crossref_primary_10_1016_j_image_2025_117311 crossref_primary_10_1016_j_knosys_2025_113235 crossref_primary_10_1109_TNNLS_2019_2906074 crossref_primary_10_1117_1_JEI_31_4_043003 crossref_primary_10_1117_1_JEI_31_4_043002 crossref_primary_10_1109_TPAMI_2019_2926357 crossref_primary_10_1109_LSP_2021_3095613 crossref_primary_10_1109_TIP_2023_3335822 crossref_primary_10_1109_TCSVT_2023_3246953 crossref_primary_10_1109_TIP_2021_3104166 crossref_primary_10_26599_CVM_2025_9450381 crossref_primary_10_1109_TNNLS_2021_3112235 crossref_primary_10_1109_JSTSP_2020_3039393 crossref_primary_10_1007_s11431_021_1914_8 crossref_primary_10_1016_j_cviu_2022_103612 crossref_primary_10_1109_TIP_2019_2892685 crossref_primary_10_3390_app122211628 crossref_primary_10_1016_j_knosys_2021_106832 crossref_primary_10_1109_ACCESS_2020_3008324 crossref_primary_10_1155_2018_7350324 crossref_primary_10_1029_2018WR024480 crossref_primary_10_1007_s11263_020_01428_6 crossref_primary_10_1117_1_JEI_26_1_013020 crossref_primary_10_1016_j_neucom_2021_10_052 crossref_primary_10_1016_j_asoc_2024_111887 crossref_primary_10_1109_TCSVT_2021_3121012 crossref_primary_10_1118_1_4942376 crossref_primary_10_1007_s11036_020_01721_1 crossref_primary_10_1109_TIP_2017_2708502 crossref_primary_10_1016_j_image_2024_117170 crossref_primary_10_1016_j_patcog_2024_110370 crossref_primary_10_1109_TMM_2015_2434216 crossref_primary_10_1016_j_neucom_2019_07_023 crossref_primary_10_1016_j_image_2023_116926 crossref_primary_10_1109_TIP_2020_2994443 crossref_primary_10_1016_j_patcog_2022_109277 crossref_primary_10_1109_TPAMI_2015_2491937 crossref_primary_10_1016_j_cag_2023_08_010 crossref_primary_10_12677_JISP_2021_101001 crossref_primary_10_1145_3444974 crossref_primary_10_1109_TMM_2018_2808763 crossref_primary_10_1109_ACCESS_2020_3021436 crossref_primary_10_3390_app14135548 crossref_primary_10_1007_s10489_022_03441_3 crossref_primary_10_1007_s11042_020_08855_0 crossref_primary_10_1007_s00371_022_02681_1 crossref_primary_10_1109_TIM_2023_3265761 crossref_primary_10_1109_TIP_2013_2256917 crossref_primary_10_1007_s00371_020_01944_z crossref_primary_10_1109_TCSVT_2022_3207516 crossref_primary_10_1109_TIP_2017_2708841 crossref_primary_10_5572_KOSAE_2018_34_5_735 crossref_primary_10_1109_TIP_2022_3219227 crossref_primary_10_1088_1742_6596_1921_1_012071 crossref_primary_10_1109_MMUL_2016_36 crossref_primary_10_1145_3628451 crossref_primary_10_1049_ipr2_12347 crossref_primary_10_3390_rs15194825 crossref_primary_10_2200_S00640ED1V01Y201504IVM018 crossref_primary_10_1109_TPAMI_2020_2995190 crossref_primary_10_1049_iet_ipr_2019_0952 crossref_primary_10_1007_s11263_020_01416_w crossref_primary_10_1007_s11760_023_02917_0 crossref_primary_10_1007_s11760_023_02918_z crossref_primary_10_1016_j_ins_2021_02_080 crossref_primary_10_1007_s11760_019_01565_7 crossref_primary_10_1109_TIP_2018_2869722 crossref_primary_10_1002_cpe_8355 crossref_primary_10_3390_computers14010011 crossref_primary_10_1016_j_image_2021_116430 crossref_primary_10_1109_TIP_2018_2880512 crossref_primary_10_1007_s41095_021_0210_3 crossref_primary_10_1007_s13042_024_02510_y crossref_primary_10_1007_s11390_022_0979_2 crossref_primary_10_1109_TIP_2021_3076283 crossref_primary_10_1186_s13662_024_03843_2 crossref_primary_10_1109_TIP_2020_3000612 crossref_primary_10_1007_s11554_024_01544_3 crossref_primary_10_1109_ACCESS_2020_2994287 crossref_primary_10_1007_s00530_023_01116_8 crossref_primary_10_3390_s22155667 crossref_primary_10_1109_TCSII_2021_3100704 crossref_primary_10_3390_app13042709 crossref_primary_10_14372_IEMEK_2014_9_6_345 crossref_primary_10_3390_sym15101832 crossref_primary_10_1109_TIP_2021_3116794 crossref_primary_10_1364_OE_21_027127 crossref_primary_10_3390_app11052214 crossref_primary_10_1016_j_patrec_2022_04_016 crossref_primary_10_1007_s11042_020_09642_7 crossref_primary_10_1007_s13042_020_01061_2 crossref_primary_10_1007_s11042_022_12012_0 crossref_primary_10_1016_j_eswa_2023_121339 crossref_primary_10_1109_ACCESS_2018_2875171 crossref_primary_10_1109_LSP_2019_2903874 crossref_primary_10_1049_ipr2_13258 crossref_primary_10_1109_TCSVT_2021_3063853 crossref_primary_10_1007_s11263_022_01620_w crossref_primary_10_1016_j_dsp_2021_103106 crossref_primary_10_1109_TNS_2016_2565604 crossref_primary_10_1142_S0218001422500276 crossref_primary_10_1007_s11063_021_10486_x crossref_primary_10_3390_app12157766 crossref_primary_10_1109_ACCESS_2019_2959041 crossref_primary_10_1109_TCSVT_2014_2308627 crossref_primary_10_1109_TCSVT_2022_3229730 crossref_primary_10_1109_TIE_2017_2682036 crossref_primary_10_1007_s10489_020_02056_w crossref_primary_10_1016_j_sigpro_2022_108902 crossref_primary_10_3390_s21041191 crossref_primary_10_1007_s11263_024_02281_7 crossref_primary_10_14801_jkiit_2019_17_1_85 crossref_primary_10_1007_s11042_021_11442_6 crossref_primary_10_1088_1742_6596_1004_1_012007 crossref_primary_10_1049_ipr2_12726 crossref_primary_10_1016_j_asoc_2021_107958 crossref_primary_10_1109_ACCESS_2022_3210190 crossref_primary_10_1109_TMM_2013_2284759 crossref_primary_10_1016_j_patcog_2018_02_016 crossref_primary_10_1109_ACCESS_2021_3065701 crossref_primary_10_1109_TNNLS_2020_3015897 crossref_primary_10_1007_s00371_024_03287_5 crossref_primary_10_3390_s17122778 crossref_primary_10_1109_MSP_2020_2984801 crossref_primary_10_1016_j_neucom_2022_02_059 crossref_primary_10_1049_ipr2_12975 crossref_primary_10_1109_LSP_2020_3024990 crossref_primary_10_1109_TCSVT_2022_3190516 crossref_primary_10_1049_cvi2_12038 crossref_primary_10_1109_TCI_2025_3527142 crossref_primary_10_1109_TCSVT_2020_3044887 crossref_primary_10_1109_ACCESS_2020_3024542 crossref_primary_10_1007_s10489_024_06050_4 crossref_primary_10_1016_j_knosys_2023_110480 crossref_primary_10_3390_s23031548 crossref_primary_10_1109_TNNLS_2019_2926481 crossref_primary_10_1016_j_neucom_2024_127752 crossref_primary_10_1109_LSP_2021_3129667 crossref_primary_10_1109_ACCESS_2020_3034238 crossref_primary_10_1109_TCDS_2021_3131045 crossref_primary_10_1109_ACCESS_2019_2924447 crossref_primary_10_1109_TIP_2021_3102504 crossref_primary_10_1155_2014_595782 crossref_primary_10_1049_el_2016_1451 crossref_primary_10_1016_j_neucom_2022_01_041 crossref_primary_10_1109_JSTSP_2021_3052648 crossref_primary_10_1109_TIP_2017_2771499 crossref_primary_10_1109_TIP_2019_2896541 crossref_primary_10_1109_TIP_2021_3099396 crossref_primary_10_11834_jig_230323 crossref_primary_10_1007_s11432_020_3225_9 crossref_primary_10_1007_s11263_014_0759_8 crossref_primary_10_1109_TIP_2016_2530313 crossref_primary_10_1007_s00521_022_07963_2 crossref_primary_10_1016_j_cag_2021_04_014 crossref_primary_10_1109_ACCESS_2020_2983436 crossref_primary_10_1109_TCSVT_2024_3411655 crossref_primary_10_1109_TCSVT_2019_2920407 crossref_primary_10_1587_transinf_2023EDL8009 crossref_primary_10_1016_j_knosys_2020_106595 crossref_primary_10_1117_1_JEI_32_6_063015 crossref_primary_10_1109_TPAMI_2019_2920591 crossref_primary_10_1117_1_JEI_29_6_063003 crossref_primary_10_1109_TIFS_2017_2763119 crossref_primary_10_3390_sym16070871 crossref_primary_10_1109_TIP_2021_3064229 crossref_primary_10_1007_s11042_022_13489_5 crossref_primary_10_1109_TIP_2020_2990606 crossref_primary_10_1007_s00500_020_05291_y crossref_primary_10_1016_j_eswa_2022_118611 crossref_primary_10_1007_s00371_020_01971_w crossref_primary_10_1109_TNNLS_2020_3041752 crossref_primary_10_1109_TIP_2019_2957929 crossref_primary_10_1109_TMM_2021_3127360 crossref_primary_10_1007_s11276_023_03564_6 crossref_primary_10_1007_s10489_020_01693_5 crossref_primary_10_1049_ipr2_12550 crossref_primary_10_1109_TCSVT_2020_3003025 crossref_primary_10_1016_j_jvcir_2014_10_006 crossref_primary_10_14801_jkiit_2023_21_3_107 crossref_primary_10_1007_s11042_018_5825_8 crossref_primary_10_1111_cgf_13825 crossref_primary_10_1080_24699322_2017_1389397 crossref_primary_10_1007_s00034_023_02499_9 crossref_primary_10_1049_ipr2_12669 crossref_primary_10_3390_technologies9020031 crossref_primary_10_1007_s00530_024_01572_w crossref_primary_10_1109_TIP_2020_2981922 crossref_primary_10_1016_j_knosys_2020_106000 crossref_primary_10_11834_jig_240041 crossref_primary_10_1016_j_apm_2018_03_001 crossref_primary_10_1016_j_engappai_2024_109207 crossref_primary_10_1007_s10489_023_05114_1 crossref_primary_10_1109_TPAMI_2023_3241756 crossref_primary_10_1016_j_cviu_2024_104097 crossref_primary_10_1016_j_patrec_2018_10_006 crossref_primary_10_1016_j_cviu_2023_103819 crossref_primary_10_1117_1_JEI_32_5_053010 crossref_primary_10_1016_j_knosys_2021_107006 crossref_primary_10_1049_iet_ipr_2017_1022 crossref_primary_10_1002_int_23005 crossref_primary_10_1111_cgf_14690 crossref_primary_10_1007_s11760_023_02824_4 crossref_primary_10_1016_j_patcog_2024_110815 crossref_primary_10_1109_TCSVT_2021_3068985 crossref_primary_10_1117_1_JEI_28_2_023015 crossref_primary_10_1109_TNNLS_2022_3231453 crossref_primary_10_1007_s11263_020_01421_z crossref_primary_10_1371_journal_pone_0301439 crossref_primary_10_1016_j_jvcir_2021_103133 crossref_primary_10_3390_app132111970 crossref_primary_10_1109_TIP_2023_3334556 crossref_primary_10_1109_ACCESS_2020_2972909 crossref_primary_10_1007_s00371_022_02567_2 crossref_primary_10_1016_j_apm_2021_04_003 crossref_primary_10_3390_app9235137 crossref_primary_10_1109_TIP_2015_2428933 crossref_primary_10_1007_s42979_020_00333_6 crossref_primary_10_3390_app14125277 crossref_primary_10_1016_j_image_2019_07_003 crossref_primary_10_1007_s11042_017_5430_2 crossref_primary_10_1016_j_asoc_2020_106296 crossref_primary_10_3390_math11030691 crossref_primary_10_1016_j_eswa_2023_119807 crossref_primary_10_3390_app112210809 crossref_primary_10_1109_TIM_2024_3427775 crossref_primary_10_1109_ACCESS_2024_3523419 crossref_primary_10_1109_TITS_2018_2872502 crossref_primary_10_14801_jkiit_2021_19_10_87 crossref_primary_10_1016_j_dsp_2023_104144 crossref_primary_10_1016_j_neucom_2020_06_134 crossref_primary_10_1109_TIP_2020_3025402 crossref_primary_10_1007_s11042_017_4763_1 crossref_primary_10_1145_3372116 crossref_primary_10_1109_TIP_2018_2806202 crossref_primary_10_1007_s00530_023_01156_0 crossref_primary_10_4236_jcc_2022_102006 crossref_primary_10_1109_ACCESS_2020_3008903 crossref_primary_10_1109_TPAMI_2020_2969348 crossref_primary_10_1007_s00034_021_01883_7 crossref_primary_10_1007_s11760_023_02777_8 crossref_primary_10_1016_j_procs_2020_04_199 crossref_primary_10_1109_ACCESS_2024_3407750 crossref_primary_10_1049_iet_ipr_2018_5122 crossref_primary_10_1155_2021_6668771 crossref_primary_10_1109_ACCESS_2019_2922549 crossref_primary_10_1007_s00371_024_03261_1 crossref_primary_10_1007_s12065_018_0185_x crossref_primary_10_3389_fnbot_2022_928707 crossref_primary_10_1109_ACCESS_2020_2967891 crossref_primary_10_3390_s24020374 crossref_primary_10_1088_1742_6596_2589_1_012008 crossref_primary_10_1109_TPAMI_2022_3180560 crossref_primary_10_1016_j_patcog_2021_108377 crossref_primary_10_1007_s11760_019_01626_x crossref_primary_10_3390_jimaging9070129 crossref_primary_10_1109_ACCESS_2023_3311138 crossref_primary_10_1038_s41598_025_94643_5 crossref_primary_10_1109_TMM_2020_3019680 crossref_primary_10_1016_j_jvcir_2022_103695 crossref_primary_10_1109_TUFFC_2021_3092378 crossref_primary_10_1016_j_neucom_2020_07_083 crossref_primary_10_1049_ipr2_12921 crossref_primary_10_1016_j_cviu_2023_103766 crossref_primary_10_1109_LSP_2020_2974691 crossref_primary_10_1016_j_jvcir_2014_02_012 crossref_primary_10_1109_ACCESS_2020_2981643 crossref_primary_10_1109_TVCG_2022_3174656 crossref_primary_10_1142_S0218126623502316 crossref_primary_10_1109_ACCESS_2020_2981641 crossref_primary_10_2478_amns_2025_0355 crossref_primary_10_1109_TIP_2017_2698920 crossref_primary_10_1109_TIP_2022_3180561 crossref_primary_10_3390_s21010112 crossref_primary_10_1137_140957809 crossref_primary_10_3390_s22186823 crossref_primary_10_1186_s13640_018_0275_9 crossref_primary_10_1109_TIP_2020_3005517 crossref_primary_10_1109_ACCESS_2019_2900323 crossref_primary_10_1186_s13634_019_0636_2 crossref_primary_10_1109_ACCESS_2020_2989355 crossref_primary_10_1109_TIP_2021_3108019 crossref_primary_10_1109_TPAMI_2022_3183612 crossref_primary_10_1109_ACCESS_2022_3175196 crossref_primary_10_1016_j_jvcir_2021_103039 crossref_primary_10_1007_s00371_022_02533_y crossref_primary_10_1109_TIP_2021_3050313 crossref_primary_10_1088_1742_6596_1584_1_012047 crossref_primary_10_1007_s11760_023_02779_6 crossref_primary_10_1109_TCSVT_2020_3022707 crossref_primary_10_1007_s00521_019_04271_0 crossref_primary_10_1007_s00521_024_10569_5 crossref_primary_10_1109_JAS_2024_124521 crossref_primary_10_1109_TITS_2021_3058530 crossref_primary_10_1007_s11760_021_01972_9 crossref_primary_10_1007_s13042_023_01994_4 crossref_primary_10_1016_j_jvcir_2023_103992 crossref_primary_10_1063_5_0228247 crossref_primary_10_3233_JIFS_213134 crossref_primary_10_3390_s17020233 crossref_primary_10_1007_s00521_019_04501_5 crossref_primary_10_1145_3625818 crossref_primary_10_1109_ACCESS_2020_3036680 crossref_primary_10_3390_s21238081 crossref_primary_10_1109_ACCESS_2021_3072687 crossref_primary_10_1088_1361_6501_ad4d14 crossref_primary_10_1016_j_jvcir_2022_103469 crossref_primary_10_1109_TMM_2022_3225712 crossref_primary_10_1049_joe_2019_1092 |
Cites_doi | 10.1109/TIP.2007.911828 10.1109/MCSE.2010.14 10.1109/ICCVW.2009.5457650 10.1109/78.258082 10.1109/CVPR.2008.4587630 10.1137/040616024 10.1109/TIT.2006.871582 10.1109/TIP.2008.2006658 10.1109/ICME.2006.262572 10.1109/CVPR.2004.1315077 10.1109/TITS.2008.915644 10.1007/s11263-006-0028-6 10.1007/s11263-008-0200-2 10.1016/j.cviu.2007.09.014 10.1109/IVS.2009.5164347 10.1109/TSP.2006.881199 10.1109/TIP.2005.852206 10.1109/ICCV.2005.253 10.1137/060657704 10.1109/34.730558 10.1109/TIP.2005.859378 10.1109/ICCV.1998.710815 10.1145/1141911.1141985 10.1007/978-3-540-89689-0_49 10.1109/TIP.2006.881969 10.1038/381607a0 10.1007/978-1-4419-7011-4 10.1023/B:VISI.0000029664.99615.94 10.1109/TIP.2007.907073 10.1109/ICASSP.2011.5946766 10.1109/TIP.2009.2022459 10.1007/s11263-011-0421-7 10.1109/CVPR.2005.177 10.1109/TPAMI.2011.156 10.1109/PCS.2010.5702466 10.1117/12.731244 10.1109/JPROC.2009.2024776 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TIP.2011.2179057 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1755 |
ExternalDocumentID | 22167628 10_1109_TIP_2011_2179057 6099619 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c384t-29f1116cf96e5cb4fe31bdb34f3c5b99fc36a08aa1ac257dedc56c033ce7dbc3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 00:36:42 EDT 2025 Mon Jul 21 06:02:03 EDT 2025 Tue Jul 01 02:02:49 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Tue Aug 26 16:57:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-29f1116cf96e5cb4fe31bdb34f3c5b99fc36a08aa1ac257dedc56c033ce7dbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22167628 |
PQID | 940835711 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2011_2179057 crossref_primary_10_1109_TIP_2011_2179057 pubmed_primary_22167628 ieee_primary_6099619 proquest_miscellaneous_940835711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-April 2012-04-00 2012-Apr 20120401 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-April |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref37 tang (ref40) 0 ref15 ref36 ref14 ref31 ref30 itti (ref18) 1998; 20 lanman (ref43) 0 ref11 ref32 ref10 (ref12) 0 ref2 ref1 ref39 ref17 ref38 ref19 peyr (ref29) 2007; 6701 brewer (ref7) 2008; 5342 2008 jia (ref45) 2010 ref24 ref23 ref26 ref25 ref20 ref22 ref44 ref21 ref28 ref27 ludwig (ref16) 2009 ref8 ref9 ref4 ref3 ref6 mairal (ref33) 2010; 11 ref5 patterson (ref41) 0 (ref42) 0 |
References_xml | – ident: ref22 doi: 10.1109/TIP.2007.911828 – ident: ref27 doi: 10.1109/MCSE.2010.14 – start-page: 1 year: 2009 ident: ref16 article-title: Trainable classifier-fusion schemes: An application to pedestrian detection publication-title: Proc IEEE Int Conf Intell Transp Syst – ident: ref10 doi: 10.1109/ICCVW.2009.5457650 – year: 0 ident: ref41 publication-title: Photoshop Rain Effect-Adding Rain to a Photo – ident: ref32 doi: 10.1109/78.258082 – ident: ref17 doi: 10.1109/CVPR.2008.4587630 – ident: ref19 doi: 10.1137/040616024 – ident: ref36 doi: 10.1109/TIT.2006.871582 – ident: ref35 doi: 10.1109/TIP.2008.2006658 – ident: ref6 doi: 10.1109/ICME.2006.262572 – ident: ref2 doi: 10.1109/CVPR.2004.1315077 – ident: ref9 doi: 10.1109/TITS.2008.915644 – ident: ref4 doi: 10.1007/s11263-006-0028-6 – ident: ref1 doi: 10.1007/s11263-008-0200-2 – ident: ref14 doi: 10.1016/j.cviu.2007.09.014 – year: 0 ident: ref42 publication-title: NTHU Rain Removal Project – ident: ref11 doi: 10.1109/IVS.2009.5164347 – ident: ref21 doi: 10.1109/TSP.2006.881199 – ident: ref30 doi: 10.1109/TIP.2005.852206 – ident: ref3 doi: 10.1109/ICCV.2005.253 – ident: ref37 doi: 10.1137/060657704 – volume: 20 start-page: 1254 year: 1998 ident: ref18 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.730558 – ident: ref39 doi: 10.1109/TIP.2005.859378 – ident: ref34 doi: 10.1109/ICCV.1998.710815 – ident: ref5 doi: 10.1145/1141911.1141985 – volume: 5342 2008 start-page: 451 year: 2008 ident: ref7 article-title: Using the shape characteristics of rain to identify and remove rain from video publication-title: Lecture Notes Comput Sci doi: 10.1007/978-3-540-89689-0_49 – ident: ref20 doi: 10.1109/TIP.2006.881969 – ident: ref31 doi: 10.1038/381607a0 – ident: ref23 doi: 10.1007/978-1-4419-7011-4 – ident: ref13 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref28 doi: 10.1109/TIP.2007.907073 – start-page: 982 year: 2010 ident: ref45 article-title: Factorized latent spaces with structured sparsity publication-title: Proc Conf Neural Inf Proc Syst – ident: ref25 doi: 10.1109/ICASSP.2011.5946766 – year: 0 ident: ref12 publication-title: Google Goggles – ident: ref44 doi: 10.1109/TIP.2009.2022459 – ident: ref8 doi: 10.1007/s11263-011-0421-7 – year: 0 ident: ref43 publication-title: Bilateral Filtering and Image Abstraction – volume: 11 start-page: 19 year: 2010 ident: ref33 article-title: Online learning for matrix factorization and sparse coding publication-title: J Mach Learn Res – ident: ref15 doi: 10.1109/CVPR.2005.177 – ident: ref24 doi: 10.1109/TPAMI.2011.156 – ident: ref38 doi: 10.1109/PCS.2010.5702466 – year: 0 ident: ref40 article-title: Rain publication-title: Photoshop Tutorials – volume: 6701 start-page: 67011t year: 2007 ident: ref29 article-title: Learning adapted dictionaries for geometry and texture separation publication-title: Proc SPIE doi: 10.1117/12.731244 – ident: ref26 doi: 10.1109/JPROC.2009.2024776 |
SSID | ssj0014516 |
Score | 2.583191 |
Snippet | Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1742 |
SubjectTerms | Algorithms Artificial Intelligence Dictionaries Dictionary learning Discrete cosine transforms Image coding Image decomposition Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Information Storage and Retrieval - methods morphological component analysis (MCA) Noise Pattern Recognition, Automated - methods Photography - methods Rain rain removal Reproducibility of Results Sensitivity and Specificity sparse representation Subtraction Technique Training |
Title | Automatic Single-Image-Based Rain Streaks Removal via Image Decomposition |
URI | https://ieeexplore.ieee.org/document/6099619 https://www.ncbi.nlm.nih.gov/pubmed/22167628 https://www.proquest.com/docview/940835711 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VntoDhZaW5VH50AsS3nXixImP5VF1KxUhWKTeIj8mUtV2g9iEA7-esfMQIIq4RZGdh2fs-cYz_gbgpNaBpM14XggveOYJw5VGW67J6cESHdmMsN9x-UGdf8kurvKrLXg9nYVBxJh8hvNwGWP5vnFd2CpbKIIzKnB8PiDHrT-rNUUMQsHZGNnMC14Q7B9DkkIvVsuPPVdnGumoQt29NE0ULQPlb9Yolle5H2lGi3O2B5fjt_aJJjfzrrVz9-MPGsf__ZlH8HCAnuy015XHsIXrfdgbYCgbJvlmH3Z_4Sg8gOVp1zaR15V9phu3yJd3tAbxN2T-PAvhIRYi2-Zmwz7hXUOKy75fGxYbsXcYUtaHvLAnsDp7v3p7zof6C9zJMmt5qmtaCZWrtcLc2axGmVhvZVZLl1utayeVEaUxiXE08z16lysnpHRYeOvkIWyvmzU-BRbyq7yoc-GEz6yttbPKKZlaTFLj03wGi1EMlRu4yUOJjNsq-ihCVyTDKsiwGmQ4g1dTj689L8c_2h6E4Z_aDSM_AzZKuqI5FQIlZo1Nt6l0FoBpkSQzOOo1YOo7Ks6zvz_zOezQm9M-tecFbLffOnxJqKW1x1FdfwIAPeY0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFwoLSFsi20PnBBwrtOnDjxsQ-qXehWCBapt8iPiYTablA36YFfj-08BAiq3qLIjhzPjOezZ_wNwNtSepI2ZWnGLKOJdRguV1JT6TY9mKNxPsOfd8wvxfRb8vEqvVqD98NdGEQMyWc49o8hlm8r0_ijsolwcEZ4js8N5_fTqL2tNcQMfMnZENtMM5o54N8HJZmcLGafW7bOOBBS-cp7cRwJtxDkf_ijUGDl_1gz-JzzLZj3o21TTa7HTa3H5udfRI6P_Z3n8KwDn-S41ZZtWMPlDmx1QJR0Zr7agae_sRTuwuy4qavA7Eq-uhc3SGe3bhWiJ84BWuIDRMTHttX1inzB28qpLrn_rkhoRM7QJ613mWEvYHH-YXE6pV0FBmp4ntQ0lqVbC4UppcDU6KREHmmreVJyk2opS8OFYrlSkTLO9i1akwrDODeYWW34S1hfVkt8BcRnWFlWpswwm2hdSqOFETzWGMXKxukIJr0YCtOxk_siGTdF2KUwWTgZFl6GRSfDEbwbevxomTkeaLvrp39o1838CEgv6cJZlQ-VqCVWzaqQiYemWRSNYK_VgKFvrzj7__7mEWxOF_OL4mJ2-ekAnrhRxG2iz2tYr-8afOMwTK0Pg-r-AitA6X0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Single-Image-Based+Rain+Streaks+Removal+via+Image+Decomposition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li-Wei+Kang&rft.au=Chia-Wen+Lin&rft.au=Yu-Hsiang+Fu&rft.date=2012-04-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=4&rft.spage=1742&rft.epage=1755&rft_id=info:doi/10.1109%2FTIP.2011.2179057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2011_2179057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |