Automatic Single-Image-Based Rain Streaks Removal via Image Decomposition

Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very chall...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 21; no. 4; pp. 1742 - 1755
Main Authors Kang, Li-Wei, Lin, Chia-Wen, Fu, Yu-Hsiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.
AbstractList Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.
Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.
Author Li-Wei Kang
Yu-Hsiang Fu
Chia-Wen Lin
Author_xml – sequence: 1
  givenname: Li-Wei
  surname: Kang
  fullname: Kang, Li-Wei
  organization: Institute of Information Science, Academia Sinica, Taipei, Taiwan
– sequence: 2
  givenname: Chia-Wen
  surname: Lin
  fullname: Lin, Chia-Wen
– sequence: 3
  givenname: Yu-Hsiang
  surname: Fu
  fullname: Fu, Yu-Hsiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22167628$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhdR7IfeBUFy85S6k0022WOtX4GC0va-bDaTsppkazYp-O9NbevBg6cZhud9YZ4ROa1tjYRcAZ0AUHG3St8mAQWYBBALGsUnZAgiBJ_SMDjt9_7kxxCKARk5904phBHwczIIAuAxD5IhSaddayvVGu0tTb0u0U8rtUb_XjnMvYUytbdsG1QfzltgZbeq9LZGeT-Q94DaVhvrTGtsfUHOClU6vDzMMVk9Pa5mL_789TmdTee-ZknY-oEoAIDrQnCMdBYWyCDLMxYWTEeZEIVmXNFEKVA6iOIccx1xTRnTGOeZZmNyu6_dNPazQ9fKyjiNZalqtJ2TIqQJi2KAnrw5kF1WYS43jalU8yWPz_cA3wO6sc41WEhtWrX7pW2UKSVQubMse8tyZ1keLPdB-id47P4ncr2PGET8xTkVgoNg39ahh1A
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TMM_2019_2938340
crossref_primary_10_1587_transfun_E96_A_1195
crossref_primary_10_1007_s10489_019_01567_5
crossref_primary_10_1109_TIP_2022_3170726
crossref_primary_10_3233_JIFS_220055
crossref_primary_10_1109_TPAMI_2022_3186629
crossref_primary_10_1117_1_JEI_27_6_063024
crossref_primary_10_1109_TIP_2021_3128327
crossref_primary_10_1109_TIP_2020_2993406
crossref_primary_10_14801_jkiit_2020_18_10_87
crossref_primary_10_1016_j_image_2023_117057
crossref_primary_10_1109_TMM_2020_3013383
crossref_primary_10_3390_electronics12112365
crossref_primary_10_1109_TPAMI_2019_2895793
crossref_primary_10_1109_TMM_2024_3387746
crossref_primary_10_1134_S1054661822020201
crossref_primary_10_1007_s40747_024_01711_w
crossref_primary_10_1016_j_cviu_2020_103106
crossref_primary_10_1016_j_apm_2019_10_065
crossref_primary_10_1109_ACCESS_2022_3162224
crossref_primary_10_1109_TIP_2017_2691802
crossref_primary_10_1109_TIP_2020_3023773
crossref_primary_10_1109_TIP_2020_2973802
crossref_primary_10_1061_JPEODX_PVENG_1180
crossref_primary_10_1016_j_jvcir_2016_01_015
crossref_primary_10_1007_s00521_022_07226_0
crossref_primary_10_3390_s22145359
crossref_primary_10_1016_j_jvcir_2024_104250
crossref_primary_10_1155_2024_7454928
crossref_primary_10_1007_s11760_023_02538_7
crossref_primary_10_1016_j_jvcir_2024_104136
crossref_primary_10_1109_TCYB_2023_3238640
crossref_primary_10_1016_j_neucom_2020_08_025
crossref_primary_10_3390_rs16142642
crossref_primary_10_1109_TNNLS_2018_2862631
crossref_primary_10_1016_j_cam_2023_115431
crossref_primary_10_1109_TNNLS_2019_2921597
crossref_primary_10_1049_ipr2_70040
crossref_primary_10_1109_TCSVT_2020_2972566
crossref_primary_10_1007_s11042_015_2657_7
crossref_primary_10_1007_s11831_022_09741_8
crossref_primary_10_1109_TMM_2020_2987703
crossref_primary_10_1007_s00521_021_06814_w
crossref_primary_10_1007_s10489_021_02485_1
crossref_primary_10_1109_TIM_2023_3343823
crossref_primary_10_3390_s22020551
crossref_primary_10_1049_iet_ipr_2019_1409
crossref_primary_10_1109_TMM_2021_3068833
crossref_primary_10_1007_s11042_023_15276_2
crossref_primary_10_1109_LSP_2018_2889277
crossref_primary_10_1016_j_image_2018_11_008
crossref_primary_10_1109_ACCESS_2020_2976761
crossref_primary_10_1109_TMM_2023_3271829
crossref_primary_10_1007_s11042_023_16972_9
crossref_primary_10_1016_j_eswa_2024_126248
crossref_primary_10_1109_TIP_2020_3048625
crossref_primary_10_1007_s00034_024_02762_7
crossref_primary_10_1016_j_engappai_2023_107411
crossref_primary_10_1016_j_dsp_2021_102985
crossref_primary_10_1007_s11548_016_1434_z
crossref_primary_10_1142_S0218001424590067
crossref_primary_10_1007_s11760_023_02649_1
crossref_primary_10_1109_LSP_2021_3134171
crossref_primary_10_3233_JIFS_212342
crossref_primary_10_1007_s00530_024_01348_2
crossref_primary_10_1109_ACCESS_2021_3122450
crossref_primary_10_1007_s00521_023_08899_x
crossref_primary_10_3390_app13116387
crossref_primary_10_1016_j_vrih_2022_06_002
crossref_primary_10_3390_s24206724
crossref_primary_10_1016_j_neucom_2021_10_029
crossref_primary_10_1109_TPAMI_2021_3083076
crossref_primary_10_3390_app11157006
crossref_primary_10_1109_ACCESS_2018_2879330
crossref_primary_10_1117_1_JEI_28_3_033018
crossref_primary_10_1109_ACCESS_2020_3003126
crossref_primary_10_1109_TITS_2022_3208372
crossref_primary_10_1016_j_displa_2024_102842
crossref_primary_10_1371_journal_pone_0315146
crossref_primary_10_1016_j_cag_2017_07_034
crossref_primary_10_1016_j_patcog_2024_111004
crossref_primary_10_1088_1757_899X_790_1_012033
crossref_primary_10_1109_ACCESS_2020_2965545
crossref_primary_10_1007_s11263_024_02056_0
crossref_primary_10_1007_s11760_021_02007_z
crossref_primary_10_1016_j_patcog_2022_109241
crossref_primary_10_1088_1742_6596_1693_1_012141
crossref_primary_10_3390_make4030035
crossref_primary_10_1007_s11263_020_01425_9
crossref_primary_10_1016_j_image_2025_117311
crossref_primary_10_1016_j_knosys_2025_113235
crossref_primary_10_1109_TNNLS_2019_2906074
crossref_primary_10_1117_1_JEI_31_4_043003
crossref_primary_10_1117_1_JEI_31_4_043002
crossref_primary_10_1109_TPAMI_2019_2926357
crossref_primary_10_1109_LSP_2021_3095613
crossref_primary_10_1109_TIP_2023_3335822
crossref_primary_10_1109_TCSVT_2023_3246953
crossref_primary_10_1109_TIP_2021_3104166
crossref_primary_10_26599_CVM_2025_9450381
crossref_primary_10_1109_TNNLS_2021_3112235
crossref_primary_10_1109_JSTSP_2020_3039393
crossref_primary_10_1007_s11431_021_1914_8
crossref_primary_10_1016_j_cviu_2022_103612
crossref_primary_10_1109_TIP_2019_2892685
crossref_primary_10_3390_app122211628
crossref_primary_10_1016_j_knosys_2021_106832
crossref_primary_10_1109_ACCESS_2020_3008324
crossref_primary_10_1155_2018_7350324
crossref_primary_10_1029_2018WR024480
crossref_primary_10_1007_s11263_020_01428_6
crossref_primary_10_1117_1_JEI_26_1_013020
crossref_primary_10_1016_j_neucom_2021_10_052
crossref_primary_10_1016_j_asoc_2024_111887
crossref_primary_10_1109_TCSVT_2021_3121012
crossref_primary_10_1118_1_4942376
crossref_primary_10_1007_s11036_020_01721_1
crossref_primary_10_1109_TIP_2017_2708502
crossref_primary_10_1016_j_image_2024_117170
crossref_primary_10_1016_j_patcog_2024_110370
crossref_primary_10_1109_TMM_2015_2434216
crossref_primary_10_1016_j_neucom_2019_07_023
crossref_primary_10_1016_j_image_2023_116926
crossref_primary_10_1109_TIP_2020_2994443
crossref_primary_10_1016_j_patcog_2022_109277
crossref_primary_10_1109_TPAMI_2015_2491937
crossref_primary_10_1016_j_cag_2023_08_010
crossref_primary_10_12677_JISP_2021_101001
crossref_primary_10_1145_3444974
crossref_primary_10_1109_TMM_2018_2808763
crossref_primary_10_1109_ACCESS_2020_3021436
crossref_primary_10_3390_app14135548
crossref_primary_10_1007_s10489_022_03441_3
crossref_primary_10_1007_s11042_020_08855_0
crossref_primary_10_1007_s00371_022_02681_1
crossref_primary_10_1109_TIM_2023_3265761
crossref_primary_10_1109_TIP_2013_2256917
crossref_primary_10_1007_s00371_020_01944_z
crossref_primary_10_1109_TCSVT_2022_3207516
crossref_primary_10_1109_TIP_2017_2708841
crossref_primary_10_5572_KOSAE_2018_34_5_735
crossref_primary_10_1109_TIP_2022_3219227
crossref_primary_10_1088_1742_6596_1921_1_012071
crossref_primary_10_1109_MMUL_2016_36
crossref_primary_10_1145_3628451
crossref_primary_10_1049_ipr2_12347
crossref_primary_10_3390_rs15194825
crossref_primary_10_2200_S00640ED1V01Y201504IVM018
crossref_primary_10_1109_TPAMI_2020_2995190
crossref_primary_10_1049_iet_ipr_2019_0952
crossref_primary_10_1007_s11263_020_01416_w
crossref_primary_10_1007_s11760_023_02917_0
crossref_primary_10_1007_s11760_023_02918_z
crossref_primary_10_1016_j_ins_2021_02_080
crossref_primary_10_1007_s11760_019_01565_7
crossref_primary_10_1109_TIP_2018_2869722
crossref_primary_10_1002_cpe_8355
crossref_primary_10_3390_computers14010011
crossref_primary_10_1016_j_image_2021_116430
crossref_primary_10_1109_TIP_2018_2880512
crossref_primary_10_1007_s41095_021_0210_3
crossref_primary_10_1007_s13042_024_02510_y
crossref_primary_10_1007_s11390_022_0979_2
crossref_primary_10_1109_TIP_2021_3076283
crossref_primary_10_1186_s13662_024_03843_2
crossref_primary_10_1109_TIP_2020_3000612
crossref_primary_10_1007_s11554_024_01544_3
crossref_primary_10_1109_ACCESS_2020_2994287
crossref_primary_10_1007_s00530_023_01116_8
crossref_primary_10_3390_s22155667
crossref_primary_10_1109_TCSII_2021_3100704
crossref_primary_10_3390_app13042709
crossref_primary_10_14372_IEMEK_2014_9_6_345
crossref_primary_10_3390_sym15101832
crossref_primary_10_1109_TIP_2021_3116794
crossref_primary_10_1364_OE_21_027127
crossref_primary_10_3390_app11052214
crossref_primary_10_1016_j_patrec_2022_04_016
crossref_primary_10_1007_s11042_020_09642_7
crossref_primary_10_1007_s13042_020_01061_2
crossref_primary_10_1007_s11042_022_12012_0
crossref_primary_10_1016_j_eswa_2023_121339
crossref_primary_10_1109_ACCESS_2018_2875171
crossref_primary_10_1109_LSP_2019_2903874
crossref_primary_10_1049_ipr2_13258
crossref_primary_10_1109_TCSVT_2021_3063853
crossref_primary_10_1007_s11263_022_01620_w
crossref_primary_10_1016_j_dsp_2021_103106
crossref_primary_10_1109_TNS_2016_2565604
crossref_primary_10_1142_S0218001422500276
crossref_primary_10_1007_s11063_021_10486_x
crossref_primary_10_3390_app12157766
crossref_primary_10_1109_ACCESS_2019_2959041
crossref_primary_10_1109_TCSVT_2014_2308627
crossref_primary_10_1109_TCSVT_2022_3229730
crossref_primary_10_1109_TIE_2017_2682036
crossref_primary_10_1007_s10489_020_02056_w
crossref_primary_10_1016_j_sigpro_2022_108902
crossref_primary_10_3390_s21041191
crossref_primary_10_1007_s11263_024_02281_7
crossref_primary_10_14801_jkiit_2019_17_1_85
crossref_primary_10_1007_s11042_021_11442_6
crossref_primary_10_1088_1742_6596_1004_1_012007
crossref_primary_10_1049_ipr2_12726
crossref_primary_10_1016_j_asoc_2021_107958
crossref_primary_10_1109_ACCESS_2022_3210190
crossref_primary_10_1109_TMM_2013_2284759
crossref_primary_10_1016_j_patcog_2018_02_016
crossref_primary_10_1109_ACCESS_2021_3065701
crossref_primary_10_1109_TNNLS_2020_3015897
crossref_primary_10_1007_s00371_024_03287_5
crossref_primary_10_3390_s17122778
crossref_primary_10_1109_MSP_2020_2984801
crossref_primary_10_1016_j_neucom_2022_02_059
crossref_primary_10_1049_ipr2_12975
crossref_primary_10_1109_LSP_2020_3024990
crossref_primary_10_1109_TCSVT_2022_3190516
crossref_primary_10_1049_cvi2_12038
crossref_primary_10_1109_TCI_2025_3527142
crossref_primary_10_1109_TCSVT_2020_3044887
crossref_primary_10_1109_ACCESS_2020_3024542
crossref_primary_10_1007_s10489_024_06050_4
crossref_primary_10_1016_j_knosys_2023_110480
crossref_primary_10_3390_s23031548
crossref_primary_10_1109_TNNLS_2019_2926481
crossref_primary_10_1016_j_neucom_2024_127752
crossref_primary_10_1109_LSP_2021_3129667
crossref_primary_10_1109_ACCESS_2020_3034238
crossref_primary_10_1109_TCDS_2021_3131045
crossref_primary_10_1109_ACCESS_2019_2924447
crossref_primary_10_1109_TIP_2021_3102504
crossref_primary_10_1155_2014_595782
crossref_primary_10_1049_el_2016_1451
crossref_primary_10_1016_j_neucom_2022_01_041
crossref_primary_10_1109_JSTSP_2021_3052648
crossref_primary_10_1109_TIP_2017_2771499
crossref_primary_10_1109_TIP_2019_2896541
crossref_primary_10_1109_TIP_2021_3099396
crossref_primary_10_11834_jig_230323
crossref_primary_10_1007_s11432_020_3225_9
crossref_primary_10_1007_s11263_014_0759_8
crossref_primary_10_1109_TIP_2016_2530313
crossref_primary_10_1007_s00521_022_07963_2
crossref_primary_10_1016_j_cag_2021_04_014
crossref_primary_10_1109_ACCESS_2020_2983436
crossref_primary_10_1109_TCSVT_2024_3411655
crossref_primary_10_1109_TCSVT_2019_2920407
crossref_primary_10_1587_transinf_2023EDL8009
crossref_primary_10_1016_j_knosys_2020_106595
crossref_primary_10_1117_1_JEI_32_6_063015
crossref_primary_10_1109_TPAMI_2019_2920591
crossref_primary_10_1117_1_JEI_29_6_063003
crossref_primary_10_1109_TIFS_2017_2763119
crossref_primary_10_3390_sym16070871
crossref_primary_10_1109_TIP_2021_3064229
crossref_primary_10_1007_s11042_022_13489_5
crossref_primary_10_1109_TIP_2020_2990606
crossref_primary_10_1007_s00500_020_05291_y
crossref_primary_10_1016_j_eswa_2022_118611
crossref_primary_10_1007_s00371_020_01971_w
crossref_primary_10_1109_TNNLS_2020_3041752
crossref_primary_10_1109_TIP_2019_2957929
crossref_primary_10_1109_TMM_2021_3127360
crossref_primary_10_1007_s11276_023_03564_6
crossref_primary_10_1007_s10489_020_01693_5
crossref_primary_10_1049_ipr2_12550
crossref_primary_10_1109_TCSVT_2020_3003025
crossref_primary_10_1016_j_jvcir_2014_10_006
crossref_primary_10_14801_jkiit_2023_21_3_107
crossref_primary_10_1007_s11042_018_5825_8
crossref_primary_10_1111_cgf_13825
crossref_primary_10_1080_24699322_2017_1389397
crossref_primary_10_1007_s00034_023_02499_9
crossref_primary_10_1049_ipr2_12669
crossref_primary_10_3390_technologies9020031
crossref_primary_10_1007_s00530_024_01572_w
crossref_primary_10_1109_TIP_2020_2981922
crossref_primary_10_1016_j_knosys_2020_106000
crossref_primary_10_11834_jig_240041
crossref_primary_10_1016_j_apm_2018_03_001
crossref_primary_10_1016_j_engappai_2024_109207
crossref_primary_10_1007_s10489_023_05114_1
crossref_primary_10_1109_TPAMI_2023_3241756
crossref_primary_10_1016_j_cviu_2024_104097
crossref_primary_10_1016_j_patrec_2018_10_006
crossref_primary_10_1016_j_cviu_2023_103819
crossref_primary_10_1117_1_JEI_32_5_053010
crossref_primary_10_1016_j_knosys_2021_107006
crossref_primary_10_1049_iet_ipr_2017_1022
crossref_primary_10_1002_int_23005
crossref_primary_10_1111_cgf_14690
crossref_primary_10_1007_s11760_023_02824_4
crossref_primary_10_1016_j_patcog_2024_110815
crossref_primary_10_1109_TCSVT_2021_3068985
crossref_primary_10_1117_1_JEI_28_2_023015
crossref_primary_10_1109_TNNLS_2022_3231453
crossref_primary_10_1007_s11263_020_01421_z
crossref_primary_10_1371_journal_pone_0301439
crossref_primary_10_1016_j_jvcir_2021_103133
crossref_primary_10_3390_app132111970
crossref_primary_10_1109_TIP_2023_3334556
crossref_primary_10_1109_ACCESS_2020_2972909
crossref_primary_10_1007_s00371_022_02567_2
crossref_primary_10_1016_j_apm_2021_04_003
crossref_primary_10_3390_app9235137
crossref_primary_10_1109_TIP_2015_2428933
crossref_primary_10_1007_s42979_020_00333_6
crossref_primary_10_3390_app14125277
crossref_primary_10_1016_j_image_2019_07_003
crossref_primary_10_1007_s11042_017_5430_2
crossref_primary_10_1016_j_asoc_2020_106296
crossref_primary_10_3390_math11030691
crossref_primary_10_1016_j_eswa_2023_119807
crossref_primary_10_3390_app112210809
crossref_primary_10_1109_TIM_2024_3427775
crossref_primary_10_1109_ACCESS_2024_3523419
crossref_primary_10_1109_TITS_2018_2872502
crossref_primary_10_14801_jkiit_2021_19_10_87
crossref_primary_10_1016_j_dsp_2023_104144
crossref_primary_10_1016_j_neucom_2020_06_134
crossref_primary_10_1109_TIP_2020_3025402
crossref_primary_10_1007_s11042_017_4763_1
crossref_primary_10_1145_3372116
crossref_primary_10_1109_TIP_2018_2806202
crossref_primary_10_1007_s00530_023_01156_0
crossref_primary_10_4236_jcc_2022_102006
crossref_primary_10_1109_ACCESS_2020_3008903
crossref_primary_10_1109_TPAMI_2020_2969348
crossref_primary_10_1007_s00034_021_01883_7
crossref_primary_10_1007_s11760_023_02777_8
crossref_primary_10_1016_j_procs_2020_04_199
crossref_primary_10_1109_ACCESS_2024_3407750
crossref_primary_10_1049_iet_ipr_2018_5122
crossref_primary_10_1155_2021_6668771
crossref_primary_10_1109_ACCESS_2019_2922549
crossref_primary_10_1007_s00371_024_03261_1
crossref_primary_10_1007_s12065_018_0185_x
crossref_primary_10_3389_fnbot_2022_928707
crossref_primary_10_1109_ACCESS_2020_2967891
crossref_primary_10_3390_s24020374
crossref_primary_10_1088_1742_6596_2589_1_012008
crossref_primary_10_1109_TPAMI_2022_3180560
crossref_primary_10_1016_j_patcog_2021_108377
crossref_primary_10_1007_s11760_019_01626_x
crossref_primary_10_3390_jimaging9070129
crossref_primary_10_1109_ACCESS_2023_3311138
crossref_primary_10_1038_s41598_025_94643_5
crossref_primary_10_1109_TMM_2020_3019680
crossref_primary_10_1016_j_jvcir_2022_103695
crossref_primary_10_1109_TUFFC_2021_3092378
crossref_primary_10_1016_j_neucom_2020_07_083
crossref_primary_10_1049_ipr2_12921
crossref_primary_10_1016_j_cviu_2023_103766
crossref_primary_10_1109_LSP_2020_2974691
crossref_primary_10_1016_j_jvcir_2014_02_012
crossref_primary_10_1109_ACCESS_2020_2981643
crossref_primary_10_1109_TVCG_2022_3174656
crossref_primary_10_1142_S0218126623502316
crossref_primary_10_1109_ACCESS_2020_2981641
crossref_primary_10_2478_amns_2025_0355
crossref_primary_10_1109_TIP_2017_2698920
crossref_primary_10_1109_TIP_2022_3180561
crossref_primary_10_3390_s21010112
crossref_primary_10_1137_140957809
crossref_primary_10_3390_s22186823
crossref_primary_10_1186_s13640_018_0275_9
crossref_primary_10_1109_TIP_2020_3005517
crossref_primary_10_1109_ACCESS_2019_2900323
crossref_primary_10_1186_s13634_019_0636_2
crossref_primary_10_1109_ACCESS_2020_2989355
crossref_primary_10_1109_TIP_2021_3108019
crossref_primary_10_1109_TPAMI_2022_3183612
crossref_primary_10_1109_ACCESS_2022_3175196
crossref_primary_10_1016_j_jvcir_2021_103039
crossref_primary_10_1007_s00371_022_02533_y
crossref_primary_10_1109_TIP_2021_3050313
crossref_primary_10_1088_1742_6596_1584_1_012047
crossref_primary_10_1007_s11760_023_02779_6
crossref_primary_10_1109_TCSVT_2020_3022707
crossref_primary_10_1007_s00521_019_04271_0
crossref_primary_10_1007_s00521_024_10569_5
crossref_primary_10_1109_JAS_2024_124521
crossref_primary_10_1109_TITS_2021_3058530
crossref_primary_10_1007_s11760_021_01972_9
crossref_primary_10_1007_s13042_023_01994_4
crossref_primary_10_1016_j_jvcir_2023_103992
crossref_primary_10_1063_5_0228247
crossref_primary_10_3233_JIFS_213134
crossref_primary_10_3390_s17020233
crossref_primary_10_1007_s00521_019_04501_5
crossref_primary_10_1145_3625818
crossref_primary_10_1109_ACCESS_2020_3036680
crossref_primary_10_3390_s21238081
crossref_primary_10_1109_ACCESS_2021_3072687
crossref_primary_10_1088_1361_6501_ad4d14
crossref_primary_10_1016_j_jvcir_2022_103469
crossref_primary_10_1109_TMM_2022_3225712
crossref_primary_10_1049_joe_2019_1092
Cites_doi 10.1109/TIP.2007.911828
10.1109/MCSE.2010.14
10.1109/ICCVW.2009.5457650
10.1109/78.258082
10.1109/CVPR.2008.4587630
10.1137/040616024
10.1109/TIT.2006.871582
10.1109/TIP.2008.2006658
10.1109/ICME.2006.262572
10.1109/CVPR.2004.1315077
10.1109/TITS.2008.915644
10.1007/s11263-006-0028-6
10.1007/s11263-008-0200-2
10.1016/j.cviu.2007.09.014
10.1109/IVS.2009.5164347
10.1109/TSP.2006.881199
10.1109/TIP.2005.852206
10.1109/ICCV.2005.253
10.1137/060657704
10.1109/34.730558
10.1109/TIP.2005.859378
10.1109/ICCV.1998.710815
10.1145/1141911.1141985
10.1007/978-3-540-89689-0_49
10.1109/TIP.2006.881969
10.1038/381607a0
10.1007/978-1-4419-7011-4
10.1023/B:VISI.0000029664.99615.94
10.1109/TIP.2007.907073
10.1109/ICASSP.2011.5946766
10.1109/TIP.2009.2022459
10.1007/s11263-011-0421-7
10.1109/CVPR.2005.177
10.1109/TPAMI.2011.156
10.1109/PCS.2010.5702466
10.1117/12.731244
10.1109/JPROC.2009.2024776
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TIP.2011.2179057
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1755
ExternalDocumentID 22167628
10_1109_TIP_2011_2179057
6099619
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c384t-29f1116cf96e5cb4fe31bdb34f3c5b99fc36a08aa1ac257dedc56c033ce7dbc3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 00:36:42 EDT 2025
Mon Jul 21 06:02:03 EDT 2025
Tue Jul 01 02:02:49 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Tue Aug 26 16:57:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-29f1116cf96e5cb4fe31bdb34f3c5b99fc36a08aa1ac257dedc56c033ce7dbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22167628
PQID 940835711
PQPubID 23479
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TIP_2011_2179057
crossref_primary_10_1109_TIP_2011_2179057
pubmed_primary_22167628
ieee_primary_6099619
proquest_miscellaneous_940835711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-April
2012-04-00
2012-Apr
20120401
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref37
tang (ref40) 0
ref15
ref36
ref14
ref31
ref30
itti (ref18) 1998; 20
lanman (ref43) 0
ref11
ref32
ref10
(ref12) 0
ref2
ref1
ref39
ref17
ref38
ref19
peyr (ref29) 2007; 6701
brewer (ref7) 2008; 5342 2008
jia (ref45) 2010
ref24
ref23
ref26
ref25
ref20
ref22
ref44
ref21
ref28
ref27
ludwig (ref16) 2009
ref8
ref9
ref4
ref3
ref6
mairal (ref33) 2010; 11
ref5
patterson (ref41) 0
(ref42) 0
References_xml – ident: ref22
  doi: 10.1109/TIP.2007.911828
– ident: ref27
  doi: 10.1109/MCSE.2010.14
– start-page: 1
  year: 2009
  ident: ref16
  article-title: Trainable classifier-fusion schemes: An application to pedestrian detection
  publication-title: Proc IEEE Int Conf Intell Transp Syst
– ident: ref10
  doi: 10.1109/ICCVW.2009.5457650
– year: 0
  ident: ref41
  publication-title: Photoshop Rain Effect-Adding Rain to a Photo
– ident: ref32
  doi: 10.1109/78.258082
– ident: ref17
  doi: 10.1109/CVPR.2008.4587630
– ident: ref19
  doi: 10.1137/040616024
– ident: ref36
  doi: 10.1109/TIT.2006.871582
– ident: ref35
  doi: 10.1109/TIP.2008.2006658
– ident: ref6
  doi: 10.1109/ICME.2006.262572
– ident: ref2
  doi: 10.1109/CVPR.2004.1315077
– ident: ref9
  doi: 10.1109/TITS.2008.915644
– ident: ref4
  doi: 10.1007/s11263-006-0028-6
– ident: ref1
  doi: 10.1007/s11263-008-0200-2
– ident: ref14
  doi: 10.1016/j.cviu.2007.09.014
– year: 0
  ident: ref42
  publication-title: NTHU Rain Removal Project
– ident: ref11
  doi: 10.1109/IVS.2009.5164347
– ident: ref21
  doi: 10.1109/TSP.2006.881199
– ident: ref30
  doi: 10.1109/TIP.2005.852206
– ident: ref3
  doi: 10.1109/ICCV.2005.253
– ident: ref37
  doi: 10.1137/060657704
– volume: 20
  start-page: 1254
  year: 1998
  ident: ref18
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.730558
– ident: ref39
  doi: 10.1109/TIP.2005.859378
– ident: ref34
  doi: 10.1109/ICCV.1998.710815
– ident: ref5
  doi: 10.1145/1141911.1141985
– volume: 5342 2008
  start-page: 451
  year: 2008
  ident: ref7
  article-title: Using the shape characteristics of rain to identify and remove rain from video
  publication-title: Lecture Notes Comput Sci
  doi: 10.1007/978-3-540-89689-0_49
– ident: ref20
  doi: 10.1109/TIP.2006.881969
– ident: ref31
  doi: 10.1038/381607a0
– ident: ref23
  doi: 10.1007/978-1-4419-7011-4
– ident: ref13
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref28
  doi: 10.1109/TIP.2007.907073
– start-page: 982
  year: 2010
  ident: ref45
  article-title: Factorized latent spaces with structured sparsity
  publication-title: Proc Conf Neural Inf Proc Syst
– ident: ref25
  doi: 10.1109/ICASSP.2011.5946766
– year: 0
  ident: ref12
  publication-title: Google Goggles
– ident: ref44
  doi: 10.1109/TIP.2009.2022459
– ident: ref8
  doi: 10.1007/s11263-011-0421-7
– year: 0
  ident: ref43
  publication-title: Bilateral Filtering and Image Abstraction
– volume: 11
  start-page: 19
  year: 2010
  ident: ref33
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1109/CVPR.2005.177
– ident: ref24
  doi: 10.1109/TPAMI.2011.156
– ident: ref38
  doi: 10.1109/PCS.2010.5702466
– year: 0
  ident: ref40
  article-title: Rain
  publication-title: Photoshop Tutorials
– volume: 6701
  start-page: 67011t
  year: 2007
  ident: ref29
  article-title: Learning adapted dictionaries for geometry and texture separation
  publication-title: Proc SPIE
  doi: 10.1117/12.731244
– ident: ref26
  doi: 10.1109/JPROC.2009.2024776
SSID ssj0014516
Score 2.583191
Snippet Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1742
SubjectTerms Algorithms
Artificial Intelligence
Dictionaries
Dictionary learning
Discrete cosine transforms
Image coding
Image decomposition
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
morphological component analysis (MCA)
Noise
Pattern Recognition, Automated - methods
Photography - methods
Rain
rain removal
Reproducibility of Results
Sensitivity and Specificity
sparse representation
Subtraction Technique
Training
Title Automatic Single-Image-Based Rain Streaks Removal via Image Decomposition
URI https://ieeexplore.ieee.org/document/6099619
https://www.ncbi.nlm.nih.gov/pubmed/22167628
https://www.proquest.com/docview/940835711
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VntoDhZaW5VH50AsS3nXixImP5VF1KxUhWKTeIj8mUtV2g9iEA7-esfMQIIq4RZGdh2fs-cYz_gbgpNaBpM14XggveOYJw5VGW67J6cESHdmMsN9x-UGdf8kurvKrLXg9nYVBxJh8hvNwGWP5vnFd2CpbKIIzKnB8PiDHrT-rNUUMQsHZGNnMC14Q7B9DkkIvVsuPPVdnGumoQt29NE0ULQPlb9Yolle5H2lGi3O2B5fjt_aJJjfzrrVz9-MPGsf__ZlH8HCAnuy015XHsIXrfdgbYCgbJvlmH3Z_4Sg8gOVp1zaR15V9phu3yJd3tAbxN2T-PAvhIRYi2-Zmwz7hXUOKy75fGxYbsXcYUtaHvLAnsDp7v3p7zof6C9zJMmt5qmtaCZWrtcLc2axGmVhvZVZLl1utayeVEaUxiXE08z16lysnpHRYeOvkIWyvmzU-BRbyq7yoc-GEz6yttbPKKZlaTFLj03wGi1EMlRu4yUOJjNsq-ihCVyTDKsiwGmQ4g1dTj689L8c_2h6E4Z_aDSM_AzZKuqI5FQIlZo1Nt6l0FoBpkSQzOOo1YOo7Ks6zvz_zOezQm9M-tecFbLffOnxJqKW1x1FdfwIAPeY0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFwoLSFsi20PnBBwrtOnDjxsQ-qXehWCBapt8iPiYTablA36YFfj-08BAiq3qLIjhzPjOezZ_wNwNtSepI2ZWnGLKOJdRguV1JT6TY9mKNxPsOfd8wvxfRb8vEqvVqD98NdGEQMyWc49o8hlm8r0_ijsolwcEZ4js8N5_fTqL2tNcQMfMnZENtMM5o54N8HJZmcLGafW7bOOBBS-cp7cRwJtxDkf_ijUGDl_1gz-JzzLZj3o21TTa7HTa3H5udfRI6P_Z3n8KwDn-S41ZZtWMPlDmx1QJR0Zr7agae_sRTuwuy4qavA7Eq-uhc3SGe3bhWiJ84BWuIDRMTHttX1inzB28qpLrn_rkhoRM7QJ613mWEvYHH-YXE6pV0FBmp4ntQ0lqVbC4UppcDU6KREHmmreVJyk2opS8OFYrlSkTLO9i1akwrDODeYWW34S1hfVkt8BcRnWFlWpswwm2hdSqOFETzWGMXKxukIJr0YCtOxk_siGTdF2KUwWTgZFl6GRSfDEbwbevxomTkeaLvrp39o1838CEgv6cJZlQ-VqCVWzaqQiYemWRSNYK_VgKFvrzj7__7mEWxOF_OL4mJ2-ekAnrhRxG2iz2tYr-8afOMwTK0Pg-r-AitA6X0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Single-Image-Based+Rain+Streaks+Removal+via+Image+Decomposition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li-Wei+Kang&rft.au=Chia-Wen+Lin&rft.au=Yu-Hsiang+Fu&rft.date=2012-04-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=4&rft.spage=1742&rft.epage=1755&rft_id=info:doi/10.1109%2FTIP.2011.2179057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2011_2179057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon