Dynamic functional connectivity changes associated with dementia in Parkinson’s disease
Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect cognitive changes in Parkinson’s disease. In this study, we evaluated 118 patients with Parkinson’s disease matched for age, sex and education with...
Saved in:
Published in | Brain (London, England : 1878) Vol. 142; no. 9; pp. 2860 - 2872 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect cognitive changes in Parkinson’s disease. In this study, we evaluated 118 patients with Parkinson’s disease matched for age, sex and education with 35 healthy control subjects. Patients with Parkinson’s disease were classified with normal cognition (n = 52), mild cognitive impairment (n = 46), and dementia (n = 20) based on an extensive neuropsychological evaluation. Resting state functional MRI and a sliding-window approach were used to study the dynamic functional connectivity. Dynamic analysis suggested two distinct connectivity ‘States’ across the entire group: a more frequent, segregated brain state characterized by the predominance of within-network connections, State I, and a less frequent, integrated state with strongly connected functional internetwork components, State II. In Parkinson’s disease, State I occurred 13.89% more often than in healthy control subjects, paralleled by a proportional reduction of State II. Parkinson’s disease subgroups analyses showed the segregated state occurred more frequently in Parkinson’s disease dementia than in mild cognitive impairment and normal cognition groups. Further, patients with Parkinson’s disease dementia dwelled significantly longer in the segregated State I, and showed a significant lower number of transitions to the strongly interconnected State II compared to the other subgroups. Our study indicates that dementia in Parkinson’s disease is characterized by altered temporal properties in dynamic connectivity. In addition, our results show that increased dwell time in the segregated state and reduced number of transitions between states are associated with presence of dementia in Parkinson’s disease. Further studies on dynamic functional connectivity changes could help to better understand the progressive dysfunction of networks between Parkinson’s disease cognitive states. |
---|---|
AbstractList | Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect cognitive changes in Parkinson’s disease. In this study, we evaluated 118 patients with Parkinson’s disease matched for age, sex and education with 35 healthy control subjects. Patients with Parkinson’s disease were classified with normal cognition (n = 52), mild cognitive impairment (n = 46), and dementia (n = 20) based on an extensive neuropsychological evaluation. Resting state functional MRI and a sliding-window approach were used to study the dynamic functional connectivity. Dynamic analysis suggested two distinct connectivity ‘States’ across the entire group: a more frequent, segregated brain state characterized by the predominance of within-network connections, State I, and a less frequent, integrated state with strongly connected functional internetwork components, State II. In Parkinson’s disease, State I occurred 13.89% more often than in healthy control subjects, paralleled by a proportional reduction of State II. Parkinson’s disease subgroups analyses showed the segregated state occurred more frequently in Parkinson’s disease dementia than in mild cognitive impairment and normal cognition groups. Further, patients with Parkinson’s disease dementia dwelled significantly longer in the segregated State I, and showed a significant lower number of transitions to the strongly interconnected State II compared to the other subgroups. Our study indicates that dementia in Parkinson’s disease is characterized by altered temporal properties in dynamic connectivity. In addition, our results show that increased dwell time in the segregated state and reduced number of transitions between states are associated with presence of dementia in Parkinson’s disease. Further studies on dynamic functional connectivity changes could help to better understand the progressive dysfunction of networks between Parkinson’s disease cognitive states. Dynamic functional connectivity captures temporal variations of functional connectivity during resting-state MRI acquisition. Applying this technique, Fiorenzato et al. show that Parkinson’s disease cognitive deficits and dementia are associated with dynamic functional connectivity changes, characterized by reduced ‘crosstalk’ between brain networks and increased segregation. Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect cognitive changes in Parkinson’s disease. In this study, we evaluated 118 patients with Parkinson’s disease matched for age, sex and education with 35 healthy control subjects. Patients with Parkinson’s disease were classified with normal cognition ( n = 52), mild cognitive impairment ( n = 46), and dementia ( n = 20) based on an extensive neuropsychological evaluation. Resting state functional MRI and a sliding-window approach were used to study the dynamic functional connectivity. Dynamic analysis suggested two distinct connectivity ‘States’ across the entire group: a more frequent, segregated brain state characterized by the predominance of within-network connections, State I, and a less frequent, integrated state with strongly connected functional internetwork components, State II. In Parkinson’s disease, State I occurred 13.89% more often than in healthy control subjects, paralleled by a proportional reduction of State II. Parkinson’s disease subgroups analyses showed the segregated state occurred more frequently in Parkinson’s disease dementia than in mild cognitive impairment and normal cognition groups. Further, patients with Parkinson’s disease dementia dwelled significantly longer in the segregated State I, and showed a significant lower number of transitions to the strongly interconnected State II compared to the other subgroups. Our study indicates that dementia in Parkinson’s disease is characterized by altered temporal properties in dynamic connectivity. In addition, our results show that increased dwell time in the segregated state and reduced number of transitions between states are associated with presence of dementia in Parkinson’s disease. Further studies on dynamic functional connectivity changes could help to better understand the progressive dysfunction of networks between Parkinson’s disease cognitive states. Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect cognitive changes in Parkinson's disease. In this study, we evaluated 118 patients with Parkinson's disease matched for age, sex and education with 35 healthy control subjects. Patients with Parkinson's disease were classified with normal cognition (n = 52), mild cognitive impairment (n = 46), and dementia (n = 20) based on an extensive neuropsychological evaluation. Resting state functional MRI and a sliding-window approach were used to study the dynamic functional connectivity. Dynamic analysis suggested two distinct connectivity 'States' across the entire group: a more frequent, segregated brain state characterized by the predominance of within-network connections, State I, and a less frequent, integrated state with strongly connected functional internetwork components, State II. In Parkinson's disease, State I occurred 13.89% more often than in healthy control subjects, paralleled by a proportional reduction of State II. Parkinson's disease subgroups analyses showed the segregated state occurred more frequently in Parkinson's disease dementia than in mild cognitive impairment and normal cognition groups. Further, patients with Parkinson's disease dementia dwelled significantly longer in the segregated State I, and showed a significant lower number of transitions to the strongly interconnected State II compared to the other subgroups. Our study indicates that dementia in Parkinson's disease is characterized by altered temporal properties in dynamic connectivity. In addition, our results show that increased dwell time in the segregated state and reduced number of transitions between states are associated with presence of dementia in Parkinson's disease. Further studies on dynamic functional connectivity changes could help to better understand the progressive dysfunction of networks between Parkinson's disease cognitive states.Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect cognitive changes in Parkinson's disease. In this study, we evaluated 118 patients with Parkinson's disease matched for age, sex and education with 35 healthy control subjects. Patients with Parkinson's disease were classified with normal cognition (n = 52), mild cognitive impairment (n = 46), and dementia (n = 20) based on an extensive neuropsychological evaluation. Resting state functional MRI and a sliding-window approach were used to study the dynamic functional connectivity. Dynamic analysis suggested two distinct connectivity 'States' across the entire group: a more frequent, segregated brain state characterized by the predominance of within-network connections, State I, and a less frequent, integrated state with strongly connected functional internetwork components, State II. In Parkinson's disease, State I occurred 13.89% more often than in healthy control subjects, paralleled by a proportional reduction of State II. Parkinson's disease subgroups analyses showed the segregated state occurred more frequently in Parkinson's disease dementia than in mild cognitive impairment and normal cognition groups. Further, patients with Parkinson's disease dementia dwelled significantly longer in the segregated State I, and showed a significant lower number of transitions to the strongly interconnected State II compared to the other subgroups. Our study indicates that dementia in Parkinson's disease is characterized by altered temporal properties in dynamic connectivity. In addition, our results show that increased dwell time in the segregated state and reduced number of transitions between states are associated with presence of dementia in Parkinson's disease. Further studies on dynamic functional connectivity changes could help to better understand the progressive dysfunction of networks between Parkinson's disease cognitive states. |
Author | Fiorenzato, Eleonora Kim, Jinhee Schifano, Roberta Biundo, Roberta Strafella, Antonio P Antonini, Angelo Weis, Luca |
AuthorAffiliation | 1 IRCCS San Camillo Hospital, Venice, Italy 2 Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada 3 Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada 4 Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada 5 Department of Neurosciences, University of Padua, Padua, Italy |
AuthorAffiliation_xml | – name: 2 Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada – name: 4 Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada – name: 1 IRCCS San Camillo Hospital, Venice, Italy – name: 5 Department of Neurosciences, University of Padua, Padua, Italy – name: 3 Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada |
Author_xml | – sequence: 1 givenname: Eleonora surname: Fiorenzato fullname: Fiorenzato, Eleonora organization: IRCCS San Camillo Hospital, Venice, Italy – sequence: 2 givenname: Antonio P surname: Strafella fullname: Strafella, Antonio P organization: Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada, Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada – sequence: 3 givenname: Jinhee surname: Kim fullname: Kim, Jinhee organization: Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada, Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada – sequence: 4 givenname: Roberta surname: Schifano fullname: Schifano, Roberta organization: IRCCS San Camillo Hospital, Venice, Italy – sequence: 5 givenname: Luca surname: Weis fullname: Weis, Luca organization: IRCCS San Camillo Hospital, Venice, Italy – sequence: 6 givenname: Angelo surname: Antonini fullname: Antonini, Angelo organization: Department of Neurosciences, University of Padua, Padua, Italy – sequence: 7 givenname: Roberta surname: Biundo fullname: Biundo, Roberta organization: IRCCS San Camillo Hospital, Venice, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31280293$$D View this record in MEDLINE/PubMed |
BookMark | eNptUcFO3DAQtSpQWaA3zpWPHEgZ29nEuVRCQAEJqRzg0JM1ccasIbFpnAVtT_2N_h5fQrYLFUWcRqN5897Me5tsLcRAjO0I-CKgUvt1jz7s48MvUckPbCLyAjIppsUamwBAkelqChtsM6UbAJErWXxkG0pIDbJSE_bjaBGw85a7ebCDjwFbbmMINDb3flhwO8NwTYljStF6HKjhD36Y8YY6CoNH7gO_wP7WhxTD4-8_iTc-ESbaZusO20SfnusWu_p2fHl4mp1_Pzk7PDjPrNL5kMlK2LqUTmrrZIUyJ6wrIZyaAjS1zitS2jVQCiRXoqWCqLQW0GnIhR5_2GJfV7x387qjxo5X9diau9532C9MRG_-nwQ_M9fx3hSlKlQJI8HuM0Eff84pDabzyVLbYqA4T0bKqdIKymKp9fm11j-RFz9HgFwBbB9T6skZ6wdc-jpK-9YIMMvQzN_QzCq0cWnvzdIL77vwJ8IEn34 |
CitedBy_id | crossref_primary_10_1038_s41531_022_00279_x crossref_primary_10_3389_fnins_2021_820641 crossref_primary_10_1016_j_parkreldis_2019_12_009 crossref_primary_10_1007_s11682_021_00575_9 crossref_primary_10_1038_s41467_025_56660_w crossref_primary_10_1111_cns_70115 crossref_primary_10_3389_fnagi_2022_944485 crossref_primary_10_3390_brainsci11091200 crossref_primary_10_1002_mds_28839 crossref_primary_10_1016_j_neurobiolaging_2023_03_006 crossref_primary_10_3389_fnagi_2021_789785 crossref_primary_10_1093_cercor_bhae478 crossref_primary_10_1186_s10194_021_01354_z crossref_primary_10_1016_j_jad_2020_11_012 crossref_primary_10_1002_hbm_25663 crossref_primary_10_3389_fnhum_2023_1134012 crossref_primary_10_1016_j_nbd_2024_106578 crossref_primary_10_1111_cns_14413 crossref_primary_10_1007_s00406_022_01403_x crossref_primary_10_3389_fnagi_2021_709998 crossref_primary_10_1177_0271678X221098503 crossref_primary_10_1016_j_jad_2021_04_005 crossref_primary_10_1109_JBHI_2021_3119940 crossref_primary_10_1111_pcn_13162 crossref_primary_10_1177_13872877241313056 crossref_primary_10_1007_s00702_022_02522_4 crossref_primary_10_1016_j_nbd_2023_106265 crossref_primary_10_1016_j_ibneur_2024_11_014 crossref_primary_10_1016_j_jpsychires_2022_03_010 crossref_primary_10_1007_s00405_023_07847_8 crossref_primary_10_1093_brain_awz315 crossref_primary_10_1002_mds_29026 crossref_primary_10_1093_cercor_bhac512 crossref_primary_10_1002_hbm_25205 crossref_primary_10_1016_j_ebiom_2024_105201 crossref_primary_10_1016_j_sleep_2022_12_003 crossref_primary_10_1089_brain_2020_0847 crossref_primary_10_1093_brain_awz316 crossref_primary_10_1097_WCO_0000000000000958 crossref_primary_10_3389_fnagi_2022_794987 crossref_primary_10_3389_fnins_2021_721236 crossref_primary_10_1016_j_jpsychires_2023_09_021 crossref_primary_10_1002_hbm_26776 crossref_primary_10_1002_jmri_27521 crossref_primary_10_1002_sim_8768 crossref_primary_10_1016_j_nicl_2022_102952 crossref_primary_10_1177_13524585221101470 crossref_primary_10_3389_fnins_2022_770468 crossref_primary_10_1109_TNSRE_2023_3243035 crossref_primary_10_1002_acn3_52074 crossref_primary_10_1002_alz_14227 crossref_primary_10_1093_cercor_bhac529 crossref_primary_10_1002_hbm_26647 crossref_primary_10_1016_j_neuroimage_2021_118263 crossref_primary_10_1152_jn_00027_2024 crossref_primary_10_1038_s41598_024_79052_4 crossref_primary_10_1016_j_pnpbp_2024_111169 crossref_primary_10_1007_s11682_021_00592_8 crossref_primary_10_1016_j_neuroimage_2022_119288 crossref_primary_10_1002_hbm_25873 crossref_primary_10_3233_JAD_220282 crossref_primary_10_1002_acn3_51429 crossref_primary_10_1111_cns_14048 crossref_primary_10_1177_02841851221094967 crossref_primary_10_1111_cns_13994 crossref_primary_10_1177_02841851211055401 crossref_primary_10_3389_fnins_2023_1116111 crossref_primary_10_3390_ijms25010498 crossref_primary_10_1002_jnr_70029 crossref_primary_10_1016_j_ijchp_2025_100560 crossref_primary_10_1016_j_asoc_2024_112538 crossref_primary_10_1016_j_parkreldis_2023_105777 crossref_primary_10_1016_j_wneu_2024_08_160 crossref_primary_10_1007_s11682_024_00928_0 crossref_primary_10_1002_hbm_25745 crossref_primary_10_3389_fnhum_2021_647518 crossref_primary_10_3389_fnins_2024_1352409 crossref_primary_10_2139_ssrn_4003229 crossref_primary_10_1093_cercor_bhad468 crossref_primary_10_1016_j_bandl_2023_105323 crossref_primary_10_1007_s00330_021_08086_3 crossref_primary_10_1080_14737175_2025_2450668 crossref_primary_10_3389_fpsyt_2020_583619 crossref_primary_10_1002_hbm_26273 crossref_primary_10_1007_s00415_021_10402_2 crossref_primary_10_1016_j_nbd_2024_106493 crossref_primary_10_1186_s10194_021_01348_x crossref_primary_10_1088_1741_2552_ad851c crossref_primary_10_1080_14737175_2023_2174016 crossref_primary_10_1002_hbm_25736 crossref_primary_10_1002_hbm_25650 crossref_primary_10_1016_j_neuroimage_2024_120895 crossref_primary_10_3389_fnhum_2021_729677 crossref_primary_10_1016_j_brainres_2021_147477 crossref_primary_10_1002_mds_30146 crossref_primary_10_3389_fnagi_2022_814893 crossref_primary_10_1002_mds_29506 crossref_primary_10_1089_brain_2023_0092 crossref_primary_10_3389_fnagi_2020_584863 crossref_primary_10_1038_s41598_023_32345_6 crossref_primary_10_1016_j_neuroimage_2023_120462 crossref_primary_10_1016_j_parkreldis_2020_08_003 crossref_primary_10_3389_fnagi_2022_990913 crossref_primary_10_3389_fnins_2022_852822 crossref_primary_10_1016_j_bbr_2023_114506 crossref_primary_10_1109_TMI_2021_3110829 crossref_primary_10_1080_20008066_2023_2258723 crossref_primary_10_1016_j_neuroimage_2024_120599 crossref_primary_10_1016_j_neulet_2020_135512 crossref_primary_10_1016_j_neulet_2023_137097 crossref_primary_10_1016_j_jad_2022_08_122 crossref_primary_10_1162_netn_a_00321 crossref_primary_10_1007_s00247_024_06022_3 crossref_primary_10_3389_fnagi_2021_646017 crossref_primary_10_1038_s41598_024_62635_6 crossref_primary_10_1016_j_neuroimage_2021_118555 crossref_primary_10_1093_schbul_sbae142 crossref_primary_10_1016_j_artmed_2024_102984 crossref_primary_10_3390_brainsci13091231 crossref_primary_10_1371_journal_pone_0267456 crossref_primary_10_3389_fneur_2021_611702 crossref_primary_10_1155_2022_9383982 crossref_primary_10_1002_jmri_28317 crossref_primary_10_1136_rmdopen_2023_003684 crossref_primary_10_1186_s10194_023_01705_y crossref_primary_10_1016_j_pscychresns_2022_111562 crossref_primary_10_3389_fnins_2023_1200029 crossref_primary_10_1007_s11910_024_01365_8 crossref_primary_10_1073_pnas_2022288118 crossref_primary_10_1002_hbm_70067 crossref_primary_10_1016_j_schres_2020_11_055 crossref_primary_10_1016_j_artmed_2024_102990 crossref_primary_10_1016_j_pscychresns_2023_111749 crossref_primary_10_3389_fnhum_2021_711703 crossref_primary_10_1038_s41467_024_49949_9 crossref_primary_10_1002_mds_28461 crossref_primary_10_1016_j_dadr_2022_100065 crossref_primary_10_3389_fnhum_2023_1295326 crossref_primary_10_1186_s13195_022_01066_9 crossref_primary_10_1002_acn3_51487 crossref_primary_10_59717_j_xinn_med_2023_100027 crossref_primary_10_3389_fnagi_2022_1009232 crossref_primary_10_1016_j_neuroimage_2022_119818 crossref_primary_10_3389_fneur_2021_771034 crossref_primary_10_1007_s11682_024_00901_x crossref_primary_10_1007_s11682_020_00287_6 crossref_primary_10_3389_fnagi_2022_977917 crossref_primary_10_1007_s11910_021_01111_4 crossref_primary_10_1002_hbm_70050 crossref_primary_10_1093_braincomms_fcab180 crossref_primary_10_1038_s41380_024_02683_6 crossref_primary_10_1002_alz_13411 crossref_primary_10_1111_dom_15354 crossref_primary_10_1038_s41531_021_00257_9 crossref_primary_10_1038_s42003_022_03903_x crossref_primary_10_1002_mds_29898 crossref_primary_10_1038_s41598_025_89023_y crossref_primary_10_3390_diagnostics14232728 crossref_primary_10_3389_fnagi_2022_893297 crossref_primary_10_1162_netn_a_00247 crossref_primary_10_1007_s11682_023_00760_y crossref_primary_10_1016_j_nicl_2020_102468 crossref_primary_10_1016_j_psyneuen_2022_105786 crossref_primary_10_1089_brain_2020_0748 crossref_primary_10_1002_jnr_25230 crossref_primary_10_1016_j_neuroimage_2025_121099 crossref_primary_10_1371_journal_pone_0234790 crossref_primary_10_1016_j_nbd_2024_106659 crossref_primary_10_1016_j_neulet_2022_136470 crossref_primary_10_1017_S0033291723003525 crossref_primary_10_1016_j_acra_2022_06_019 crossref_primary_10_1007_s12975_023_01148_2 crossref_primary_10_1093_braincomms_fcae154 crossref_primary_10_3389_fnins_2022_971809 crossref_primary_10_1002_mds_29678 crossref_primary_10_1002_brb3_3395 crossref_primary_10_1080_00207454_2022_2130295 crossref_primary_10_1007_s00406_024_01831_x crossref_primary_10_1016_j_pnpbp_2023_110898 crossref_primary_10_1007_s11071_023_08328_7 crossref_primary_10_31083_j_jin2106170 crossref_primary_10_3389_fnhum_2020_580238 crossref_primary_10_3389_fnmol_2024_1507033 crossref_primary_10_1002_aur_2974 crossref_primary_10_3389_fncir_2020_593263 crossref_primary_10_1093_braincomms_fcae130 crossref_primary_10_1016_j_pnpbp_2024_111116 crossref_primary_10_1016_j_nicl_2020_102431 crossref_primary_10_1089_neu_2022_0257 crossref_primary_10_1016_j_dcn_2024_101496 crossref_primary_10_1109_TNSRE_2023_3242263 crossref_primary_10_1038_s41398_023_02615_y crossref_primary_10_1016_j_jad_2022_08_072 crossref_primary_10_3389_fneur_2022_913241 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_3389_fnins_2022_974778 crossref_primary_10_1016_j_neuroimage_2020_117230 crossref_primary_10_3389_fnagi_2023_1282962 crossref_primary_10_1016_j_media_2021_102163 crossref_primary_10_1007_s00415_021_10580_z crossref_primary_10_1007_s00702_024_02746_6 |
Cites_doi | 10.1016/j.parkreldis.2013.05.007 10.1016/j.nicl.2013.04.003 10.1002/hbm.21170 10.1002/hbm.1048 10.1016/j.neuroimage.2015.11.055 10.1016/S1474-4422(18)30169-8 10.1002/mds.24893 10.1002/mds.21844 10.1016/j.neuroimage.2016.10.026 10.1093/brain/awt007 10.1007/s11910-014-0448-6 10.1016/j.nicl.2017.12.013 10.1002/hbm.1024 10.3389/fnsys.2011.00002 10.1007/s10072-012-1112-z 10.1146/annurev-neuro-071013-014030 10.3389/fpsyt.2017.00014 10.1002/ana.23631 10.1523/JNEUROSCI.2965-15.2016 10.1002/hbm.23430 10.1109/TIT.1982.1056489 10.1016/j.neuroimage.2004.03.027 10.1093/brain/awx233 10.1371/journal.pone.0039731 10.1016/S1474-4422(10)70212-X 10.1038/nrneurol.2017.27 10.1002/hbm.22499 10.1002/mds.26713 10.3233/JAD-160883 10.1093/cercor/bhr099 10.1002/mds.23429 10.1016/j.parkreldis.2014.01.009 10.1162/neco.1995.7.6.1129 10.1016/j.neuroimage.2013.05.079 10.1002/hbm.22622 10.1002/hbm.23215 10.1001/jamaneurol.2013.2110 10.1016/j.nicl.2014.07.003 10.1152/jn.90777.2008 10.1007/s00415-014-7591-5 10.1002/hbm.22847 10.1093/cercor/bhs352 10.1093/biostatistics/kxm045 10.1016/j.neurobiolaging.2014.12.026 10.1016/j.neuroimage.2010.08.063 10.1371/journal.pone.0077336 10.1007/s10548-017-0546-2 10.1016/0377-0427(87)90125-7 10.1016/j.neuroimage.2011.10.018 10.1111/j.1532-5415.1983.tb03391.x 10.1016/j.neuroimage.2011.07.044 10.1016/j.trci.2018.04.009 |
ContentType | Journal Article |
Copyright | The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 |
Copyright_xml | – notice: The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/awz192 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2872 |
ExternalDocumentID | PMC6736370 31280293 10_1093_brain_awz192 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: ; ; ; grantid: GR-2016-02361986 – fundername: ; ; ; grantid: MOP-136778 – fundername: ; ; |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c384t-291cb72f28cf29a24eab911f3500db849e38fd071aef7ace6ee7cc0af80418293 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 18:14:57 EDT 2025 Fri Jul 11 10:55:05 EDT 2025 Wed Feb 19 02:31:05 EST 2025 Tue Jul 01 00:46:10 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | dynamic functional connectivity dementia mild cognitive impairment Parkinson’s disease neural networks |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-291cb72f28cf29a24eab911f3500db849e38fd071aef7ace6ee7cc0af80418293 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/142/9/2860/29222478/awz192.pdf |
PMID | 31280293 |
PQID | 2253830769 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6736370 proquest_miscellaneous_2253830769 pubmed_primary_31280293 crossref_citationtrail_10_1093_brain_awz192 crossref_primary_10_1093_brain_awz192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cohen (2019091012451287700_awz192-B16) 2016; 36 Göttlich (2019091012451287700_awz192-B30) 2013; 8 Kim (2019091012451287700_awz192-B37) 2017; 140 Friedman (2019091012451287700_awz192-B28) 2008; 9 Demirtas (2019091012451287700_awz192-B21) 2016; 37 Varoquaux (2019091012451287700_awz192-B58) 2010 Tomlinson (2019091012451287700_awz192-B55) 2010; 25 Fox (2019091012451287700_awz192-B27) 2009; 101 Kulisevsky (2019091012451287700_awz192-B38) 2013; 19 Kehagia (2019091012451287700_awz192-B36) 2010; 9 Lloyd (2019091012451287700_awz192-B41) 1982; 28 Olde Dubbelink (2019091012451287700_awz192-B45) 2013; 2 Biundo (2019091012451287700_awz192-B13) 2014; 20 Damaraju (2019091012451287700_awz192-B19) 2014; 5 Nomi (2019091012451287700_awz192-B44) 2017; 147 Allen (2019091012451287700_awz192-B3) 2018; 31 Amboni (2019091012451287700_awz192-B6) 2015; 262 Calhoun (2019091012451287700_awz192-B14) 2001; 14 Power (2019091012451287700_awz192-B47) 2012; 59 Tomasi (2019091012451287700_awz192-B56) 2016; 27 Antonini (2019091012451287700_awz192-B7) 2012; 34 Jones (2019091012451287700_awz192-B34) 2012; 7 Roweis (2019091012451287700_awz192-B51) 1998 Raichle (2019091012451287700_awz192-B49) 2015; 38 Aggarwal (2019091012451287700_awz192-B2) 2001 Litvan (2019091012451287700_awz192-B39) 2012; 27 Elton (2019091012451287700_awz192-B24) 2015; 36 Babiloni (2019091012451287700_awz192-B8) 2017; 59 Niethammer (2019091012451287700_awz192-B43) 2012; 72 Van Dijk (2019091012451287700_awz192-B57) 2012; 59 Allen (2019091012451287700_awz192-B5) 2011; 5 Cordes (2019091012451287700_awz192-B18) 2018; 4 Hutchison (2019091012451287700_awz192-B33) 2013; 80 Katz (2019091012451287700_awz192-B35) 1983; 31 Smith (2019091012451287700_awz192-B54) 2011; 54 Calhoun (2019091012451287700_awz192-B15) 2001; 13 Erhardt (2019091012451287700_awz192-B25) 2011; 32 Hindriks (2019091012451287700_awz192-B32) 2016; 127 Baggio (2019091012451287700_awz192-B10) 2015; 36 Baggio (2019091012451287700_awz192-B9) 2014; 35 Gorges (2019091012451287700_awz192-B29) 2015; 36 Dubois (2019091012451287700_awz192-B23) 2007; 22 Himberg (2019091012451287700_awz192-B31) 2004; 22 Shirer (2019091012451287700_awz192-B53) 2012; 22 Rousseeuw (2019091012451287700_awz192-B50) 1987; 20 Daniel (2019091012451287700_awz192-B20) 1993; 39 Esposito (2019091012451287700_awz192-B26) 2013; 136 Lottman (2019091012451287700_awz192-B42) 2017; 8 Schindlbeck (2019091012451287700_awz192-B52) 2018; 17 Aarsland (2019091012451287700_awz192-B1) 2017; 13 Diez-Cirarda (2019091012451287700_awz192-B22) 2018; 17 Liu (2019091012451287700_awz192-B40) 2017; 38 Cordes (2019091012451287700_awz192-B17) 2000; 21 Pedersen (2019091012451287700_awz192-B46) 2013; 70 Prodoehl (2019091012451287700_awz192-B48) 2014; 14 Allen (2019091012451287700_awz192-B4) 2014; 24 Berman (2019091012451287700_awz192-B12) 2016; 31 Bell (2019091012451287700_awz192-B11) 1995; 7 31605477 - Brain. 2019 Dec 1;142(12):e68 |
References_xml | – volume: 19 start-page: 812 year: 2013 ident: 2019091012451287700_awz192-B38 article-title: Measuring functional impact of cognitive impairment: validation of the Parkinson's disease cognitive functional rating scale publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2013.05.007 – volume: 2 start-page: 612 year: 2013 ident: 2019091012451287700_awz192-B45 article-title: Resting-state functional connectivity as a marker of disease progression in Parkinson's disease: a longitudinal MEG study publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2013.04.003 – volume: 32 start-page: 2075 year: 2011 ident: 2019091012451287700_awz192-B25 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum Brain Mapp doi: 10.1002/hbm.21170 – volume: 14 start-page: 140 year: 2001 ident: 2019091012451287700_awz192-B14 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 127 start-page: 242 year: 2016 ident: 2019091012451287700_awz192-B32 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.055 – volume: 17 start-page: 629 year: 2018 ident: 2019091012451287700_awz192-B52 article-title: Network imaging biomarkers: insights and clinical applications in Parkinson's disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30169-8 – volume: 27 start-page: 349 year: 2012 ident: 2019091012451287700_awz192-B39 article-title: Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines publication-title: Mov Disord doi: 10.1002/mds.24893 – volume: 22 start-page: 2314 year: 2007 ident: 2019091012451287700_awz192-B23 article-title: Diagnostic procedures for Parkinson's disease dementia: recommendations from the movement disorder society task force publication-title: Mov Disord doi: 10.1002/mds.21844 – volume: 147 start-page: 861 year: 2017 ident: 2019091012451287700_awz192-B44 article-title: Chronnectomic patterns and neural flexibility underlie executive function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.026 – start-page: 2334 volume-title: Advances in neural information processing systems year: 2010 ident: 2019091012451287700_awz192-B58 article-title: Brain covariance selection: better individual functional connectivity models using population prior – volume: 136 start-page: 710 year: 2013 ident: 2019091012451287700_awz192-B26 article-title: Rhythm-specific modulation of the sensorimotor network in drug-naïve patients with Parkinson’s disease by levodopa publication-title: Brain doi: 10.1093/brain/awt007 – volume: 14 start-page: 448 year: 2014 ident: 2019091012451287700_awz192-B48 article-title: Resting state functional magnetic resonance imaging in Parkinson's disease publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-014-0448-6 – volume: 17 start-page: 847 year: 2018 ident: 2019091012451287700_awz192-B22 article-title: Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2017.12.013 – volume: 13 start-page: 43 year: 2001 ident: 2019091012451287700_awz192-B15 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms publication-title: Hum Brain Mapp doi: 10.1002/hbm.1024 – volume: 5 start-page: 2 year: 2011 ident: 2019091012451287700_awz192-B5 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2011.00002 – volume: 34 start-page: 683 year: 2012 ident: 2019091012451287700_awz192-B7 article-title: Validation of the Italian version of the movement disorder society—unified Parkinson’s disease rating scale publication-title: Neurol Sci doi: 10.1007/s10072-012-1112-z – volume: 38 start-page: 433 year: 2015 ident: 2019091012451287700_awz192-B49 article-title: The brain's default mode network publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-071013-014030 – volume: 8 start-page: 14 year: 2017 ident: 2019091012451287700_awz192-B42 article-title: Risperidone effects on brain dynamic connectivity-A prospective resting-state fMRI study in schizophrenia publication-title: Front Psychiatry doi: 10.3389/fpsyt.2017.00014 – volume: 72 start-page: 635 year: 2012 ident: 2019091012451287700_awz192-B43 article-title: Metabolic brain networks in translational neurology: concepts and applications publication-title: Ann Neurol doi: 10.1002/ana.23631 – volume: 36 start-page: 12083 year: 2016 ident: 2019091012451287700_awz192-B16 article-title: The segregation and integration of distinct brain networks and their relationship to cognition publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2965-15.2016 – volume: 38 start-page: 957 year: 2017 ident: 2019091012451287700_awz192-B40 article-title: Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure publication-title: Hum Brain Mapp doi: 10.1002/hbm.23430 – volume: 28 start-page: 129 year: 1982 ident: 2019091012451287700_awz192-B41 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 22 start-page: 1214 year: 2004 ident: 2019091012451287700_awz192-B31 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.03.027 – volume: 140 start-page: 2955 year: 2017 ident: 2019091012451287700_awz192-B37 article-title: Abnormal intrinsic brain functional network dynamics in Parkinson's disease publication-title: Brain doi: 10.1093/brain/awx233 – volume: 7 start-page: e39731 year: 2012 ident: 2019091012451287700_awz192-B34 article-title: Non-stationarity in the “Resting Brain’s” modular architecture publication-title: PLoS One doi: 10.1371/journal.pone.0039731 – volume: 9 start-page: 1200 year: 2010 ident: 2019091012451287700_awz192-B36 article-title: Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70212-X – volume: 13 start-page: 217 year: 2017 ident: 2019091012451287700_awz192-B1 article-title: Cognitive decline in Parkinson disease publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2017.27 – volume: 35 start-page: 4620 year: 2014 ident: 2019091012451287700_awz192-B9 article-title: Functional brain networks and cognitive deficits in Parkinson's disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.22499 – volume: 31 start-page: 1676 year: 2016 ident: 2019091012451287700_awz192-B12 article-title: Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease publication-title: Mov Disord doi: 10.1002/mds.26713 – volume: 59 start-page: 339 year: 2017 ident: 2019091012451287700_awz192-B8 article-title: Abnormalities of cortical neural synchronization mechanisms in subjects with mild cognitive impairment due to Alzheimer's and Parkinson's diseases: an EEG study publication-title: J Alzheimers Dis doi: 10.3233/JAD-160883 – volume: 22 start-page: 158 year: 2012 ident: 2019091012451287700_awz192-B53 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb Cortex doi: 10.1093/cercor/bhr099 – volume: 25 start-page: 2649 year: 2010 ident: 2019091012451287700_awz192-B55 article-title: Systematic review of levodopa dose equivalency reporting in Parkinson's disease publication-title: Mov Disord doi: 10.1002/mds.23429 – volume: 20 start-page: 394 year: 2014 ident: 2019091012451287700_awz192-B13 article-title: Cognitive profiling of Parkinson disease patients with mild cognitive impairment and dementia publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2014.01.009 – volume: 7 start-page: 1129 year: 1995 ident: 2019091012451287700_awz192-B11 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 – volume: 80 start-page: 360v78 year: 2013 ident: 2019091012451287700_awz192-B33 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 36 start-page: 199 year: 2015 ident: 2019091012451287700_awz192-B10 article-title: Cognitive impairment and resting-state network connectivity in Parkinson's disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.22622 – volume: 37 start-page: 2918 year: 2016 ident: 2019091012451287700_awz192-B21 article-title: Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder publication-title: Hum Brain Mapp doi: 10.1002/hbm.23215 – volume: 70 start-page: 580 year: 2013 ident: 2019091012451287700_awz192-B46 article-title: Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2013.2110 – volume: 5 start-page: 298 year: 2014 ident: 2019091012451287700_awz192-B19 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.07.003 – volume: 101 start-page: 3270 year: 2009 ident: 2019091012451287700_awz192-B27 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J Neurophysiol doi: 10.1152/jn.90777.2008 – volume: 262 start-page: 425 year: 2015 ident: 2019091012451287700_awz192-B6 article-title: Resting-state functional connectivity associated with mild cognitive impairment in Parkinson's disease publication-title: J Neurol doi: 10.1007/s00415-014-7591-5 – volume: 39 start-page: 165 year: 1993 ident: 2019091012451287700_awz192-B20 article-title: Parkinson's Disease Society Brain Bank, London: overview and research publication-title: J Neural Transm – volume: 36 start-page: 3260 year: 2015 ident: 2019091012451287700_awz192-B24 article-title: Task-related modulation of functional connectivity variability and its behavioral correlations publication-title: Hum Brain Mapp doi: 10.1002/hbm.22847 – start-page: 626 volume-title: Advances in neural information processing systems year: 1998 ident: 2019091012451287700_awz192-B51 article-title: EM algorithms for PCA and SPCA – volume: 24 start-page: 663 year: 2014 ident: 2019091012451287700_awz192-B4 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb Cortex doi: 10.1093/cercor/bhs352 – volume: 9 start-page: 432 year: 2008 ident: 2019091012451287700_awz192-B28 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 36 start-page: 1727 year: 2015 ident: 2019091012451287700_awz192-B29 article-title: To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.12.026 – volume: 54 start-page: 875 year: 2011 ident: 2019091012451287700_awz192-B54 article-title: Network modelling methods for FMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.063 – start-page: 420 volume-title: On the surprising behavior of distance metrics in high dimensional spaces. In International Conference On Database Theory year: 2001 ident: 2019091012451287700_awz192-B2 – volume: 8 start-page: e77336 year: 2013 ident: 2019091012451287700_awz192-B30 article-title: Altered resting state brain networks in Parkinson's disease publication-title: PLoS One doi: 10.1371/journal.pone.0077336 – volume: 31 start-page: 101 year: 2018 ident: 2019091012451287700_awz192-B3 article-title: EEG signatures of dynamic functional network connectivity states publication-title: Brain Topogr doi: 10.1007/s10548-017-0546-2 – volume: 20 start-page: 53 year: 1987 ident: 2019091012451287700_awz192-B50 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 59 start-page: 2142 year: 2012 ident: 2019091012451287700_awz192-B47 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 31 start-page: 721 year: 1983 ident: 2019091012451287700_awz192-B35 article-title: Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.1983.tb03391.x – volume: 59 start-page: 431 year: 2012 ident: 2019091012451287700_awz192-B57 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 4 start-page: 372 year: 2018 ident: 2019091012451287700_awz192-B18 article-title: Advances in functional magnetic resonance imaging data analysis methods using empirical mode decomposition to investigate temporal changes in early Parkinson's disease publication-title: Alzheimers Dement doi: 10.1016/j.trci.2018.04.009 – volume: 27 start-page: 4153 year: 2016 ident: 2019091012451287700_awz192-B56 article-title: Temporal evolution of brain functional connectivity metrics: could 7 min of rest be enough? publication-title: Cerebral Cortex – volume: 21 start-page: 1636 year: 2000 ident: 2019091012451287700_awz192-B17 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: AJNR Am J Neuroradiol – reference: 31605477 - Brain. 2019 Dec 1;142(12):e68 |
SSID | ssj0014326 |
Score | 2.6567502 |
Snippet | Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a suitable method to detect... Dynamic functional connectivity captures temporal variations of functional connectivity during resting-state MRI acquisition. Applying this technique,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2860 |
SubjectTerms | Cluster Analysis Cognitive Dysfunction - etiology Cognitive Dysfunction - pathology Connectome Dementia - etiology Dementia - pathology Editor's Choice Educational Status Female Humans Magnetic Resonance Imaging - methods Male Middle Aged Neuroimaging - methods Neuropsychological Tests Original Parkinson Disease - psychology Severity of Illness Index |
Title | Dynamic functional connectivity changes associated with dementia in Parkinson’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31280293 https://www.proquest.com/docview/2253830769 https://pubmed.ncbi.nlm.nih.gov/PMC6736370 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66gvgi3rfrhQiKD2XcaTKXzKNoy7rurg-22Lchk0nowJKRtstCf70nl7m5FVZfhpKGdMj5enJyLt9B6B0VkrOCs0DxLA0iyuOAkzAKCCckLJlkoWXgO79IThbR6TJeduECW12yLT6K3d66kv-RKoyBXE2V7D9Itl0UBuAzyBeeIGF43krGX1w7-bE5nLxPT5jEFeFbQriq3s2Yexk0qeal9QlW3Dg7TNmzrwBLN4N4TUt7xCu9t_OHcyewlPXcCbOqXku947Y703h6KWtdr1vVb7hwlcm38rwFoFDqrsLMd3Y-rfRKtnj7IVaV4rZBuE8D531PxaRLxWqUa5SEAZgYnvp6z1ijkSPSg17W16_MdR-4ofgdKVaxtu6UGb_eTVyLvSHD9sX3fLY4O8vn0-X8LrpH4Gphr-Ffv7WRp4gSX5Hm3ssXS8D6x3b1Y7f20Iy5cTf5M8W2Z7PMH6GH_rKBPznkPEZ3pH6C7p_7dIqn6KcHEO4AhPsAwh5AuAMQNgDCDYBwpXELoA8b7OHzDC1m0_nnk8B32ggEZdE2INlEFClRhAlFMk4iyQs4BRWNw7AsWJRJylQJ1iiXKuVCJlKmQoRcGfYqBhbjc3Sgay0PERaUT6K4iDNmYsTK0DMyRWQs04ywokxGaNxsXC48Db3phnKZu3QImtttzt02j9D7dvYvR7_yl3lvGxnkoB9N0ItrWV9tcjivKIODLMlG6IWTSbsSBeMshLcfoXQgrXaC4V4ffqOrleVgN-mQNA2PbvG7L9GD7t_wCh1s11fyNViy2-KNhd5vucClxA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+functional+connectivity+changes+associated+with+dementia+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Fiorenzato%2C+Eleonora&rft.au=Strafella%2C+Antonio+P&rft.au=Kim%2C+Jinhee&rft.au=Schifano%2C+Roberta&rft.date=2019-09-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=142&rft.issue=9&rft.spage=2860&rft_id=info:doi/10.1093%2Fbrain%2Fawz192&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |