State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer
Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior...
Saved in:
Published in | The Journal of chemical physics Vol. 138; no. 4; p. 044315 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
28.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T1 from the initially populated singlet state S2. The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT. |
---|---|
AbstractList | Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT. Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T1 from the initially populated singlet state S2. The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT. Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT. |
Author | Fang, Wei-hai Cui, Ganglong |
Author_xml | – sequence: 1 givenname: Ganglong surname: Cui fullname: Cui, Ganglong – sequence: 2 givenname: Wei-hai surname: Fang fullname: Fang, Wei-hai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23387592$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq1qUVmgh_4B5GN7yK7t-CPpbYVaQELiAJwjx5k0rhI72N5K4c7_JstuOVRIaA4jzTwzmnnfE7Rw3gFCXylZUSLzNV1xpSST9BNaUlKUmZIlWaAlIYxmpSTyGJ3E-IcQQhXjn9Exy_NCiZIt0fNd0gmyOIKxrTW4A_13ynTyA4a2BZOwd9i6BCFOMcGATfAxWvcbj8EbiBHi3MYsS531qZsG6-AH3uDRJ3DJ6h6PnU--mZwe5vWpg6DHaV-M4KJN9gnCGTpqdR_hyyGfoodfP-8vrrKb28vri81NZvKCp4wJruuCcENKaWRB5fwFp0K3goKQUpS1qjmntWJMl9BwoaDlqskbrlouG5Wfom_7vfPxj1uIqRpsNND32oHfxormbBdS5R-jrBBc8kLs0PMDuq0HaKox2EGHqfqn8gx83wOv4gVo3xBKqp2DFa0ODs7s-j_W2Nki610K2vbvTLwApwGdtg |
CitedBy_id | crossref_primary_10_1007_s10895_021_02714_3 crossref_primary_10_1039_C7CP02258A crossref_primary_10_1039_D1CP03994F crossref_primary_10_1016_j_jphotochem_2013_11_003 crossref_primary_10_1039_D2CP03661D crossref_primary_10_1021_acs_jpcb_0c10855 crossref_primary_10_1039_D1CP00933H crossref_primary_10_1039_D0CP01450H crossref_primary_10_1021_jacs_5b12726 crossref_primary_10_1021_acsomega_9b01276 crossref_primary_10_1111_php_13903 crossref_primary_10_1021_acs_jpclett_0c01637 crossref_primary_10_1039_C5SC04253D crossref_primary_10_1002_adom_201300467 crossref_primary_10_1063_1_4935047 crossref_primary_10_1002_chem_201900677 crossref_primary_10_1021_acs_jmedchem_4c00191 crossref_primary_10_1002_qua_25938 crossref_primary_10_1021_acs_jpca_6b05110 crossref_primary_10_1021_jp503708d crossref_primary_10_1039_D1CP01142A crossref_primary_10_3390_molecules28052354 crossref_primary_10_1002_ange_201308486 crossref_primary_10_1063_1_4941948 crossref_primary_10_1039_D1CP00041A crossref_primary_10_1021_acs_jpca_9b08214 crossref_primary_10_1021_acs_jpca_7b08566 crossref_primary_10_3390_molecules27185763 crossref_primary_10_1007_s00214_015_1744_1 crossref_primary_10_1002_anie_201308486 crossref_primary_10_1039_C7CP02543B crossref_primary_10_1515_ntrev_2024_0023 crossref_primary_10_1021_acsomega_3c09471 crossref_primary_10_1063_1_4999687 crossref_primary_10_1039_D0CP00068J crossref_primary_10_3390_molecules25143157 crossref_primary_10_1039_C7CP01511A crossref_primary_10_1080_0144235X_2020_1815389 crossref_primary_10_1021_acs_jpca_5b06639 crossref_primary_10_1063_5_0167127 crossref_primary_10_1002_slct_201601842 crossref_primary_10_1039_C4CP03544E crossref_primary_10_1063_1_4866447 crossref_primary_10_1021_acs_jctc_7b00619 crossref_primary_10_1021_acs_jpcc_7b06913 crossref_primary_10_1021_jacs_8b07057 crossref_primary_10_1039_C7CP08696B crossref_primary_10_1039_D2SC02185D crossref_primary_10_1063_1_5143228 crossref_primary_10_1016_j_chemphys_2018_06_016 crossref_primary_10_1039_C8CP02306A crossref_primary_10_1039_C7CP01574G crossref_primary_10_1039_D0CP05920J crossref_primary_10_1063_1_4894849 crossref_primary_10_3390_molecules22060998 crossref_primary_10_1021_acs_jpca_6b06512 crossref_primary_10_1021_acs_jpcc_1c06260 crossref_primary_10_1021_acs_jpclett_6b00616 crossref_primary_10_1021_acs_jctc_9b00208 crossref_primary_10_1039_C7TC04171C crossref_primary_10_1039_C9CP00569B crossref_primary_10_1038_srep12602 crossref_primary_10_1039_D0CP01369B crossref_primary_10_1038_ncomms13077 crossref_primary_10_1111_php_12975 crossref_primary_10_1002_cphc_201600386 crossref_primary_10_1039_c7pp00105c crossref_primary_10_1021_acs_jpcb_7b06917 crossref_primary_10_1021_acs_chemrev_8b00244 crossref_primary_10_3390_molecules27041200 crossref_primary_10_1016_j_chemphys_2018_07_025 crossref_primary_10_1039_C7CP05426B crossref_primary_10_1021_jacs_9b10261 crossref_primary_10_1007_s00214_014_1532_3 crossref_primary_10_1016_j_saa_2024_124311 crossref_primary_10_1016_j_pdpdt_2022_103160 crossref_primary_10_1039_C6CP05110C crossref_primary_10_1002_chem_201904541 crossref_primary_10_1002_qua_25634 crossref_primary_10_3390_molecules23112836 crossref_primary_10_1039_D0CP02145H crossref_primary_10_1039_D3CP03730D crossref_primary_10_1039_C7CP02050C crossref_primary_10_1021_acs_jpca_2c06051 crossref_primary_10_1021_ja510611j crossref_primary_10_1021_acs_jpca_1c06169 crossref_primary_10_1021_jz501159j crossref_primary_10_1039_C4CP04158E crossref_primary_10_1016_j_comptc_2014_03_021 crossref_primary_10_1021_acs_jpca_3c06310 crossref_primary_10_1039_C8CP01852A crossref_primary_10_1002_jrs_5518 crossref_primary_10_1039_C6CP06290C crossref_primary_10_1038_s41467_025_57083_3 crossref_primary_10_1039_C7CP00478H crossref_primary_10_1002_cphc_201402743 crossref_primary_10_1063_1674_0068_29_cjcp1512242 crossref_primary_10_1002_chem_201604543 crossref_primary_10_1039_C6CP01790H |
Cites_doi | 10.1021/jp803758q 10.1021/ja102800r 10.1063/1.2834918 10.1021/jz900276x 10.1021/jp0633897 10.1021/jp109590t 10.1021/jp905433s 10.1063/1.456153 10.1021/cr60240a004 10.1021/jp809085h 10.1021/ja0161453 10.1021/jp200297z 10.1021/ja044371h 10.1063/1.481132 10.1002/jcc.22952 10.1021/jz301312h 10.1039/c2cc15775f 10.1080/002689796173967 10.1021/ja044321c 10.1073/pnas.0602663103 10.1021/jp902944a 10.1021/ja208496s 10.1038/nature03933 10.1021/jp102067t 10.1021/jz100491x 10.1073/pnas.0703298104 10.1103/PhysRevB.37.785 10.1021/jp8033402 10.1002/cphc.200800649 10.1021/jp206893n 10.1021/cr0206770 10.1021/jp0723665 10.1073/pnas.0606757104 10.1039/c0cc01181a 10.1021/jp804309x 10.1007/s00214-007-0310-x 10.1021/jp803096j 10.1021/jp112018u 10.1073/pnas.1014982107 10.1021/jp0513622 10.1039/b921568a 10.1021/ja0258273 10.1103/PhysRevA.38.3098 10.1021/ja054955z 10.1021/jz100729w 10.1126/science.1104038 10.1063/1.1674902 10.1039/b908552a 10.1021/jp905303g 10.1016/j.cplett.2004.06.011 10.1021/jp0765446 10.1021/jp905085x 10.1021/jp0678094 10.1021/jz1004973 10.1039/c0cp00106f 10.1146/annurev.physchem.59.032607.093719 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD H8D L7M |
DOI | 10.1063/1.4776261 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | MEDLINE Aerospace Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 23387592 10_1063_1_4776261 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT WH7 YQT YZZ ~02 CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c384t-254ab804c096c6816387415af51e56659b7b441b722a9ed457ef47d3d47f46d73 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 01:44:20 EDT 2025 Thu Jul 10 18:27:52 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-254ab804c096c6816387415af51e56659b7b441b722a9ed457ef47d3d47f46d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23387592 |
PQID | 1285464853 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1323232673 proquest_miscellaneous_1285464853 pubmed_primary_23387592 crossref_primary_10_1063_1_4776261 crossref_citationtrail_10_1063_1_4776261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-28 |
PublicationDateYYYYMMDD | 2013-01-28 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2013 |
References | (2023062523335984600_c5) 2005; 127 (2023062523335984600_c10) 2010; 1 (2023062523335984600_c6) 2001; 123 (2023062523335984600_c7) 2006; 103 (2023062523335984600_c22) 2008; 112 (2023062523335984600_c48) 1971; 54 (2023062523335984600_c47) 2008; 120 (2023062523335984600_c17) 2007; 111 (2023062523335984600_c58) 2009; 113 (2023062523335984600_c11) 2002; 124 (2023062523335984600_c25) 2009; 113 (2023062523335984600_c43) 1988; 38 (2023062523335984600_c33) 2010; 12 (2023062523335984600_c39) 2010; 46 (2023062523335984600_c41) 1996; 89 (2023062523335984600_c57) 2007; 111 (2023062523335984600_c26) 2010; 107 (2023062523335984600_c50) 2009 (2023062523335984600_c36) 2011; 115 (2023062523335984600_c16) 2006; 110 (2023062523335984600_c9) 2010; 132 (2023062523335984600_c4) 2007; 104 (2023062523335984600_c37) 2011; 115 (2023062523335984600_c55) 2012; 134 (2023062523335984600_c40) 2012; 48 (2023062523335984600_c24) 2009; 113 (2023062523335984600_c14) 2005; 127 (2023062523335984600_c12) 2004; 306 (2023062523335984600_c30) 2010; 1 (2023062523335984600_c8) 2010; 1 (2023062523335984600_c56) 2012; 3 (2023062523335984600_c34) 2011; 115 (2023062523335984600_c54) 2011; 115 (2023062523335984600_c29) 2009; 113 (2023062523335984600_c51) 2010 (2023062523335984600_c1) 2004; 104 (2023062523335984600_c59) 2009; 8 (2023062523335984600_c3) 2009; 60 (2023062523335984600_c31) 2010; 114 (2023062523335984600_c15) 2005; 127 (2023062523335984600_c38) 2010; 1 (2023062523335984600_c13) 2005; 109 (2023062523335984600_c45) 2004; 393 (2023062523335984600_c46) 2008; 128 (2023062523335984600_c27) 2012; 33 (2023062523335984600_c23) 2009; 113 (2023062523335984600_c21) 2008; 112 (2023062523335984600_c32) 2010; 12 (2023062523335984600_c35) 2007; 111 (2023062523335984600_c28) 2008; 112 (2023062523335984600_c19) 2008; 112 (2023062523335984600_c2) 2005; 436 (2023062523335984600_c49) 1989; 90 (2023062523335984600_c53) 1966; 66 (2023062523335984600_c18) 2007; 104 (2023062523335984600_c44) 1988; 37 (2023062523335984600_c20) 2008; 9 (2023062523335984600_c42) 2000; 112 2023062523335984600_c52 |
References_xml | – volume: 112 start-page: 9983 year: 2008 ident: 2023062523335984600_c19 publication-title: J. Phys. Chem. A doi: 10.1021/jp803758q – year: 2010 ident: 2023062523335984600_c51 – volume: 132 start-page: 11834 year: 2010 ident: 2023062523335984600_c9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102800r – volume: 128 start-page: 084106 year: 2008 ident: 2023062523335984600_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.2834918 – volume: 1 start-page: 480 year: 2010 ident: 2023062523335984600_c30 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900276x – volume: 110 start-page: 13238 year: 2006 ident: 2023062523335984600_c16 publication-title: J. Phys. Chem. A doi: 10.1021/jp0633897 – volume: 115 start-page: 1889 year: 2011 ident: 2023062523335984600_c36 publication-title: J. Phys. Chem. B doi: 10.1021/jp109590t – volume: 113 start-page: 12088 year: 2009 ident: 2023062523335984600_c29 publication-title: J. Phys. Chem. A doi: 10.1021/jp905433s – volume: 90 start-page: 1007 year: 1989 ident: 2023062523335984600_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 66 start-page: 199 year: 1966 ident: 2023062523335984600_c53 publication-title: Chem. Rev. doi: 10.1021/cr60240a004 – volume: 113 start-page: 3548 year: 2009 ident: 2023062523335984600_c24 publication-title: J. Phys. Chem. B doi: 10.1021/jp809085h – volume: 123 start-page: 10370 year: 2001 ident: 2023062523335984600_c6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0161453 – volume: 115 start-page: 6243 year: 2011 ident: 2023062523335984600_c34 publication-title: J. Phys. Chem. B doi: 10.1021/jp200297z – volume: 127 start-page: 1820 year: 2005 ident: 2023062523335984600_c15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044371h – volume: 112 start-page: 5546 year: 2000 ident: 2023062523335984600_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.481132 – volume: 33 start-page: 1225 year: 2012 ident: 2023062523335984600_c27 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22952 – volume: 3 start-page: 3090 year: 2012 ident: 2023062523335984600_c56 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301312h – volume: 48 start-page: 2134 year: 2012 ident: 2023062523335984600_c40 publication-title: Chem. Commun. doi: 10.1039/c2cc15775f – volume: 89 start-page: 645 year: 1996 ident: 2023062523335984600_c41 publication-title: Mol. Phys. doi: 10.1080/002689796173967 – volume: 127 start-page: 6257 year: 2005 ident: 2023062523335984600_c14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044321c – volume: 103 start-page: 10196 year: 2006 ident: 2023062523335984600_c7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0602663103 – volume: 113 start-page: 11809 year: 2009 ident: 2023062523335984600_c58 publication-title: J. Phys. Chem. A doi: 10.1021/jp902944a – volume: 134 start-page: 1662 year: 2012 ident: 2023062523335984600_c55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208496s – volume: 436 start-page: 1141 year: 2005 ident: 2023062523335984600_c2 publication-title: Nature (London) doi: 10.1038/nature03933 – volume: 114 start-page: 8782 year: 2010 ident: 2023062523335984600_c31 publication-title: J. Phys. Chem. B doi: 10.1021/jp102067t – volume: 1 start-page: 2047 year: 2010 ident: 2023062523335984600_c8 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100491x – volume: 104 start-page: 9931 year: 2007 ident: 2023062523335984600_c18 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0703298104 – volume: 37 start-page: 785 year: 1988 ident: 2023062523335984600_c44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 112 start-page: 6859 year: 2008 ident: 2023062523335984600_c22 publication-title: J. Phys. Chem. A doi: 10.1021/jp8033402 – volume: 9 start-page: 2486 year: 2008 ident: 2023062523335984600_c20 publication-title: ChemPhysChem doi: 10.1002/cphc.200800649 – ident: 2023062523335984600_c52 – volume: 115 start-page: 11544 year: 2011 ident: 2023062523335984600_c54 publication-title: J. Phys. Chem. A doi: 10.1021/jp206893n – volume: 104 start-page: 1977 year: 2004 ident: 2023062523335984600_c1 publication-title: Chem. Rev. doi: 10.1021/cr0206770 – volume: 111 start-page: 8500 year: 2007 ident: 2023062523335984600_c17 publication-title: J. Phys. Chem. A doi: 10.1021/jp0723665 – volume: 104 start-page: 4794 year: 2007 ident: 2023062523335984600_c4 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0606757104 – volume: 46 start-page: 5963 year: 2010 ident: 2023062523335984600_c39 publication-title: Chem. Commun. doi: 10.1039/c0cc01181a – volume: 112 start-page: 8273 year: 2008 ident: 2023062523335984600_c21 publication-title: J. Phys. Chem. A doi: 10.1021/jp804309x – volume: 120 start-page: 215 year: 2008 ident: 2023062523335984600_c47 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 112 start-page: 13308 year: 2008 ident: 2023062523335984600_c28 publication-title: J. Phys. Chem. A doi: 10.1021/jp803096j – volume: 115 start-page: 3263 year: 2011 ident: 2023062523335984600_c37 publication-title: J. Phys. Chem. B doi: 10.1021/jp112018u – volume: 107 start-page: 21453 year: 2010 ident: 2023062523335984600_c26 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1014982107 – volume: 109 start-page: 7538 year: 2005 ident: 2023062523335984600_c13 publication-title: J. Phys. Chem. A doi: 10.1021/jp0513622 – volume: 12 start-page: 5140 year: 2010 ident: 2023062523335984600_c32 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b921568a – volume: 124 start-page: 6818 year: 2002 ident: 2023062523335984600_c11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0258273 – volume: 38 start-page: 3098 year: 1988 ident: 2023062523335984600_c43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 127 start-page: 17130 year: 2005 ident: 2023062523335984600_c5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054955z – volume: 1 start-page: 2239 year: 2010 ident: 2023062523335984600_c38 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100729w – volume: 306 start-page: 1765 year: 2004 ident: 2023062523335984600_c12 publication-title: Science doi: 10.1126/science.1104038 – volume: 54 start-page: 724 year: 1971 ident: 2023062523335984600_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.1674902 – year: 2009 ident: 2023062523335984600_c50 – volume: 8 start-page: 1379 year: 2009 ident: 2023062523335984600_c59 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b908552a – volume: 113 start-page: 10211 year: 2009 ident: 2023062523335984600_c23 publication-title: J. Phys. Chem. A doi: 10.1021/jp905303g – volume: 393 start-page: 51 year: 2004 ident: 2023062523335984600_c45 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.06.011 – volume: 111 start-page: 11880 year: 2007 ident: 2023062523335984600_c57 publication-title: J. Phys. Chem. B doi: 10.1021/jp0765446 – volume: 113 start-page: 12686 year: 2009 ident: 2023062523335984600_c25 publication-title: J. Phys. Chem. A doi: 10.1021/jp905085x – volume: 111 start-page: 5518 year: 2007 ident: 2023062523335984600_c35 publication-title: J. Phys. Chem. B doi: 10.1021/jp0678094 – volume: 1 start-page: 2025 year: 2010 ident: 2023062523335984600_c10 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1004973 – volume: 12 start-page: 15665 year: 2010 ident: 2023062523335984600_c33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00106f – volume: 60 start-page: 217 year: 2009 ident: 2023062523335984600_c3 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093719 |
SSID | ssj0001724 |
Score | 2.4264002 |
Snippet | Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 044315 |
SubjectTerms | Direct power generation Dissipation Electronic structure Electronics Ground state Intersections Molecular Structure Photochemotherapy Photodynamic therapy Photosensitizing Agents - chemistry Quantum Theory Thymine Thymine - analogs & derivatives Thymine - chemistry |
Title | State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23387592 https://www.proquest.com/docview/1285464853 https://www.proquest.com/docview/1323232673 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJwQvCMZt3GQQD0iVRxrfEt6mcpkQQ0hsYm_BThxatCYVS5G2d_43x5ek6dQhQJWiynYayeeL_R33nO8g9FxzqY1OKEnziBKWmpIoYQUBFKCFKlGkwuYOH3wU-0fs_TE_Hgy-9qKWlo3ezc835pX8j1WhDexqs2T_wbLdj0IDfAf7whUsDNe_srFjisQmS9qAH0v6fp4R8KLnIUxj5OIYrX6m02seuS3Rp5-79AAXjDWKSTOdWYPNreioS35e1I2NIrJZWtO6qQtftn7kk7XOfOOpDX1vZuchvPf7CnY9kpu3egT-BKUj8JOliyJ4p6pvJ3XYPJ0kpF96vpgZmapZ_0jClocYtynexi-jUZISKXwh0G6dpUkPUKy3akYMaAzfuKADg7JnC7tMwqrtZdt7hl3MnWVj8LMl9zX1Lqhnt11X0FYMjkQ8RFt7rw8-fO52ayBwrFWcEvRl9ySrEh3uXacsl_ghjo8c3kQ3whzjPY-KW2hgqm10bdLW79tGVz_5Kb-Nfq3jBK9wgj1OcF3hHk5wixPc4QS68RpOXmGFO5TgPkpwQAm-gJI76Ojtm8PJPgnlN0hOE9aQmDOlk4jl4OXmIrHE3dJPVfKxASeAp1pqINMaZlWlpmBcmpLJghZMlkwUkt5Fw6quzH2EJRUqhbdfl3CLSISOZJ5GWhhhOOdlsYNetDOc5UGb3pZIOclcjISg2TgLdtlBz7qhCy_IsmnQ09ZMGcy6_Q9MVaZenmZjmzEsGJDUP4yhsf0ICWPueRt3j2ox8eDSnofo-uqdeISGzY-leQzEtdFPAvZ-Axjknhw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-specific+heavy-atom+effect+on+intersystem+crossing+processes+in+2-thiothymine%3A+a+potential+photodynamic+therapy+photosensitizer&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Cui%2C+Ganglong&rft.au=Fang%2C+Wei-hai&rft.date=2013-01-28&rft.eissn=1089-7690&rft.volume=138&rft.issue=4&rft.spage=044315&rft_id=info:doi/10.1063%2F1.4776261&rft_id=info%3Apmid%2F23387592&rft.externalDocID=23387592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |