State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer

Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 138; no. 4; p. 044315
Main Authors Cui, Ganglong, Fang, Wei-hai
Format Journal Article
LanguageEnglish
Published United States 28.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T1 from the initially populated singlet state S2. The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.
AbstractList Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.
Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T1 from the initially populated singlet state S2. The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.
Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.
Author Fang, Wei-hai
Cui, Ganglong
Author_xml – sequence: 1
  givenname: Ganglong
  surname: Cui
  fullname: Cui, Ganglong
– sequence: 2
  givenname: Wei-hai
  surname: Fang
  fullname: Fang, Wei-hai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23387592$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq1qUVmgh_4B5GN7yK7t-CPpbYVaQELiAJwjx5k0rhI72N5K4c7_JstuOVRIaA4jzTwzmnnfE7Rw3gFCXylZUSLzNV1xpSST9BNaUlKUmZIlWaAlIYxmpSTyGJ3E-IcQQhXjn9Exy_NCiZIt0fNd0gmyOIKxrTW4A_13ynTyA4a2BZOwd9i6BCFOMcGATfAxWvcbj8EbiBHi3MYsS531qZsG6-AH3uDRJ3DJ6h6PnU--mZwe5vWpg6DHaV-M4KJN9gnCGTpqdR_hyyGfoodfP-8vrrKb28vri81NZvKCp4wJruuCcENKaWRB5fwFp0K3goKQUpS1qjmntWJMl9BwoaDlqskbrlouG5Wfom_7vfPxj1uIqRpsNND32oHfxormbBdS5R-jrBBc8kLs0PMDuq0HaKox2EGHqfqn8gx83wOv4gVo3xBKqp2DFa0ODs7s-j_W2Nki610K2vbvTLwApwGdtg
CitedBy_id crossref_primary_10_1007_s10895_021_02714_3
crossref_primary_10_1039_C7CP02258A
crossref_primary_10_1039_D1CP03994F
crossref_primary_10_1016_j_jphotochem_2013_11_003
crossref_primary_10_1039_D2CP03661D
crossref_primary_10_1021_acs_jpcb_0c10855
crossref_primary_10_1039_D1CP00933H
crossref_primary_10_1039_D0CP01450H
crossref_primary_10_1021_jacs_5b12726
crossref_primary_10_1021_acsomega_9b01276
crossref_primary_10_1111_php_13903
crossref_primary_10_1021_acs_jpclett_0c01637
crossref_primary_10_1039_C5SC04253D
crossref_primary_10_1002_adom_201300467
crossref_primary_10_1063_1_4935047
crossref_primary_10_1002_chem_201900677
crossref_primary_10_1021_acs_jmedchem_4c00191
crossref_primary_10_1002_qua_25938
crossref_primary_10_1021_acs_jpca_6b05110
crossref_primary_10_1021_jp503708d
crossref_primary_10_1039_D1CP01142A
crossref_primary_10_3390_molecules28052354
crossref_primary_10_1002_ange_201308486
crossref_primary_10_1063_1_4941948
crossref_primary_10_1039_D1CP00041A
crossref_primary_10_1021_acs_jpca_9b08214
crossref_primary_10_1021_acs_jpca_7b08566
crossref_primary_10_3390_molecules27185763
crossref_primary_10_1007_s00214_015_1744_1
crossref_primary_10_1002_anie_201308486
crossref_primary_10_1039_C7CP02543B
crossref_primary_10_1515_ntrev_2024_0023
crossref_primary_10_1021_acsomega_3c09471
crossref_primary_10_1063_1_4999687
crossref_primary_10_1039_D0CP00068J
crossref_primary_10_3390_molecules25143157
crossref_primary_10_1039_C7CP01511A
crossref_primary_10_1080_0144235X_2020_1815389
crossref_primary_10_1021_acs_jpca_5b06639
crossref_primary_10_1063_5_0167127
crossref_primary_10_1002_slct_201601842
crossref_primary_10_1039_C4CP03544E
crossref_primary_10_1063_1_4866447
crossref_primary_10_1021_acs_jctc_7b00619
crossref_primary_10_1021_acs_jpcc_7b06913
crossref_primary_10_1021_jacs_8b07057
crossref_primary_10_1039_C7CP08696B
crossref_primary_10_1039_D2SC02185D
crossref_primary_10_1063_1_5143228
crossref_primary_10_1016_j_chemphys_2018_06_016
crossref_primary_10_1039_C8CP02306A
crossref_primary_10_1039_C7CP01574G
crossref_primary_10_1039_D0CP05920J
crossref_primary_10_1063_1_4894849
crossref_primary_10_3390_molecules22060998
crossref_primary_10_1021_acs_jpca_6b06512
crossref_primary_10_1021_acs_jpcc_1c06260
crossref_primary_10_1021_acs_jpclett_6b00616
crossref_primary_10_1021_acs_jctc_9b00208
crossref_primary_10_1039_C7TC04171C
crossref_primary_10_1039_C9CP00569B
crossref_primary_10_1038_srep12602
crossref_primary_10_1039_D0CP01369B
crossref_primary_10_1038_ncomms13077
crossref_primary_10_1111_php_12975
crossref_primary_10_1002_cphc_201600386
crossref_primary_10_1039_c7pp00105c
crossref_primary_10_1021_acs_jpcb_7b06917
crossref_primary_10_1021_acs_chemrev_8b00244
crossref_primary_10_3390_molecules27041200
crossref_primary_10_1016_j_chemphys_2018_07_025
crossref_primary_10_1039_C7CP05426B
crossref_primary_10_1021_jacs_9b10261
crossref_primary_10_1007_s00214_014_1532_3
crossref_primary_10_1016_j_saa_2024_124311
crossref_primary_10_1016_j_pdpdt_2022_103160
crossref_primary_10_1039_C6CP05110C
crossref_primary_10_1002_chem_201904541
crossref_primary_10_1002_qua_25634
crossref_primary_10_3390_molecules23112836
crossref_primary_10_1039_D0CP02145H
crossref_primary_10_1039_D3CP03730D
crossref_primary_10_1039_C7CP02050C
crossref_primary_10_1021_acs_jpca_2c06051
crossref_primary_10_1021_ja510611j
crossref_primary_10_1021_acs_jpca_1c06169
crossref_primary_10_1021_jz501159j
crossref_primary_10_1039_C4CP04158E
crossref_primary_10_1016_j_comptc_2014_03_021
crossref_primary_10_1021_acs_jpca_3c06310
crossref_primary_10_1039_C8CP01852A
crossref_primary_10_1002_jrs_5518
crossref_primary_10_1039_C6CP06290C
crossref_primary_10_1038_s41467_025_57083_3
crossref_primary_10_1039_C7CP00478H
crossref_primary_10_1002_cphc_201402743
crossref_primary_10_1063_1674_0068_29_cjcp1512242
crossref_primary_10_1002_chem_201604543
crossref_primary_10_1039_C6CP01790H
Cites_doi 10.1021/jp803758q
10.1021/ja102800r
10.1063/1.2834918
10.1021/jz900276x
10.1021/jp0633897
10.1021/jp109590t
10.1021/jp905433s
10.1063/1.456153
10.1021/cr60240a004
10.1021/jp809085h
10.1021/ja0161453
10.1021/jp200297z
10.1021/ja044371h
10.1063/1.481132
10.1002/jcc.22952
10.1021/jz301312h
10.1039/c2cc15775f
10.1080/002689796173967
10.1021/ja044321c
10.1073/pnas.0602663103
10.1021/jp902944a
10.1021/ja208496s
10.1038/nature03933
10.1021/jp102067t
10.1021/jz100491x
10.1073/pnas.0703298104
10.1103/PhysRevB.37.785
10.1021/jp8033402
10.1002/cphc.200800649
10.1021/jp206893n
10.1021/cr0206770
10.1021/jp0723665
10.1073/pnas.0606757104
10.1039/c0cc01181a
10.1021/jp804309x
10.1007/s00214-007-0310-x
10.1021/jp803096j
10.1021/jp112018u
10.1073/pnas.1014982107
10.1021/jp0513622
10.1039/b921568a
10.1021/ja0258273
10.1103/PhysRevA.38.3098
10.1021/ja054955z
10.1021/jz100729w
10.1126/science.1104038
10.1063/1.1674902
10.1039/b908552a
10.1021/jp905303g
10.1016/j.cplett.2004.06.011
10.1021/jp0765446
10.1021/jp905085x
10.1021/jp0678094
10.1021/jz1004973
10.1039/c0cp00106f
10.1146/annurev.physchem.59.032607.093719
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
H8D
L7M
DOI 10.1063/1.4776261
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE
Aerospace Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 23387592
10_1063_1_4776261
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c384t-254ab804c096c6816387415af51e56659b7b441b722a9ed457ef47d3d47f46d73
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 01:44:20 EDT 2025
Thu Jul 10 18:27:52 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-254ab804c096c6816387415af51e56659b7b441b722a9ed457ef47d3d47f46d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23387592
PQID 1285464853
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1323232673
proquest_miscellaneous_1285464853
pubmed_primary_23387592
crossref_primary_10_1063_1_4776261
crossref_citationtrail_10_1063_1_4776261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-28
PublicationDateYYYYMMDD 2013-01-28
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2013
References (2023062523335984600_c5) 2005; 127
(2023062523335984600_c10) 2010; 1
(2023062523335984600_c6) 2001; 123
(2023062523335984600_c7) 2006; 103
(2023062523335984600_c22) 2008; 112
(2023062523335984600_c48) 1971; 54
(2023062523335984600_c47) 2008; 120
(2023062523335984600_c17) 2007; 111
(2023062523335984600_c58) 2009; 113
(2023062523335984600_c11) 2002; 124
(2023062523335984600_c25) 2009; 113
(2023062523335984600_c43) 1988; 38
(2023062523335984600_c33) 2010; 12
(2023062523335984600_c39) 2010; 46
(2023062523335984600_c41) 1996; 89
(2023062523335984600_c57) 2007; 111
(2023062523335984600_c26) 2010; 107
(2023062523335984600_c50) 2009
(2023062523335984600_c36) 2011; 115
(2023062523335984600_c16) 2006; 110
(2023062523335984600_c9) 2010; 132
(2023062523335984600_c4) 2007; 104
(2023062523335984600_c37) 2011; 115
(2023062523335984600_c55) 2012; 134
(2023062523335984600_c40) 2012; 48
(2023062523335984600_c24) 2009; 113
(2023062523335984600_c14) 2005; 127
(2023062523335984600_c12) 2004; 306
(2023062523335984600_c30) 2010; 1
(2023062523335984600_c8) 2010; 1
(2023062523335984600_c56) 2012; 3
(2023062523335984600_c34) 2011; 115
(2023062523335984600_c54) 2011; 115
(2023062523335984600_c29) 2009; 113
(2023062523335984600_c51) 2010
(2023062523335984600_c1) 2004; 104
(2023062523335984600_c59) 2009; 8
(2023062523335984600_c3) 2009; 60
(2023062523335984600_c31) 2010; 114
(2023062523335984600_c15) 2005; 127
(2023062523335984600_c38) 2010; 1
(2023062523335984600_c13) 2005; 109
(2023062523335984600_c45) 2004; 393
(2023062523335984600_c46) 2008; 128
(2023062523335984600_c27) 2012; 33
(2023062523335984600_c23) 2009; 113
(2023062523335984600_c21) 2008; 112
(2023062523335984600_c32) 2010; 12
(2023062523335984600_c35) 2007; 111
(2023062523335984600_c28) 2008; 112
(2023062523335984600_c19) 2008; 112
(2023062523335984600_c2) 2005; 436
(2023062523335984600_c49) 1989; 90
(2023062523335984600_c53) 1966; 66
(2023062523335984600_c18) 2007; 104
(2023062523335984600_c44) 1988; 37
(2023062523335984600_c20) 2008; 9
(2023062523335984600_c42) 2000; 112
2023062523335984600_c52
References_xml – volume: 112
  start-page: 9983
  year: 2008
  ident: 2023062523335984600_c19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp803758q
– year: 2010
  ident: 2023062523335984600_c51
– volume: 132
  start-page: 11834
  year: 2010
  ident: 2023062523335984600_c9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102800r
– volume: 128
  start-page: 084106
  year: 2008
  ident: 2023062523335984600_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2834918
– volume: 1
  start-page: 480
  year: 2010
  ident: 2023062523335984600_c30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900276x
– volume: 110
  start-page: 13238
  year: 2006
  ident: 2023062523335984600_c16
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0633897
– volume: 115
  start-page: 1889
  year: 2011
  ident: 2023062523335984600_c36
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp109590t
– volume: 113
  start-page: 12088
  year: 2009
  ident: 2023062523335984600_c29
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905433s
– volume: 90
  start-page: 1007
  year: 1989
  ident: 2023062523335984600_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 66
  start-page: 199
  year: 1966
  ident: 2023062523335984600_c53
  publication-title: Chem. Rev.
  doi: 10.1021/cr60240a004
– volume: 113
  start-page: 3548
  year: 2009
  ident: 2023062523335984600_c24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp809085h
– volume: 123
  start-page: 10370
  year: 2001
  ident: 2023062523335984600_c6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0161453
– volume: 115
  start-page: 6243
  year: 2011
  ident: 2023062523335984600_c34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp200297z
– volume: 127
  start-page: 1820
  year: 2005
  ident: 2023062523335984600_c15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044371h
– volume: 112
  start-page: 5546
  year: 2000
  ident: 2023062523335984600_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481132
– volume: 33
  start-page: 1225
  year: 2012
  ident: 2023062523335984600_c27
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22952
– volume: 3
  start-page: 3090
  year: 2012
  ident: 2023062523335984600_c56
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301312h
– volume: 48
  start-page: 2134
  year: 2012
  ident: 2023062523335984600_c40
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc15775f
– volume: 89
  start-page: 645
  year: 1996
  ident: 2023062523335984600_c41
  publication-title: Mol. Phys.
  doi: 10.1080/002689796173967
– volume: 127
  start-page: 6257
  year: 2005
  ident: 2023062523335984600_c14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044321c
– volume: 103
  start-page: 10196
  year: 2006
  ident: 2023062523335984600_c7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0602663103
– volume: 113
  start-page: 11809
  year: 2009
  ident: 2023062523335984600_c58
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp902944a
– volume: 134
  start-page: 1662
  year: 2012
  ident: 2023062523335984600_c55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208496s
– volume: 436
  start-page: 1141
  year: 2005
  ident: 2023062523335984600_c2
  publication-title: Nature (London)
  doi: 10.1038/nature03933
– volume: 114
  start-page: 8782
  year: 2010
  ident: 2023062523335984600_c31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102067t
– volume: 1
  start-page: 2047
  year: 2010
  ident: 2023062523335984600_c8
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100491x
– volume: 104
  start-page: 9931
  year: 2007
  ident: 2023062523335984600_c18
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0703298104
– volume: 37
  start-page: 785
  year: 1988
  ident: 2023062523335984600_c44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 112
  start-page: 6859
  year: 2008
  ident: 2023062523335984600_c22
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8033402
– volume: 9
  start-page: 2486
  year: 2008
  ident: 2023062523335984600_c20
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800649
– ident: 2023062523335984600_c52
– volume: 115
  start-page: 11544
  year: 2011
  ident: 2023062523335984600_c54
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp206893n
– volume: 104
  start-page: 1977
  year: 2004
  ident: 2023062523335984600_c1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0206770
– volume: 111
  start-page: 8500
  year: 2007
  ident: 2023062523335984600_c17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0723665
– volume: 104
  start-page: 4794
  year: 2007
  ident: 2023062523335984600_c4
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0606757104
– volume: 46
  start-page: 5963
  year: 2010
  ident: 2023062523335984600_c39
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01181a
– volume: 112
  start-page: 8273
  year: 2008
  ident: 2023062523335984600_c21
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp804309x
– volume: 120
  start-page: 215
  year: 2008
  ident: 2023062523335984600_c47
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 112
  start-page: 13308
  year: 2008
  ident: 2023062523335984600_c28
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp803096j
– volume: 115
  start-page: 3263
  year: 2011
  ident: 2023062523335984600_c37
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp112018u
– volume: 107
  start-page: 21453
  year: 2010
  ident: 2023062523335984600_c26
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1014982107
– volume: 109
  start-page: 7538
  year: 2005
  ident: 2023062523335984600_c13
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0513622
– volume: 12
  start-page: 5140
  year: 2010
  ident: 2023062523335984600_c32
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b921568a
– volume: 124
  start-page: 6818
  year: 2002
  ident: 2023062523335984600_c11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0258273
– volume: 38
  start-page: 3098
  year: 1988
  ident: 2023062523335984600_c43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 127
  start-page: 17130
  year: 2005
  ident: 2023062523335984600_c5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054955z
– volume: 1
  start-page: 2239
  year: 2010
  ident: 2023062523335984600_c38
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100729w
– volume: 306
  start-page: 1765
  year: 2004
  ident: 2023062523335984600_c12
  publication-title: Science
  doi: 10.1126/science.1104038
– volume: 54
  start-page: 724
  year: 1971
  ident: 2023062523335984600_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674902
– year: 2009
  ident: 2023062523335984600_c50
– volume: 8
  start-page: 1379
  year: 2009
  ident: 2023062523335984600_c59
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b908552a
– volume: 113
  start-page: 10211
  year: 2009
  ident: 2023062523335984600_c23
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905303g
– volume: 393
  start-page: 51
  year: 2004
  ident: 2023062523335984600_c45
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.06.011
– volume: 111
  start-page: 11880
  year: 2007
  ident: 2023062523335984600_c57
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0765446
– volume: 113
  start-page: 12686
  year: 2009
  ident: 2023062523335984600_c25
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905085x
– volume: 111
  start-page: 5518
  year: 2007
  ident: 2023062523335984600_c35
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0678094
– volume: 1
  start-page: 2025
  year: 2010
  ident: 2023062523335984600_c10
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1004973
– volume: 12
  start-page: 15665
  year: 2010
  ident: 2023062523335984600_c33
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00106f
– volume: 60
  start-page: 217
  year: 2009
  ident: 2023062523335984600_c3
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093719
SSID ssj0001724
Score 2.4264002
Snippet Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 044315
SubjectTerms Direct power generation
Dissipation
Electronic structure
Electronics
Ground state
Intersections
Molecular Structure
Photochemotherapy
Photodynamic therapy
Photosensitizing Agents - chemistry
Quantum Theory
Thymine
Thymine - analogs & derivatives
Thymine - chemistry
Title State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer
URI https://www.ncbi.nlm.nih.gov/pubmed/23387592
https://www.proquest.com/docview/1285464853
https://www.proquest.com/docview/1323232673
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJwQvCMZt3GQQD0iVRxrfEt6mcpkQQ0hsYm_BThxatCYVS5G2d_43x5ek6dQhQJWiynYayeeL_R33nO8g9FxzqY1OKEnziBKWmpIoYQUBFKCFKlGkwuYOH3wU-0fs_TE_Hgy-9qKWlo3ezc835pX8j1WhDexqs2T_wbLdj0IDfAf7whUsDNe_srFjisQmS9qAH0v6fp4R8KLnIUxj5OIYrX6m02seuS3Rp5-79AAXjDWKSTOdWYPNreioS35e1I2NIrJZWtO6qQtftn7kk7XOfOOpDX1vZuchvPf7CnY9kpu3egT-BKUj8JOliyJ4p6pvJ3XYPJ0kpF96vpgZmapZ_0jClocYtynexi-jUZISKXwh0G6dpUkPUKy3akYMaAzfuKADg7JnC7tMwqrtZdt7hl3MnWVj8LMl9zX1Lqhnt11X0FYMjkQ8RFt7rw8-fO52ayBwrFWcEvRl9ySrEh3uXacsl_ghjo8c3kQ3whzjPY-KW2hgqm10bdLW79tGVz_5Kb-Nfq3jBK9wgj1OcF3hHk5wixPc4QS68RpOXmGFO5TgPkpwQAm-gJI76Ojtm8PJPgnlN0hOE9aQmDOlk4jl4OXmIrHE3dJPVfKxASeAp1pqINMaZlWlpmBcmpLJghZMlkwUkt5Fw6quzH2EJRUqhbdfl3CLSISOZJ5GWhhhOOdlsYNetDOc5UGb3pZIOclcjISg2TgLdtlBz7qhCy_IsmnQ09ZMGcy6_Q9MVaZenmZjmzEsGJDUP4yhsf0ICWPueRt3j2ox8eDSnofo-uqdeISGzY-leQzEtdFPAvZ-Axjknhw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-specific+heavy-atom+effect+on+intersystem+crossing+processes+in+2-thiothymine%3A+a+potential+photodynamic+therapy+photosensitizer&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Cui%2C+Ganglong&rft.au=Fang%2C+Wei-hai&rft.date=2013-01-28&rft.eissn=1089-7690&rft.volume=138&rft.issue=4&rft.spage=044315&rft_id=info:doi/10.1063%2F1.4776261&rft_id=info%3Apmid%2F23387592&rft.externalDocID=23387592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon