Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction
We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B ce...
Saved in:
Published in | Journal of virology Vol. 91; no. 23 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the “exhausted,” virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.
IMPORTANCE
We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression. |
---|---|
AbstractList | We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the “exhausted,” virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.
IMPORTANCE
We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression. We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression. We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression. We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression. |
Author | Kuhrt, David Siewe, Basile Haret-Richter, George S. Pandrea, Ivona Brocca-Cofano, Egidio Xu, Cuiling Landay, Alan Montefiori, David C. Labranche, Celia Craigo, Jodi Apetrei, Cristian |
Author_xml | – sequence: 1 givenname: Egidio surname: Brocca-Cofano fullname: Brocca-Cofano, Egidio organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 2 givenname: David surname: Kuhrt fullname: Kuhrt, David organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 3 givenname: Basile surname: Siewe fullname: Siewe, Basile organization: Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, USA – sequence: 4 givenname: Cuiling surname: Xu fullname: Xu, Cuiling organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 5 givenname: George S. surname: Haret-Richter fullname: Haret-Richter, George S. organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 6 givenname: Jodi surname: Craigo fullname: Craigo, Jodi organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 7 givenname: Celia surname: Labranche fullname: Labranche, Celia organization: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA – sequence: 8 givenname: David C. surname: Montefiori fullname: Montefiori, David C. organization: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA – sequence: 9 givenname: Alan surname: Landay fullname: Landay, Alan organization: Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, USA – sequence: 10 givenname: Cristian surname: Apetrei fullname: Apetrei, Cristian organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 11 givenname: Ivona surname: Pandrea fullname: Pandrea, Ivona organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28931679$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctP3DAQxq0KVBbaG-cqxx4a8PgV51KJLq9FSK1UinqzvI4NrhJ7sROk_e8xTxXEZeYwv_k-zXzbaCPEYBHaBbwHQOT-2eViDwPmUEPzAc0At7LmHNgGmmFMSM2p_LuFtnP-hzEwJthHtEVkS0E07Qxd_NLjdbyywZtqHlOyvR5trqKrfvvB61AthmEKsbPOG2-DWVeXPk25Psg5Gl_YrvpRzW3fV4fr7KZgRh_DJ7TpdJ_t56e-g_4cH13MT-vznyeL-cF5bahkY01AOA2sHEExa1nrltQaRkpl2HTS0qVhzElsWydkt2S0dbzpuHDCEUMxpjvo-6PualoOtjM2jEn3apX8oNNaRe3V60nw1-oq3ioupGg4FIGvTwIp3kw2j2rw2ZRrdLBxygpaBpQL0tCCfvnf68Xk-ZUFII-ASTHnZJ0yftT37yjWvleA1X1equSlHvJS0JSlb2-WnnXfxe8AIPuXRg |
CitedBy_id | crossref_primary_10_1038_s42003_022_03619_y crossref_primary_10_3389_fimmu_2020_579158 crossref_primary_10_3390_v16060972 crossref_primary_10_1371_journal_ppat_1009575 crossref_primary_10_1371_journal_ppat_1008333 crossref_primary_10_3389_fmicb_2020_00357 crossref_primary_10_1186_s12977_018_0406_5 crossref_primary_10_3389_fimmu_2021_670966 crossref_primary_10_1016_j_isci_2021_103109 crossref_primary_10_3389_fviro_2021_795373 |
Cites_doi | 10.1128/JVI.03785-13 10.1128/JVI.79.13.8131-8141.2005 10.1097/QAD.0b013e32835edc47 10.1128/JVI.80.10.4858-4867.2006 10.1101/cshperspect.a007039 10.1126/science.1217550 10.1146/annurev-immunol-031210-101400 10.4049/jimmunol.1103138 10.1172/JCI81400 10.1128/JVI.02028-07 10.1007/s11904-009-0034-8 10.1006/clim.2001.5054 10.1182/blood-2005-11-013383 10.1186/1742-4690-7-42 10.1098/rstb.2012.0496 10.2174/1570162X13666150724095339 10.1128/JVI.00444-09 10.1371/journal.pone.0005966 10.1586/14760584.5.4.579 10.1128/JVI.02402-07 10.1038/nature17677 10.1186/1742-4690-6-91 10.1128/jvi.71.7.5069-5079.1997 10.1016/j.immuni.2013.10.001 10.1086/589862 10.1016/j.clim.2014.04.017 10.1016/j.immuni.2010.06.004 10.1182/blood-2005-12-4897 10.1016/j.virol.2003.08.015 10.1038/nri3190 10.1128/jvi.69.5.2737-2744.1995 10.1128/JVI.00332-11 10.1089/088922201750290050 10.1056/NEJMoa0908492 10.1128/JVI.80.6.2771-2783.2006 10.1038/nm1492 10.1097/QAI.0b013e31829f6e1a 10.1172/JCI44876 10.1086/655970 10.1172/JCI64314 10.1016/j.vaccine.2013.12.014 10.2174/1570162043485068 10.1038/nri2524 10.1182/blood-2010-07-294249 10.1097/01.aids.0000191231.54170.89 10.1172/JCI44872 10.1128/JVI.74.3.1209-1223.2000 10.1128/JVI.02173-08 10.1128/JVI.03606-13 10.1097/COH.0b013e3280ef691e 10.1128/CMR.00009-06 10.3390/v5122963 10.1093/infdis/jiq118 10.4049/jimmunol.181.10.6687 10.1086/597476 10.1007/978-1-4419-5632-3_12 10.1128/JVI.77.3.2165-2173.2003 10.4049/jimmunol.178.12.7779 10.1002/0471142735.im1213s100 10.1128/JVI.01966-09 10.1056/NEJM198308253090803 10.1172/JCI59266 10.4049/jimmunol.1103139 10.2174/1566524033479799 10.1111/j.1365-2567.2009.03173.x 10.1038/nm.1970 10.1007/s10875-010-9456-8 10.1158/0008-5472.CAN-05-3766 10.1111/imr.12066 10.1128/JVI.79.5.2666-2677.2005 10.1038/nature21435 10.1089/088922204773004941 10.1038/nm.1894 10.1182/blood-2010-12-325936 10.1111/imr.12067 10.1128/IAI.67.5.2366-2370.1999 10.1182/blood-2008-05-159301 10.1172/JCI43271 10.1189/jlb.0912436 10.1084/jem.188.2.233 10.4049/jimmunol.180.10.6798 10.1016/j.it.2008.05.004 10.1172/JCI63039 10.1371/journal.ppat.1003011 10.1172/JCI59211 10.1128/JVI.07141-11 10.1371/journal.ppat.1003600 10.1084/jem.20072683 10.1038/ni1566 10.4049/jimmunol.179.5.3035 10.1146/annurev.med.60.041807.123753 10.1084/jem.20121932 10.1111/imr.12079 10.1002/eji.201040673 10.1128/JVI.00880-09 10.1038/nm1511 10.1038/leu.2012.165 10.1016/j.immuni.2009.11.009 10.1073/pnas.0601554103 10.1097/00002030-200105250-00003 10.4049/jimmunol.178.12.8212 10.1172/JCI33034 10.1126/science.1193550 10.1111/imr.12510 10.4049/jimmunol.180.6.3882 10.1086/314660 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Society for Microbiology. Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. – notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/JVI.01051-17 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | B Cells in Pathogenic and Nonpathogenic SIV Infections |
EISSN | 1098-5514 |
ExternalDocumentID | PMC5686751 28931679 10_1128_JVI_01051_17 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL117715 – fundername: NCRR NIH HHS grantid: R01 RR025781 – fundername: NIAID NIH HHS grantid: R01 AI119346 – fundername: NHLBI NIH HHS grantid: R01 HL123096 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01 AI119346 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: RO1 HL117715 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: R01 HL123096 – fundername: HHS | NIH | National Center for Research Resources (NCRR) grantid: R01 RR025781 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM RHF UCJ 7X8 5PM |
ID | FETCH-LOGICAL-c384t-216fa14128304949fb3ec42b3e40cd8e3bc44f80e9f68db439f57d56f6f2c3003 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:20:16 EDT 2025 Fri Jul 11 15:42:08 EDT 2025 Wed Feb 19 02:44:27 EST 2025 Tue Jul 01 01:02:52 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | nonpathogenic infection simian immunodeficiency virus B cell follicular T helper cells immune activation pathogenic infection humoral immune response |
Language | English |
License | Copyright © 2017 American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-216fa14128304949fb3ec42b3e40cd8e3bc44f80e9f68db439f57d56f6f2c3003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Brocca-Cofano E, Kuhrt D, Siewe B, Xu C, Haret-Richter GS, Craigo J, Labranche C, Montefiori DC, Landay A, Apetrei C, Pandrea I. 2017. Pathogenic correlates of simian immunodeficiency virus-associated B cell dysfunction. J Virol 91:e01051-17. https://doi.org/10.1128/JVI.01051-17. |
OpenAccessLink | https://jvi.asm.org/content/jvi/91/23/e01051-17.full.pdf |
PMID | 28931679 |
PQID | 1941356273 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686751 proquest_miscellaneous_1941356273 pubmed_primary_28931679 crossref_citationtrail_10_1128_JVI_01051_17 crossref_primary_10_1128_JVI_01051_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 Montefiori DC (e_1_3_2_112_2) 2005 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 Douek DC (e_1_3_2_13_2) 2003; 5 e_1_3_2_50_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 Bosinger SE (e_1_3_2_11_2) 2009; 119 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 US Animal and Plant Health Inspection Service (e_1_3_2_108_2) 2005 e_1_3_2_111_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 National Research Council (e_1_3_2_107_2) 2011 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 Jacquelin B (e_1_3_2_16_2) 2009; 119 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 Macatangay BJ (e_1_3_2_48_2) 2009; 5 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_72_2 16645169 - Blood. 2006 Sep 1;108(5):1580-7 20425055 - Curr HIV/AIDS Rep. 2010 Feb;7(1):28-36 19959873 - J Clin Invest. 2009 Dec;119(12):3544-55 16501086 - J Virol. 2006 Mar;80(6):2771-83 19493994 - J Virol. 2009 Aug;83(16):7894-908 22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039 27120156 - Nature. 2016 May 5;533(7601):105-109 17041142 - Clin Microbiol Rev. 2006 Oct;19(4):728-62 10068581 - J Infect Dis. 1999 Apr;179(4):859-70 18453600 - J Immunol. 2008 May 15;180(10):6798-807 24316675 - Viruses. 2013 Dec 02;5(12):2963-76 18676179 - Trends Immunol. 2008 Sep;29(9):419-28 23772616 - Immunol Rev. 2013 Jul;254(1):78-101 18664624 - Blood. 2008 Oct 1;112(7):2826-35 20079667 - Immunity. 2010 Jan 29;32(1):129-40 19959874 - J Clin Invest. 2009 Dec;119(12):3556-72 22387550 - J Immunol. 2012 Apr 1;188(7):3247-56 23797688 - J Acquir Immune Defic Syndr. 2013 Dec 1;64(4):325-31 19525963 - Nat Med. 2009 Aug;15(8):879-85 17115046 - Nat Med. 2006 Dec;12(12):1365-71 14598566 - AIDS Rev. 2003 Jul-Sep;5(3):172-7 24814239 - Clin Immunol. 2014 Aug;153(2):264-76 23254284 - J Exp Med. 2013 Jan 14;210(1):143-56 18234792 - J Virol. 2008 Apr;82(8):4052-63 12699358 - Curr Mol Med. 2003 May;3(3):209-16 23772614 - Immunol Rev. 2013 Jul;254(1):54-64 23938749 - Philos Trans R Soc Lond B Biol Sci. 2013 Aug 12;368(1626):20120496 21715501 - J Virol. 2011 Sep;85(17):8702-8 21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90 18216122 - J Virol. 2008 Apr;82(7):3713-24 16885377 - Cancer Res. 2006 Aug 1;66(15):7741-7 21842371 - Adv Exp Med Biol. 2011;780:143-59 10627531 - J Virol. 2000 Feb;74(3):1209-23 18322196 - J Immunol. 2008 Mar 15;180(6):3882-8 9670036 - J Exp Med. 1998 Jul 20;188(2):233-45 19372883 - Curr Opin HIV AIDS. 2007 May;2(3):169-76 9188572 - J Virol. 1997 Jul;71(7):5069-79 23349627 - PLoS Pathog. 2013 Jan;9(1):e1003011 14675630 - Virology. 2003 Dec 5;317(1):119-27 24374153 - Vaccine. 2014 Feb 7;32(7):872-80 20809522 - Eur J Immunol. 2010 Oct;40(10):2686-91 19630581 - Annu Rev Med. 2009;60:485-95 23772622 - Immunol Rev. 2013 Jul;254(1):207-24 21505193 - Blood. 2011 Jul 28;118(4):847-54 16989638 - Expert Rev Vaccines. 2006 Aug;5(4):579-95 23434518 - J Leukoc Biol. 2013 May;93(5):811-8 20847261 - Science. 2010 Sep 17;329(5998):1487 18432938 - Curr Protoc Immunol. 2005 Jan;Chapter 12:Unit 12.11 22403383 - Science. 2012 Mar 9;335(6073):1188-93 20962324 - Blood. 2011 Jan 13;117(2):530-41 21314428 - Annu Rev Immunol. 2011;29:621-63 15956558 - J Virol. 2005 Jul;79(13):8131-41 18264102 - Nat Immunol. 2008 Mar;9(3):301-9 19543531 - PLoS One. 2009 Jun 19;4(6):e5966 15708986 - J Virol. 2005 Mar;79(5):2666-77 20972328 - J Clin Invest. 2010 Nov;120(11):3810-3 23392635 - Curr Protoc Immunol. 2013 Feb;Chapter 12:Unit 12.13. 19656874 - J Virol. 2009 Oct;83(20):10347-57 22972930 - J Immunol. 2012 Oct 15;189(8):3925-35 22713648 - Leukemia. 2013 Jan;27(1):170-82 19224993 - J Virol. 2009 May;83(9):4102-11 11461679 - AIDS Res Hum Retroviruses. 2001 Jul 1;17(10):937-52 20032183 - J Virol. 2010 Mar;84(5):2466-76 20821041 - J Clin Immunol. 2011 Feb;31(1):89-98 22421786 - Nat Rev Immunol. 2012 Mar 16;12(4):282-94 26551680 - J Clin Invest. 2015 Dec;125(12):4497-513 28289286 - Nature. 2017 Mar 23;543(7646):559-563 21926463 - J Clin Invest. 2011 Oct;121(10 ):3877-88 18558875 - Clin Infect Dis. 2008 Aug 1;47(3):401-9 20620940 - Immunity. 2010 Jun 25;32(6):737-42 28133809 - Immunol Rev. 2017 Jan;275(1):271-284 11399977 - AIDS. 2001 May 25;15(8):957-64 21317533 - J Clin Invest. 2011 Mar;121(3):1102-10 15053337 - Curr HIV Res. 2004 Jan;2(1):11-21 10225896 - Infect Immun. 1999 May;67(5):2366-70 7707496 - J Virol. 1995 May;69(5):2737-44 19079256 - Nat Med. 2009 Jan;15(1):34-41 23343911 - AIDS. 2013 May 15;27(8):1209-17 17548615 - J Immunol. 2007 Jun 15;178(12 ):7779-86 17548660 - J Immunol. 2007 Jun 15;178(12):8212-20 24098110 - PLoS Pathog. 2013;9(10):e1003600 15018710 - AIDS Res Hum Retroviruses. 2004 Feb;20(2):219-26 11465955 - Clin Immunol. 2001 Aug;100(2):250-9 16260900 - AIDS. 2005 Nov 18;19(17):1947-55 19319142 - Nat Rev Immunol. 2009 Apr;9(4):235-45 20490361 - Cellscience. 2009 Apr 27;5(4):61-65 19832988 - Retrovirology. 2009 Oct 15;6:91 24138880 - Immunity. 2013 Oct 17;39(4):633-45 12525651 - J Virol. 2003 Feb;77(3):2165-73 16632602 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7048-53 20887227 - J Infect Dis. 2010 Nov 1;202 Suppl 3:S371-6 17975656 - J Clin Invest. 2007 Nov;117(11):3148-54 22019587 - J Clin Invest. 2011 Nov;121(11):4268-80 22922258 - J Clin Invest. 2012 Sep;122(9):3281-94 18981083 - J Immunol. 2008 Nov 15;181(10):6687-91 20067531 - Immunology. 2009 Nov;128(3):311-23 20459829 - Retrovirology. 2010 May 11;7:42 18625747 - J Exp Med. 2008 Aug 4;205(8):1797-805 24623416 - J Virol. 2014 May;88(10):5687-705 17709518 - J Immunol. 2007 Sep 1;179(5):3035-46 17041596 - Nat Med. 2006 Nov;12(11):1301-9 22922259 - J Clin Invest. 2012 Sep;122(9):3271-80 20972331 - J Clin Invest. 2010 Nov;120(11):3878-90 26206458 - Curr HIV Res. 2015;13(6):462-78 22318138 - J Virol. 2012 Apr;86(8):4158-68 6224088 - N Engl J Med. 1983 Aug 25;309(8):453-8 16522814 - Blood. 2006 Jul 1;108(1):209-17 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20 24696477 - J Virol. 2014 Jun;88(12):6778-92 16641277 - J Virol. 2006 May;80(10):4858-67 19265479 - J Infect Dis. 2009 Apr 15;199(8):1177-85 |
References_xml | – ident: e_1_3_2_110_2 doi: 10.1128/JVI.03785-13 – ident: e_1_3_2_8_2 doi: 10.1128/JVI.79.13.8131-8141.2005 – ident: e_1_3_2_83_2 doi: 10.1097/QAD.0b013e32835edc47 – volume-title: Guide for the care and use of laboratory animals year: 2011 ident: e_1_3_2_107_2 – ident: e_1_3_2_109_2 doi: 10.1128/JVI.80.10.4858-4867.2006 – ident: e_1_3_2_38_2 doi: 10.1101/cshperspect.a007039 – ident: e_1_3_2_62_2 doi: 10.1126/science.1217550 – ident: e_1_3_2_65_2 doi: 10.1146/annurev-immunol-031210-101400 – ident: e_1_3_2_52_2 doi: 10.4049/jimmunol.1103138 – ident: e_1_3_2_53_2 doi: 10.1172/JCI81400 – ident: e_1_3_2_105_2 doi: 10.1128/JVI.02028-07 – ident: e_1_3_2_2_2 doi: 10.1007/s11904-009-0034-8 – ident: e_1_3_2_81_2 doi: 10.1006/clim.2001.5054 – ident: e_1_3_2_78_2 doi: 10.1182/blood-2005-11-013383 – ident: e_1_3_2_7_2 doi: 10.1186/1742-4690-7-42 – ident: e_1_3_2_27_2 doi: 10.1098/rstb.2012.0496 – ident: e_1_3_2_50_2 doi: 10.2174/1570162X13666150724095339 – ident: e_1_3_2_111_2 doi: 10.1128/JVI.00444-09 – ident: e_1_3_2_46_2 doi: 10.1371/journal.pone.0005966 – ident: e_1_3_2_67_2 doi: 10.1586/14760584.5.4.579 – ident: e_1_3_2_26_2 doi: 10.1128/JVI.02402-07 – ident: e_1_3_2_39_2 doi: 10.1038/nature17677 – ident: e_1_3_2_47_2 doi: 10.1186/1742-4690-6-91 – ident: e_1_3_2_113_2 doi: 10.1128/jvi.71.7.5069-5079.1997 – ident: e_1_3_2_89_2 doi: 10.1016/j.immuni.2013.10.001 – ident: e_1_3_2_70_2 doi: 10.1086/589862 – volume: 119 start-page: 3556 year: 2009 ident: e_1_3_2_11_2 article-title: Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys publication-title: J Clin Invest – ident: e_1_3_2_49_2 doi: 10.1016/j.clim.2014.04.017 – ident: e_1_3_2_33_2 doi: 10.1016/j.immuni.2010.06.004 – ident: e_1_3_2_9_2 doi: 10.1182/blood-2005-12-4897 – ident: e_1_3_2_18_2 doi: 10.1016/j.virol.2003.08.015 – volume: 5 start-page: 61 year: 2009 ident: e_1_3_2_48_2 article-title: PD-1 blockade: a promising immunotherapy for HIV? publication-title: Cellscience – ident: e_1_3_2_94_2 doi: 10.1038/nri3190 – ident: e_1_3_2_114_2 doi: 10.1128/jvi.69.5.2737-2744.1995 – ident: e_1_3_2_22_2 doi: 10.1128/JVI.00332-11 – ident: e_1_3_2_66_2 doi: 10.1089/088922201750290050 – ident: e_1_3_2_72_2 doi: 10.1056/NEJMoa0908492 – ident: e_1_3_2_10_2 doi: 10.1128/JVI.80.6.2771-2783.2006 – ident: e_1_3_2_85_2 doi: 10.1038/nm1492 – ident: e_1_3_2_87_2 doi: 10.1097/QAI.0b013e31829f6e1a – ident: e_1_3_2_23_2 doi: 10.1172/JCI44876 – ident: e_1_3_2_21_2 doi: 10.1086/655970 – ident: e_1_3_2_98_2 doi: 10.1172/JCI64314 – ident: e_1_3_2_51_2 doi: 10.1016/j.vaccine.2013.12.014 – ident: e_1_3_2_41_2 doi: 10.2174/1570162043485068 – ident: e_1_3_2_73_2 doi: 10.1038/nri2524 – ident: e_1_3_2_56_2 doi: 10.1182/blood-2010-07-294249 – ident: e_1_3_2_77_2 doi: 10.1097/01.aids.0000191231.54170.89 – ident: e_1_3_2_44_2 doi: 10.1172/JCI44872 – ident: e_1_3_2_12_2 doi: 10.1128/JVI.74.3.1209-1223.2000 – ident: e_1_3_2_103_2 doi: 10.1128/JVI.02173-08 – ident: e_1_3_2_17_2 doi: 10.1128/JVI.03606-13 – ident: e_1_3_2_69_2 doi: 10.1097/COH.0b013e3280ef691e – ident: e_1_3_2_4_2 doi: 10.1128/CMR.00009-06 – volume: 119 start-page: 3544 year: 2009 ident: e_1_3_2_16_2 article-title: Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response publication-title: J Clin Invest – ident: e_1_3_2_106_2 doi: 10.3390/v5122963 – ident: e_1_3_2_32_2 doi: 10.1093/infdis/jiq118 – ident: e_1_3_2_90_2 doi: 10.4049/jimmunol.181.10.6687 – ident: e_1_3_2_96_2 doi: 10.1086/597476 – ident: e_1_3_2_36_2 doi: 10.1007/978-1-4419-5632-3_12 – ident: e_1_3_2_100_2 doi: 10.1128/JVI.77.3.2165-2173.2003 – ident: e_1_3_2_93_2 doi: 10.4049/jimmunol.178.12.7779 – ident: e_1_3_2_45_2 doi: 10.1002/0471142735.im1213s100 – ident: e_1_3_2_79_2 doi: 10.1128/JVI.01966-09 – ident: e_1_3_2_42_2 doi: 10.1056/NEJM198308253090803 – year: 2005 ident: e_1_3_2_112_2 article-title: Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays publication-title: Curr Protoc Immunol – ident: e_1_3_2_60_2 doi: 10.1172/JCI59266 – ident: e_1_3_2_58_2 doi: 10.4049/jimmunol.1103139 – ident: e_1_3_2_68_2 doi: 10.2174/1566524033479799 – ident: e_1_3_2_64_2 doi: 10.1111/j.1365-2567.2009.03173.x – ident: e_1_3_2_20_2 doi: 10.1038/nm.1970 – ident: e_1_3_2_91_2 doi: 10.1007/s10875-010-9456-8 – ident: e_1_3_2_61_2 doi: 10.1158/0008-5472.CAN-05-3766 – ident: e_1_3_2_63_2 doi: 10.1111/imr.12066 – ident: e_1_3_2_104_2 doi: 10.1128/JVI.79.5.2666-2677.2005 – ident: e_1_3_2_40_2 doi: 10.1038/nature21435 – ident: e_1_3_2_80_2 doi: 10.1089/088922204773004941 – ident: e_1_3_2_102_2 doi: 10.1038/nm.1894 – ident: e_1_3_2_34_2 doi: 10.1182/blood-2010-12-325936 – ident: e_1_3_2_82_2 doi: 10.1111/imr.12067 – ident: e_1_3_2_101_2 doi: 10.1128/IAI.67.5.2366-2370.1999 – ident: e_1_3_2_30_2 doi: 10.1182/blood-2008-05-159301 – ident: e_1_3_2_43_2 doi: 10.1172/JCI43271 – ident: e_1_3_2_54_2 doi: 10.1189/jlb.0912436 – ident: e_1_3_2_75_2 doi: 10.1084/jem.188.2.233 – ident: e_1_3_2_14_2 doi: 10.4049/jimmunol.180.10.6798 – ident: e_1_3_2_3_2 doi: 10.1016/j.it.2008.05.004 – ident: e_1_3_2_99_2 doi: 10.1172/JCI63039 – ident: e_1_3_2_28_2 doi: 10.1371/journal.ppat.1003011 – ident: e_1_3_2_88_2 doi: 10.1172/JCI59211 – volume: 5 start-page: 172 year: 2003 ident: e_1_3_2_13_2 article-title: Disrupting T-cell homeostasis: how HIV-1 infection causes disease publication-title: AIDS Rev – ident: e_1_3_2_25_2 doi: 10.1128/JVI.07141-11 – ident: e_1_3_2_37_2 doi: 10.1371/journal.ppat.1003600 – ident: e_1_3_2_84_2 doi: 10.1084/jem.20072683 – ident: e_1_3_2_86_2 doi: 10.1038/ni1566 – ident: e_1_3_2_19_2 doi: 10.4049/jimmunol.179.5.3035 – ident: e_1_3_2_35_2 doi: 10.1146/annurev.med.60.041807.123753 – ident: e_1_3_2_97_2 doi: 10.1084/jem.20121932 – ident: e_1_3_2_24_2 doi: 10.1111/imr.12079 – ident: e_1_3_2_55_2 doi: 10.1002/eji.201040673 – ident: e_1_3_2_6_2 doi: 10.1128/JVI.00880-09 – ident: e_1_3_2_31_2 doi: 10.1038/nm1511 – ident: e_1_3_2_59_2 doi: 10.1038/leu.2012.165 – ident: e_1_3_2_57_2 doi: 10.1016/j.immuni.2009.11.009 – ident: e_1_3_2_92_2 doi: 10.1073/pnas.0601554103 – ident: e_1_3_2_76_2 doi: 10.1097/00002030-200105250-00003 – ident: e_1_3_2_74_2 doi: 10.4049/jimmunol.178.12.8212 – ident: e_1_3_2_5_2 doi: 10.1172/JCI33034 – ident: e_1_3_2_29_2 doi: 10.1126/science.1193550 – ident: e_1_3_2_71_2 doi: 10.1111/imr.12510 – volume-title: Animal Welfare Act and animal welfare regulations year: 2005 ident: e_1_3_2_108_2 – ident: e_1_3_2_95_2 doi: 10.4049/jimmunol.180.6.3882 – ident: e_1_3_2_15_2 doi: 10.1086/314660 – reference: 16645169 - Blood. 2006 Sep 1;108(5):1580-7 – reference: 18264102 - Nat Immunol. 2008 Mar;9(3):301-9 – reference: 18625747 - J Exp Med. 2008 Aug 4;205(8):1797-805 – reference: 16260900 - AIDS. 2005 Nov 18;19(17):1947-55 – reference: 28133809 - Immunol Rev. 2017 Jan;275(1):271-284 – reference: 24138880 - Immunity. 2013 Oct 17;39(4):633-45 – reference: 17041596 - Nat Med. 2006 Nov;12(11):1301-9 – reference: 19832988 - Retrovirology. 2009 Oct 15;6:91 – reference: 20972328 - J Clin Invest. 2010 Nov;120(11):3810-3 – reference: 20425055 - Curr HIV/AIDS Rep. 2010 Feb;7(1):28-36 – reference: 11399977 - AIDS. 2001 May 25;15(8):957-64 – reference: 21842371 - Adv Exp Med Biol. 2011;780:143-59 – reference: 26551680 - J Clin Invest. 2015 Dec;125(12):4497-513 – reference: 10225896 - Infect Immun. 1999 May;67(5):2366-70 – reference: 16641277 - J Virol. 2006 May;80(10):4858-67 – reference: 23343911 - AIDS. 2013 May 15;27(8):1209-17 – reference: 18558875 - Clin Infect Dis. 2008 Aug 1;47(3):401-9 – reference: 15018710 - AIDS Res Hum Retroviruses. 2004 Feb;20(2):219-26 – reference: 12525651 - J Virol. 2003 Feb;77(3):2165-73 – reference: 7707496 - J Virol. 1995 May;69(5):2737-44 – reference: 20490361 - Cellscience. 2009 Apr 27;5(4):61-65 – reference: 20079667 - Immunity. 2010 Jan 29;32(1):129-40 – reference: 24098110 - PLoS Pathog. 2013;9(10):e1003600 – reference: 14675630 - Virology. 2003 Dec 5;317(1):119-27 – reference: 18234792 - J Virol. 2008 Apr;82(8):4052-63 – reference: 19265479 - J Infect Dis. 2009 Apr 15;199(8):1177-85 – reference: 17548660 - J Immunol. 2007 Jun 15;178(12):8212-20 – reference: 18322196 - J Immunol. 2008 Mar 15;180(6):3882-8 – reference: 23938749 - Philos Trans R Soc Lond B Biol Sci. 2013 Aug 12;368(1626):20120496 – reference: 19224993 - J Virol. 2009 May;83(9):4102-11 – reference: 17041142 - Clin Microbiol Rev. 2006 Oct;19(4):728-62 – reference: 18216122 - J Virol. 2008 Apr;82(7):3713-24 – reference: 19543531 - PLoS One. 2009 Jun 19;4(6):e5966 – reference: 21317533 - J Clin Invest. 2011 Mar;121(3):1102-10 – reference: 21314428 - Annu Rev Immunol. 2011;29:621-63 – reference: 21505193 - Blood. 2011 Jul 28;118(4):847-54 – reference: 17709518 - J Immunol. 2007 Sep 1;179(5):3035-46 – reference: 20459829 - Retrovirology. 2010 May 11;7:42 – reference: 19493994 - J Virol. 2009 Aug;83(16):7894-908 – reference: 26206458 - Curr HIV Res. 2015;13(6):462-78 – reference: 20067531 - Immunology. 2009 Nov;128(3):311-23 – reference: 6224088 - N Engl J Med. 1983 Aug 25;309(8):453-8 – reference: 23772614 - Immunol Rev. 2013 Jul;254(1):54-64 – reference: 24316675 - Viruses. 2013 Dec 02;5(12):2963-76 – reference: 23772622 - Immunol Rev. 2013 Jul;254(1):207-24 – reference: 22387550 - J Immunol. 2012 Apr 1;188(7):3247-56 – reference: 20032183 - J Virol. 2010 Mar;84(5):2466-76 – reference: 22318138 - J Virol. 2012 Apr;86(8):4158-68 – reference: 23434518 - J Leukoc Biol. 2013 May;93(5):811-8 – reference: 18981083 - J Immunol. 2008 Nov 15;181(10):6687-91 – reference: 20847261 - Science. 2010 Sep 17;329(5998):1487 – reference: 19959873 - J Clin Invest. 2009 Dec;119(12):3544-55 – reference: 22421786 - Nat Rev Immunol. 2012 Mar 16;12(4):282-94 – reference: 23772616 - Immunol Rev. 2013 Jul;254(1):78-101 – reference: 18453600 - J Immunol. 2008 May 15;180(10):6798-807 – reference: 19525963 - Nat Med. 2009 Aug;15(8):879-85 – reference: 11465955 - Clin Immunol. 2001 Aug;100(2):250-9 – reference: 11461679 - AIDS Res Hum Retroviruses. 2001 Jul 1;17(10):937-52 – reference: 22972930 - J Immunol. 2012 Oct 15;189(8):3925-35 – reference: 24696477 - J Virol. 2014 Jun;88(12):6778-92 – reference: 18676179 - Trends Immunol. 2008 Sep;29(9):419-28 – reference: 21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90 – reference: 10627531 - J Virol. 2000 Feb;74(3):1209-23 – reference: 21715501 - J Virol. 2011 Sep;85(17):8702-8 – reference: 21926463 - J Clin Invest. 2011 Oct;121(10 ):3877-88 – reference: 24623416 - J Virol. 2014 May;88(10):5687-705 – reference: 19656874 - J Virol. 2009 Oct;83(20):10347-57 – reference: 18432938 - Curr Protoc Immunol. 2005 Jan;Chapter 12:Unit 12.11 – reference: 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20 – reference: 17548615 - J Immunol. 2007 Jun 15;178(12 ):7779-86 – reference: 9670036 - J Exp Med. 1998 Jul 20;188(2):233-45 – reference: 23254284 - J Exp Med. 2013 Jan 14;210(1):143-56 – reference: 10068581 - J Infect Dis. 1999 Apr;179(4):859-70 – reference: 24814239 - Clin Immunol. 2014 Aug;153(2):264-76 – reference: 20620940 - Immunity. 2010 Jun 25;32(6):737-42 – reference: 20809522 - Eur J Immunol. 2010 Oct;40(10):2686-91 – reference: 22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039 – reference: 17975656 - J Clin Invest. 2007 Nov;117(11):3148-54 – reference: 23797688 - J Acquir Immune Defic Syndr. 2013 Dec 1;64(4):325-31 – reference: 9188572 - J Virol. 1997 Jul;71(7):5069-79 – reference: 16885377 - Cancer Res. 2006 Aug 1;66(15):7741-7 – reference: 22019587 - J Clin Invest. 2011 Nov;121(11):4268-80 – reference: 18664624 - Blood. 2008 Oct 1;112(7):2826-35 – reference: 22922259 - J Clin Invest. 2012 Sep;122(9):3271-80 – reference: 17115046 - Nat Med. 2006 Dec;12(12):1365-71 – reference: 19079256 - Nat Med. 2009 Jan;15(1):34-41 – reference: 20972331 - J Clin Invest. 2010 Nov;120(11):3878-90 – reference: 15956558 - J Virol. 2005 Jul;79(13):8131-41 – reference: 20821041 - J Clin Immunol. 2011 Feb;31(1):89-98 – reference: 27120156 - Nature. 2016 May 5;533(7601):105-109 – reference: 15708986 - J Virol. 2005 Mar;79(5):2666-77 – reference: 16632602 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7048-53 – reference: 28289286 - Nature. 2017 Mar 23;543(7646):559-563 – reference: 23349627 - PLoS Pathog. 2013 Jan;9(1):e1003011 – reference: 20887227 - J Infect Dis. 2010 Nov 1;202 Suppl 3:S371-6 – reference: 19319142 - Nat Rev Immunol. 2009 Apr;9(4):235-45 – reference: 15053337 - Curr HIV Res. 2004 Jan;2(1):11-21 – reference: 12699358 - Curr Mol Med. 2003 May;3(3):209-16 – reference: 16989638 - Expert Rev Vaccines. 2006 Aug;5(4):579-95 – reference: 14598566 - AIDS Rev. 2003 Jul-Sep;5(3):172-7 – reference: 16522814 - Blood. 2006 Jul 1;108(1):209-17 – reference: 22922258 - J Clin Invest. 2012 Sep;122(9):3281-94 – reference: 20962324 - Blood. 2011 Jan 13;117(2):530-41 – reference: 24374153 - Vaccine. 2014 Feb 7;32(7):872-80 – reference: 19372883 - Curr Opin HIV AIDS. 2007 May;2(3):169-76 – reference: 23392635 - Curr Protoc Immunol. 2013 Feb;Chapter 12:Unit 12.13. – reference: 22403383 - Science. 2012 Mar 9;335(6073):1188-93 – reference: 22713648 - Leukemia. 2013 Jan;27(1):170-82 – reference: 16501086 - J Virol. 2006 Mar;80(6):2771-83 – reference: 19959874 - J Clin Invest. 2009 Dec;119(12):3556-72 – reference: 19630581 - Annu Rev Med. 2009;60:485-95 |
SSID | ssj0014464 |
Score | 2.3196907 |
Snippet | We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Antibodies, Neutralizing - blood Antibodies, Viral - biosynthesis Antibodies, Viral - blood B-Lymphocyte Subsets - immunology B-Lymphocyte Subsets - physiology B-Lymphocytes, Regulatory - immunology B-Lymphocytes, Regulatory - physiology Cercopithecus aethiops Disease Progression Epitopes - chemistry Epitopes - immunology HIV Infections - virology Humans Immunity, Humoral Immunologic Memory Interleukin-10 - blood Lymphocyte Count Macaca nemestrina Pathogenesis and Immunity Simian Acquired Immunodeficiency Syndrome - immunology Simian Acquired Immunodeficiency Syndrome - virology Simian Immunodeficiency Virus - immunology Simian Immunodeficiency Virus - metabolism Simian Immunodeficiency Virus - pathogenicity T-Lymphocytes, Helper-Inducer - immunology |
Title | Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28931679 https://www.proquest.com/docview/1941356273 https://pubmed.ncbi.nlm.nih.gov/PMC5686751 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvY_dll6LB9hTcxbasyA97WNOWtrAxaFryZixZWg2pXZKY0f36nSP5lqSFbS8iWIoN-o6kcyR93yHko-AiHfmAAKyeqcdUrL10lHFvrDORGRRUt5nnvn3nx-fsdBbNuvydll2yknvq9628kv9BFZ4BrsiS_Qdk25fCA_gN-EIJCEP5Vxj_APethNpcwbheWFqK05A9y69w4J4g-aPMNKpEWIrlRb6oll4DCfia-8MJbt4d3CxxgWtB2vZWkQ7X34CH8B1Q8SalSW3y7uHhzzxzd7rcydCl4wL17sxXX85y_Uu7U45lPm9NalY5cc983qyj9TYELG3dlQ7tpk5UJkX_qz-3ukxctQ05YvH2nB0gD-H04mQPs3X6nuNy9uC7vrL4QWiItP24W7na-4RN1X3yIIBwIWh2berTJAh5WUN6CMTn_qdQDLr-87pnshVubN6a7bkh0yfkcY0I_eqM4Sm5p4tn5KHLKHrznEw7k6CdSdDSUGcSdNMk6KZJ0H2KJkF7JvGCnB8dTifHXp04w1OhYCsv8LlJfeajuBuqDxkZasUCKNlIZUKHUjFmxEjHhotMgk8KozKLuOEmUCHM8y_JTlEW-jWhysiUSz-UPNJMyEjEAeYwy1SkODeSD8iw6bRE1arymNxkntjoMhAJ9HZiezvxxwPyqW197dRU7mj3oen_BKY7PMNKC11Wy8SPwesCn30cDsgrh0f7pgbIARmvIdU2QCn19Zoiv7SS6hEXEDn7b-5851vyqLP6d2Rntaj0e3BHV3LX2tofiT-McA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenic+Correlates+of+Simian+Immunodeficiency+Virus-Associated+B+Cell+Dysfunction&rft.jtitle=Journal+of+virology&rft.au=Brocca-Cofano%2C+Egidio&rft.au=Kuhrt%2C+David&rft.au=Siewe%2C+Basile&rft.au=Xu%2C+Cuiling&rft.date=2017-12-01&rft.eissn=1098-5514&rft.volume=91&rft.issue=23&rft_id=info:doi/10.1128%2FJVI.01051-17&rft_id=info%3Apmid%2F28931679&rft.externalDocID=28931679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |