Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction

We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B ce...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 91; no. 23
Main Authors Brocca-Cofano, Egidio, Kuhrt, David, Siewe, Basile, Xu, Cuiling, Haret-Richter, George S., Craigo, Jodi, Labranche, Celia, Montefiori, David C., Landay, Alan, Apetrei, Cristian, Pandrea, Ivona
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the “exhausted,” virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression. IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
AbstractList We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the “exhausted,” virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression. IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression. We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
Author Kuhrt, David
Siewe, Basile
Haret-Richter, George S.
Pandrea, Ivona
Brocca-Cofano, Egidio
Xu, Cuiling
Landay, Alan
Montefiori, David C.
Labranche, Celia
Craigo, Jodi
Apetrei, Cristian
Author_xml – sequence: 1
  givenname: Egidio
  surname: Brocca-Cofano
  fullname: Brocca-Cofano, Egidio
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 2
  givenname: David
  surname: Kuhrt
  fullname: Kuhrt, David
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 3
  givenname: Basile
  surname: Siewe
  fullname: Siewe, Basile
  organization: Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, USA
– sequence: 4
  givenname: Cuiling
  surname: Xu
  fullname: Xu, Cuiling
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 5
  givenname: George S.
  surname: Haret-Richter
  fullname: Haret-Richter, George S.
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 6
  givenname: Jodi
  surname: Craigo
  fullname: Craigo, Jodi
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 7
  givenname: Celia
  surname: Labranche
  fullname: Labranche, Celia
  organization: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
– sequence: 8
  givenname: David C.
  surname: Montefiori
  fullname: Montefiori, David C.
  organization: Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
– sequence: 9
  givenname: Alan
  surname: Landay
  fullname: Landay, Alan
  organization: Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, USA
– sequence: 10
  givenname: Cristian
  surname: Apetrei
  fullname: Apetrei, Cristian
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 11
  givenname: Ivona
  surname: Pandrea
  fullname: Pandrea, Ivona
  organization: Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28931679$$D View this record in MEDLINE/PubMed
BookMark eNptkctP3DAQxq0KVBbaG-cqxx4a8PgV51KJLq9FSK1UinqzvI4NrhJ7sROk_e8xTxXEZeYwv_k-zXzbaCPEYBHaBbwHQOT-2eViDwPmUEPzAc0At7LmHNgGmmFMSM2p_LuFtnP-hzEwJthHtEVkS0E07Qxd_NLjdbyywZtqHlOyvR5trqKrfvvB61AthmEKsbPOG2-DWVeXPk25Psg5Gl_YrvpRzW3fV4fr7KZgRh_DJ7TpdJ_t56e-g_4cH13MT-vznyeL-cF5bahkY01AOA2sHEExa1nrltQaRkpl2HTS0qVhzElsWydkt2S0dbzpuHDCEUMxpjvo-6PualoOtjM2jEn3apX8oNNaRe3V60nw1-oq3ioupGg4FIGvTwIp3kw2j2rw2ZRrdLBxygpaBpQL0tCCfvnf68Xk-ZUFII-ASTHnZJ0yftT37yjWvleA1X1equSlHvJS0JSlb2-WnnXfxe8AIPuXRg
CitedBy_id crossref_primary_10_1038_s42003_022_03619_y
crossref_primary_10_3389_fimmu_2020_579158
crossref_primary_10_3390_v16060972
crossref_primary_10_1371_journal_ppat_1009575
crossref_primary_10_1371_journal_ppat_1008333
crossref_primary_10_3389_fmicb_2020_00357
crossref_primary_10_1186_s12977_018_0406_5
crossref_primary_10_3389_fimmu_2021_670966
crossref_primary_10_1016_j_isci_2021_103109
crossref_primary_10_3389_fviro_2021_795373
Cites_doi 10.1128/JVI.03785-13
10.1128/JVI.79.13.8131-8141.2005
10.1097/QAD.0b013e32835edc47
10.1128/JVI.80.10.4858-4867.2006
10.1101/cshperspect.a007039
10.1126/science.1217550
10.1146/annurev-immunol-031210-101400
10.4049/jimmunol.1103138
10.1172/JCI81400
10.1128/JVI.02028-07
10.1007/s11904-009-0034-8
10.1006/clim.2001.5054
10.1182/blood-2005-11-013383
10.1186/1742-4690-7-42
10.1098/rstb.2012.0496
10.2174/1570162X13666150724095339
10.1128/JVI.00444-09
10.1371/journal.pone.0005966
10.1586/14760584.5.4.579
10.1128/JVI.02402-07
10.1038/nature17677
10.1186/1742-4690-6-91
10.1128/jvi.71.7.5069-5079.1997
10.1016/j.immuni.2013.10.001
10.1086/589862
10.1016/j.clim.2014.04.017
10.1016/j.immuni.2010.06.004
10.1182/blood-2005-12-4897
10.1016/j.virol.2003.08.015
10.1038/nri3190
10.1128/jvi.69.5.2737-2744.1995
10.1128/JVI.00332-11
10.1089/088922201750290050
10.1056/NEJMoa0908492
10.1128/JVI.80.6.2771-2783.2006
10.1038/nm1492
10.1097/QAI.0b013e31829f6e1a
10.1172/JCI44876
10.1086/655970
10.1172/JCI64314
10.1016/j.vaccine.2013.12.014
10.2174/1570162043485068
10.1038/nri2524
10.1182/blood-2010-07-294249
10.1097/01.aids.0000191231.54170.89
10.1172/JCI44872
10.1128/JVI.74.3.1209-1223.2000
10.1128/JVI.02173-08
10.1128/JVI.03606-13
10.1097/COH.0b013e3280ef691e
10.1128/CMR.00009-06
10.3390/v5122963
10.1093/infdis/jiq118
10.4049/jimmunol.181.10.6687
10.1086/597476
10.1007/978-1-4419-5632-3_12
10.1128/JVI.77.3.2165-2173.2003
10.4049/jimmunol.178.12.7779
10.1002/0471142735.im1213s100
10.1128/JVI.01966-09
10.1056/NEJM198308253090803
10.1172/JCI59266
10.4049/jimmunol.1103139
10.2174/1566524033479799
10.1111/j.1365-2567.2009.03173.x
10.1038/nm.1970
10.1007/s10875-010-9456-8
10.1158/0008-5472.CAN-05-3766
10.1111/imr.12066
10.1128/JVI.79.5.2666-2677.2005
10.1038/nature21435
10.1089/088922204773004941
10.1038/nm.1894
10.1182/blood-2010-12-325936
10.1111/imr.12067
10.1128/IAI.67.5.2366-2370.1999
10.1182/blood-2008-05-159301
10.1172/JCI43271
10.1189/jlb.0912436
10.1084/jem.188.2.233
10.4049/jimmunol.180.10.6798
10.1016/j.it.2008.05.004
10.1172/JCI63039
10.1371/journal.ppat.1003011
10.1172/JCI59211
10.1128/JVI.07141-11
10.1371/journal.ppat.1003600
10.1084/jem.20072683
10.1038/ni1566
10.4049/jimmunol.179.5.3035
10.1146/annurev.med.60.041807.123753
10.1084/jem.20121932
10.1111/imr.12079
10.1002/eji.201040673
10.1128/JVI.00880-09
10.1038/nm1511
10.1038/leu.2012.165
10.1016/j.immuni.2009.11.009
10.1073/pnas.0601554103
10.1097/00002030-200105250-00003
10.4049/jimmunol.178.12.8212
10.1172/JCI33034
10.1126/science.1193550
10.1111/imr.12510
10.4049/jimmunol.180.6.3882
10.1086/314660
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/JVI.01051-17
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate B Cells in Pathogenic and Nonpathogenic SIV Infections
EISSN 1098-5514
ExternalDocumentID PMC5686751
28931679
10_1128_JVI_01051_17
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL117715
– fundername: NCRR NIH HHS
  grantid: R01 RR025781
– fundername: NIAID NIH HHS
  grantid: R01 AI119346
– fundername: NHLBI NIH HHS
  grantid: R01 HL123096
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01 AI119346
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: RO1 HL117715
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: R01 HL123096
– fundername: HHS | NIH | National Center for Research Resources (NCRR)
  grantid: R01 RR025781
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
7X8
5PM
ID FETCH-LOGICAL-c384t-216fa14128304949fb3ec42b3e40cd8e3bc44f80e9f68db439f57d56f6f2c3003
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:20:16 EDT 2025
Fri Jul 11 15:42:08 EDT 2025
Wed Feb 19 02:44:27 EST 2025
Tue Jul 01 01:02:52 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords nonpathogenic infection
simian immunodeficiency virus
B cell
follicular T helper cells
immune activation
pathogenic infection
humoral immune response
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-216fa14128304949fb3ec42b3e40cd8e3bc44f80e9f68db439f57d56f6f2c3003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Brocca-Cofano E, Kuhrt D, Siewe B, Xu C, Haret-Richter GS, Craigo J, Labranche C, Montefiori DC, Landay A, Apetrei C, Pandrea I. 2017. Pathogenic correlates of simian immunodeficiency virus-associated B cell dysfunction. J Virol 91:e01051-17. https://doi.org/10.1128/JVI.01051-17.
OpenAccessLink https://jvi.asm.org/content/jvi/91/23/e01051-17.full.pdf
PMID 28931679
PQID 1941356273
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686751
proquest_miscellaneous_1941356273
pubmed_primary_28931679
crossref_citationtrail_10_1128_JVI_01051_17
crossref_primary_10_1128_JVI_01051_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
Montefiori DC (e_1_3_2_112_2) 2005
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
Douek DC (e_1_3_2_13_2) 2003; 5
e_1_3_2_50_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
Bosinger SE (e_1_3_2_11_2) 2009; 119
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
US Animal and Plant Health Inspection Service (e_1_3_2_108_2) 2005
e_1_3_2_111_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
National Research Council (e_1_3_2_107_2) 2011
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
Jacquelin B (e_1_3_2_16_2) 2009; 119
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
Macatangay BJ (e_1_3_2_48_2) 2009; 5
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_72_2
16645169 - Blood. 2006 Sep 1;108(5):1580-7
20425055 - Curr HIV/AIDS Rep. 2010 Feb;7(1):28-36
19959873 - J Clin Invest. 2009 Dec;119(12):3544-55
16501086 - J Virol. 2006 Mar;80(6):2771-83
19493994 - J Virol. 2009 Aug;83(16):7894-908
22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039
27120156 - Nature. 2016 May 5;533(7601):105-109
17041142 - Clin Microbiol Rev. 2006 Oct;19(4):728-62
10068581 - J Infect Dis. 1999 Apr;179(4):859-70
18453600 - J Immunol. 2008 May 15;180(10):6798-807
24316675 - Viruses. 2013 Dec 02;5(12):2963-76
18676179 - Trends Immunol. 2008 Sep;29(9):419-28
23772616 - Immunol Rev. 2013 Jul;254(1):78-101
18664624 - Blood. 2008 Oct 1;112(7):2826-35
20079667 - Immunity. 2010 Jan 29;32(1):129-40
19959874 - J Clin Invest. 2009 Dec;119(12):3556-72
22387550 - J Immunol. 2012 Apr 1;188(7):3247-56
23797688 - J Acquir Immune Defic Syndr. 2013 Dec 1;64(4):325-31
19525963 - Nat Med. 2009 Aug;15(8):879-85
17115046 - Nat Med. 2006 Dec;12(12):1365-71
14598566 - AIDS Rev. 2003 Jul-Sep;5(3):172-7
24814239 - Clin Immunol. 2014 Aug;153(2):264-76
23254284 - J Exp Med. 2013 Jan 14;210(1):143-56
18234792 - J Virol. 2008 Apr;82(8):4052-63
12699358 - Curr Mol Med. 2003 May;3(3):209-16
23772614 - Immunol Rev. 2013 Jul;254(1):54-64
23938749 - Philos Trans R Soc Lond B Biol Sci. 2013 Aug 12;368(1626):20120496
21715501 - J Virol. 2011 Sep;85(17):8702-8
21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90
18216122 - J Virol. 2008 Apr;82(7):3713-24
16885377 - Cancer Res. 2006 Aug 1;66(15):7741-7
21842371 - Adv Exp Med Biol. 2011;780:143-59
10627531 - J Virol. 2000 Feb;74(3):1209-23
18322196 - J Immunol. 2008 Mar 15;180(6):3882-8
9670036 - J Exp Med. 1998 Jul 20;188(2):233-45
19372883 - Curr Opin HIV AIDS. 2007 May;2(3):169-76
9188572 - J Virol. 1997 Jul;71(7):5069-79
23349627 - PLoS Pathog. 2013 Jan;9(1):e1003011
14675630 - Virology. 2003 Dec 5;317(1):119-27
24374153 - Vaccine. 2014 Feb 7;32(7):872-80
20809522 - Eur J Immunol. 2010 Oct;40(10):2686-91
19630581 - Annu Rev Med. 2009;60:485-95
23772622 - Immunol Rev. 2013 Jul;254(1):207-24
21505193 - Blood. 2011 Jul 28;118(4):847-54
16989638 - Expert Rev Vaccines. 2006 Aug;5(4):579-95
23434518 - J Leukoc Biol. 2013 May;93(5):811-8
20847261 - Science. 2010 Sep 17;329(5998):1487
18432938 - Curr Protoc Immunol. 2005 Jan;Chapter 12:Unit 12.11
22403383 - Science. 2012 Mar 9;335(6073):1188-93
20962324 - Blood. 2011 Jan 13;117(2):530-41
21314428 - Annu Rev Immunol. 2011;29:621-63
15956558 - J Virol. 2005 Jul;79(13):8131-41
18264102 - Nat Immunol. 2008 Mar;9(3):301-9
19543531 - PLoS One. 2009 Jun 19;4(6):e5966
15708986 - J Virol. 2005 Mar;79(5):2666-77
20972328 - J Clin Invest. 2010 Nov;120(11):3810-3
23392635 - Curr Protoc Immunol. 2013 Feb;Chapter 12:Unit 12.13.
19656874 - J Virol. 2009 Oct;83(20):10347-57
22972930 - J Immunol. 2012 Oct 15;189(8):3925-35
22713648 - Leukemia. 2013 Jan;27(1):170-82
19224993 - J Virol. 2009 May;83(9):4102-11
11461679 - AIDS Res Hum Retroviruses. 2001 Jul 1;17(10):937-52
20032183 - J Virol. 2010 Mar;84(5):2466-76
20821041 - J Clin Immunol. 2011 Feb;31(1):89-98
22421786 - Nat Rev Immunol. 2012 Mar 16;12(4):282-94
26551680 - J Clin Invest. 2015 Dec;125(12):4497-513
28289286 - Nature. 2017 Mar 23;543(7646):559-563
21926463 - J Clin Invest. 2011 Oct;121(10 ):3877-88
18558875 - Clin Infect Dis. 2008 Aug 1;47(3):401-9
20620940 - Immunity. 2010 Jun 25;32(6):737-42
28133809 - Immunol Rev. 2017 Jan;275(1):271-284
11399977 - AIDS. 2001 May 25;15(8):957-64
21317533 - J Clin Invest. 2011 Mar;121(3):1102-10
15053337 - Curr HIV Res. 2004 Jan;2(1):11-21
10225896 - Infect Immun. 1999 May;67(5):2366-70
7707496 - J Virol. 1995 May;69(5):2737-44
19079256 - Nat Med. 2009 Jan;15(1):34-41
23343911 - AIDS. 2013 May 15;27(8):1209-17
17548615 - J Immunol. 2007 Jun 15;178(12 ):7779-86
17548660 - J Immunol. 2007 Jun 15;178(12):8212-20
24098110 - PLoS Pathog. 2013;9(10):e1003600
15018710 - AIDS Res Hum Retroviruses. 2004 Feb;20(2):219-26
11465955 - Clin Immunol. 2001 Aug;100(2):250-9
16260900 - AIDS. 2005 Nov 18;19(17):1947-55
19319142 - Nat Rev Immunol. 2009 Apr;9(4):235-45
20490361 - Cellscience. 2009 Apr 27;5(4):61-65
19832988 - Retrovirology. 2009 Oct 15;6:91
24138880 - Immunity. 2013 Oct 17;39(4):633-45
12525651 - J Virol. 2003 Feb;77(3):2165-73
16632602 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7048-53
20887227 - J Infect Dis. 2010 Nov 1;202 Suppl 3:S371-6
17975656 - J Clin Invest. 2007 Nov;117(11):3148-54
22019587 - J Clin Invest. 2011 Nov;121(11):4268-80
22922258 - J Clin Invest. 2012 Sep;122(9):3281-94
18981083 - J Immunol. 2008 Nov 15;181(10):6687-91
20067531 - Immunology. 2009 Nov;128(3):311-23
20459829 - Retrovirology. 2010 May 11;7:42
18625747 - J Exp Med. 2008 Aug 4;205(8):1797-805
24623416 - J Virol. 2014 May;88(10):5687-705
17709518 - J Immunol. 2007 Sep 1;179(5):3035-46
17041596 - Nat Med. 2006 Nov;12(11):1301-9
22922259 - J Clin Invest. 2012 Sep;122(9):3271-80
20972331 - J Clin Invest. 2010 Nov;120(11):3878-90
26206458 - Curr HIV Res. 2015;13(6):462-78
22318138 - J Virol. 2012 Apr;86(8):4158-68
6224088 - N Engl J Med. 1983 Aug 25;309(8):453-8
16522814 - Blood. 2006 Jul 1;108(1):209-17
19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20
24696477 - J Virol. 2014 Jun;88(12):6778-92
16641277 - J Virol. 2006 May;80(10):4858-67
19265479 - J Infect Dis. 2009 Apr 15;199(8):1177-85
References_xml – ident: e_1_3_2_110_2
  doi: 10.1128/JVI.03785-13
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.79.13.8131-8141.2005
– ident: e_1_3_2_83_2
  doi: 10.1097/QAD.0b013e32835edc47
– volume-title: Guide for the care and use of laboratory animals
  year: 2011
  ident: e_1_3_2_107_2
– ident: e_1_3_2_109_2
  doi: 10.1128/JVI.80.10.4858-4867.2006
– ident: e_1_3_2_38_2
  doi: 10.1101/cshperspect.a007039
– ident: e_1_3_2_62_2
  doi: 10.1126/science.1217550
– ident: e_1_3_2_65_2
  doi: 10.1146/annurev-immunol-031210-101400
– ident: e_1_3_2_52_2
  doi: 10.4049/jimmunol.1103138
– ident: e_1_3_2_53_2
  doi: 10.1172/JCI81400
– ident: e_1_3_2_105_2
  doi: 10.1128/JVI.02028-07
– ident: e_1_3_2_2_2
  doi: 10.1007/s11904-009-0034-8
– ident: e_1_3_2_81_2
  doi: 10.1006/clim.2001.5054
– ident: e_1_3_2_78_2
  doi: 10.1182/blood-2005-11-013383
– ident: e_1_3_2_7_2
  doi: 10.1186/1742-4690-7-42
– ident: e_1_3_2_27_2
  doi: 10.1098/rstb.2012.0496
– ident: e_1_3_2_50_2
  doi: 10.2174/1570162X13666150724095339
– ident: e_1_3_2_111_2
  doi: 10.1128/JVI.00444-09
– ident: e_1_3_2_46_2
  doi: 10.1371/journal.pone.0005966
– ident: e_1_3_2_67_2
  doi: 10.1586/14760584.5.4.579
– ident: e_1_3_2_26_2
  doi: 10.1128/JVI.02402-07
– ident: e_1_3_2_39_2
  doi: 10.1038/nature17677
– ident: e_1_3_2_47_2
  doi: 10.1186/1742-4690-6-91
– ident: e_1_3_2_113_2
  doi: 10.1128/jvi.71.7.5069-5079.1997
– ident: e_1_3_2_89_2
  doi: 10.1016/j.immuni.2013.10.001
– ident: e_1_3_2_70_2
  doi: 10.1086/589862
– volume: 119
  start-page: 3556
  year: 2009
  ident: e_1_3_2_11_2
  article-title: Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys
  publication-title: J Clin Invest
– ident: e_1_3_2_49_2
  doi: 10.1016/j.clim.2014.04.017
– ident: e_1_3_2_33_2
  doi: 10.1016/j.immuni.2010.06.004
– ident: e_1_3_2_9_2
  doi: 10.1182/blood-2005-12-4897
– ident: e_1_3_2_18_2
  doi: 10.1016/j.virol.2003.08.015
– volume: 5
  start-page: 61
  year: 2009
  ident: e_1_3_2_48_2
  article-title: PD-1 blockade: a promising immunotherapy for HIV?
  publication-title: Cellscience
– ident: e_1_3_2_94_2
  doi: 10.1038/nri3190
– ident: e_1_3_2_114_2
  doi: 10.1128/jvi.69.5.2737-2744.1995
– ident: e_1_3_2_22_2
  doi: 10.1128/JVI.00332-11
– ident: e_1_3_2_66_2
  doi: 10.1089/088922201750290050
– ident: e_1_3_2_72_2
  doi: 10.1056/NEJMoa0908492
– ident: e_1_3_2_10_2
  doi: 10.1128/JVI.80.6.2771-2783.2006
– ident: e_1_3_2_85_2
  doi: 10.1038/nm1492
– ident: e_1_3_2_87_2
  doi: 10.1097/QAI.0b013e31829f6e1a
– ident: e_1_3_2_23_2
  doi: 10.1172/JCI44876
– ident: e_1_3_2_21_2
  doi: 10.1086/655970
– ident: e_1_3_2_98_2
  doi: 10.1172/JCI64314
– ident: e_1_3_2_51_2
  doi: 10.1016/j.vaccine.2013.12.014
– ident: e_1_3_2_41_2
  doi: 10.2174/1570162043485068
– ident: e_1_3_2_73_2
  doi: 10.1038/nri2524
– ident: e_1_3_2_56_2
  doi: 10.1182/blood-2010-07-294249
– ident: e_1_3_2_77_2
  doi: 10.1097/01.aids.0000191231.54170.89
– ident: e_1_3_2_44_2
  doi: 10.1172/JCI44872
– ident: e_1_3_2_12_2
  doi: 10.1128/JVI.74.3.1209-1223.2000
– ident: e_1_3_2_103_2
  doi: 10.1128/JVI.02173-08
– ident: e_1_3_2_17_2
  doi: 10.1128/JVI.03606-13
– ident: e_1_3_2_69_2
  doi: 10.1097/COH.0b013e3280ef691e
– ident: e_1_3_2_4_2
  doi: 10.1128/CMR.00009-06
– volume: 119
  start-page: 3544
  year: 2009
  ident: e_1_3_2_16_2
  article-title: Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response
  publication-title: J Clin Invest
– ident: e_1_3_2_106_2
  doi: 10.3390/v5122963
– ident: e_1_3_2_32_2
  doi: 10.1093/infdis/jiq118
– ident: e_1_3_2_90_2
  doi: 10.4049/jimmunol.181.10.6687
– ident: e_1_3_2_96_2
  doi: 10.1086/597476
– ident: e_1_3_2_36_2
  doi: 10.1007/978-1-4419-5632-3_12
– ident: e_1_3_2_100_2
  doi: 10.1128/JVI.77.3.2165-2173.2003
– ident: e_1_3_2_93_2
  doi: 10.4049/jimmunol.178.12.7779
– ident: e_1_3_2_45_2
  doi: 10.1002/0471142735.im1213s100
– ident: e_1_3_2_79_2
  doi: 10.1128/JVI.01966-09
– ident: e_1_3_2_42_2
  doi: 10.1056/NEJM198308253090803
– year: 2005
  ident: e_1_3_2_112_2
  article-title: Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays
  publication-title: Curr Protoc Immunol
– ident: e_1_3_2_60_2
  doi: 10.1172/JCI59266
– ident: e_1_3_2_58_2
  doi: 10.4049/jimmunol.1103139
– ident: e_1_3_2_68_2
  doi: 10.2174/1566524033479799
– ident: e_1_3_2_64_2
  doi: 10.1111/j.1365-2567.2009.03173.x
– ident: e_1_3_2_20_2
  doi: 10.1038/nm.1970
– ident: e_1_3_2_91_2
  doi: 10.1007/s10875-010-9456-8
– ident: e_1_3_2_61_2
  doi: 10.1158/0008-5472.CAN-05-3766
– ident: e_1_3_2_63_2
  doi: 10.1111/imr.12066
– ident: e_1_3_2_104_2
  doi: 10.1128/JVI.79.5.2666-2677.2005
– ident: e_1_3_2_40_2
  doi: 10.1038/nature21435
– ident: e_1_3_2_80_2
  doi: 10.1089/088922204773004941
– ident: e_1_3_2_102_2
  doi: 10.1038/nm.1894
– ident: e_1_3_2_34_2
  doi: 10.1182/blood-2010-12-325936
– ident: e_1_3_2_82_2
  doi: 10.1111/imr.12067
– ident: e_1_3_2_101_2
  doi: 10.1128/IAI.67.5.2366-2370.1999
– ident: e_1_3_2_30_2
  doi: 10.1182/blood-2008-05-159301
– ident: e_1_3_2_43_2
  doi: 10.1172/JCI43271
– ident: e_1_3_2_54_2
  doi: 10.1189/jlb.0912436
– ident: e_1_3_2_75_2
  doi: 10.1084/jem.188.2.233
– ident: e_1_3_2_14_2
  doi: 10.4049/jimmunol.180.10.6798
– ident: e_1_3_2_3_2
  doi: 10.1016/j.it.2008.05.004
– ident: e_1_3_2_99_2
  doi: 10.1172/JCI63039
– ident: e_1_3_2_28_2
  doi: 10.1371/journal.ppat.1003011
– ident: e_1_3_2_88_2
  doi: 10.1172/JCI59211
– volume: 5
  start-page: 172
  year: 2003
  ident: e_1_3_2_13_2
  article-title: Disrupting T-cell homeostasis: how HIV-1 infection causes disease
  publication-title: AIDS Rev
– ident: e_1_3_2_25_2
  doi: 10.1128/JVI.07141-11
– ident: e_1_3_2_37_2
  doi: 10.1371/journal.ppat.1003600
– ident: e_1_3_2_84_2
  doi: 10.1084/jem.20072683
– ident: e_1_3_2_86_2
  doi: 10.1038/ni1566
– ident: e_1_3_2_19_2
  doi: 10.4049/jimmunol.179.5.3035
– ident: e_1_3_2_35_2
  doi: 10.1146/annurev.med.60.041807.123753
– ident: e_1_3_2_97_2
  doi: 10.1084/jem.20121932
– ident: e_1_3_2_24_2
  doi: 10.1111/imr.12079
– ident: e_1_3_2_55_2
  doi: 10.1002/eji.201040673
– ident: e_1_3_2_6_2
  doi: 10.1128/JVI.00880-09
– ident: e_1_3_2_31_2
  doi: 10.1038/nm1511
– ident: e_1_3_2_59_2
  doi: 10.1038/leu.2012.165
– ident: e_1_3_2_57_2
  doi: 10.1016/j.immuni.2009.11.009
– ident: e_1_3_2_92_2
  doi: 10.1073/pnas.0601554103
– ident: e_1_3_2_76_2
  doi: 10.1097/00002030-200105250-00003
– ident: e_1_3_2_74_2
  doi: 10.4049/jimmunol.178.12.8212
– ident: e_1_3_2_5_2
  doi: 10.1172/JCI33034
– ident: e_1_3_2_29_2
  doi: 10.1126/science.1193550
– ident: e_1_3_2_71_2
  doi: 10.1111/imr.12510
– volume-title: Animal Welfare Act and animal welfare regulations
  year: 2005
  ident: e_1_3_2_108_2
– ident: e_1_3_2_95_2
  doi: 10.4049/jimmunol.180.6.3882
– ident: e_1_3_2_15_2
  doi: 10.1086/314660
– reference: 16645169 - Blood. 2006 Sep 1;108(5):1580-7
– reference: 18264102 - Nat Immunol. 2008 Mar;9(3):301-9
– reference: 18625747 - J Exp Med. 2008 Aug 4;205(8):1797-805
– reference: 16260900 - AIDS. 2005 Nov 18;19(17):1947-55
– reference: 28133809 - Immunol Rev. 2017 Jan;275(1):271-284
– reference: 24138880 - Immunity. 2013 Oct 17;39(4):633-45
– reference: 17041596 - Nat Med. 2006 Nov;12(11):1301-9
– reference: 19832988 - Retrovirology. 2009 Oct 15;6:91
– reference: 20972328 - J Clin Invest. 2010 Nov;120(11):3810-3
– reference: 20425055 - Curr HIV/AIDS Rep. 2010 Feb;7(1):28-36
– reference: 11399977 - AIDS. 2001 May 25;15(8):957-64
– reference: 21842371 - Adv Exp Med Biol. 2011;780:143-59
– reference: 26551680 - J Clin Invest. 2015 Dec;125(12):4497-513
– reference: 10225896 - Infect Immun. 1999 May;67(5):2366-70
– reference: 16641277 - J Virol. 2006 May;80(10):4858-67
– reference: 23343911 - AIDS. 2013 May 15;27(8):1209-17
– reference: 18558875 - Clin Infect Dis. 2008 Aug 1;47(3):401-9
– reference: 15018710 - AIDS Res Hum Retroviruses. 2004 Feb;20(2):219-26
– reference: 12525651 - J Virol. 2003 Feb;77(3):2165-73
– reference: 7707496 - J Virol. 1995 May;69(5):2737-44
– reference: 20490361 - Cellscience. 2009 Apr 27;5(4):61-65
– reference: 20079667 - Immunity. 2010 Jan 29;32(1):129-40
– reference: 24098110 - PLoS Pathog. 2013;9(10):e1003600
– reference: 14675630 - Virology. 2003 Dec 5;317(1):119-27
– reference: 18234792 - J Virol. 2008 Apr;82(8):4052-63
– reference: 19265479 - J Infect Dis. 2009 Apr 15;199(8):1177-85
– reference: 17548660 - J Immunol. 2007 Jun 15;178(12):8212-20
– reference: 18322196 - J Immunol. 2008 Mar 15;180(6):3882-8
– reference: 23938749 - Philos Trans R Soc Lond B Biol Sci. 2013 Aug 12;368(1626):20120496
– reference: 19224993 - J Virol. 2009 May;83(9):4102-11
– reference: 17041142 - Clin Microbiol Rev. 2006 Oct;19(4):728-62
– reference: 18216122 - J Virol. 2008 Apr;82(7):3713-24
– reference: 19543531 - PLoS One. 2009 Jun 19;4(6):e5966
– reference: 21317533 - J Clin Invest. 2011 Mar;121(3):1102-10
– reference: 21314428 - Annu Rev Immunol. 2011;29:621-63
– reference: 21505193 - Blood. 2011 Jul 28;118(4):847-54
– reference: 17709518 - J Immunol. 2007 Sep 1;179(5):3035-46
– reference: 20459829 - Retrovirology. 2010 May 11;7:42
– reference: 19493994 - J Virol. 2009 Aug;83(16):7894-908
– reference: 26206458 - Curr HIV Res. 2015;13(6):462-78
– reference: 20067531 - Immunology. 2009 Nov;128(3):311-23
– reference: 6224088 - N Engl J Med. 1983 Aug 25;309(8):453-8
– reference: 23772614 - Immunol Rev. 2013 Jul;254(1):54-64
– reference: 24316675 - Viruses. 2013 Dec 02;5(12):2963-76
– reference: 23772622 - Immunol Rev. 2013 Jul;254(1):207-24
– reference: 22387550 - J Immunol. 2012 Apr 1;188(7):3247-56
– reference: 20032183 - J Virol. 2010 Mar;84(5):2466-76
– reference: 22318138 - J Virol. 2012 Apr;86(8):4158-68
– reference: 23434518 - J Leukoc Biol. 2013 May;93(5):811-8
– reference: 18981083 - J Immunol. 2008 Nov 15;181(10):6687-91
– reference: 20847261 - Science. 2010 Sep 17;329(5998):1487
– reference: 19959873 - J Clin Invest. 2009 Dec;119(12):3544-55
– reference: 22421786 - Nat Rev Immunol. 2012 Mar 16;12(4):282-94
– reference: 23772616 - Immunol Rev. 2013 Jul;254(1):78-101
– reference: 18453600 - J Immunol. 2008 May 15;180(10):6798-807
– reference: 19525963 - Nat Med. 2009 Aug;15(8):879-85
– reference: 11465955 - Clin Immunol. 2001 Aug;100(2):250-9
– reference: 11461679 - AIDS Res Hum Retroviruses. 2001 Jul 1;17(10):937-52
– reference: 22972930 - J Immunol. 2012 Oct 15;189(8):3925-35
– reference: 24696477 - J Virol. 2014 Jun;88(12):6778-92
– reference: 18676179 - Trends Immunol. 2008 Sep;29(9):419-28
– reference: 21252259 - J Infect Dis. 2011 Mar 15;203(6):780-90
– reference: 10627531 - J Virol. 2000 Feb;74(3):1209-23
– reference: 21715501 - J Virol. 2011 Sep;85(17):8702-8
– reference: 21926463 - J Clin Invest. 2011 Oct;121(10 ):3877-88
– reference: 24623416 - J Virol. 2014 May;88(10):5687-705
– reference: 19656874 - J Virol. 2009 Oct;83(20):10347-57
– reference: 18432938 - Curr Protoc Immunol. 2005 Jan;Chapter 12:Unit 12.11
– reference: 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20
– reference: 17548615 - J Immunol. 2007 Jun 15;178(12 ):7779-86
– reference: 9670036 - J Exp Med. 1998 Jul 20;188(2):233-45
– reference: 23254284 - J Exp Med. 2013 Jan 14;210(1):143-56
– reference: 10068581 - J Infect Dis. 1999 Apr;179(4):859-70
– reference: 24814239 - Clin Immunol. 2014 Aug;153(2):264-76
– reference: 20620940 - Immunity. 2010 Jun 25;32(6):737-42
– reference: 20809522 - Eur J Immunol. 2010 Oct;40(10):2686-91
– reference: 22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039
– reference: 17975656 - J Clin Invest. 2007 Nov;117(11):3148-54
– reference: 23797688 - J Acquir Immune Defic Syndr. 2013 Dec 1;64(4):325-31
– reference: 9188572 - J Virol. 1997 Jul;71(7):5069-79
– reference: 16885377 - Cancer Res. 2006 Aug 1;66(15):7741-7
– reference: 22019587 - J Clin Invest. 2011 Nov;121(11):4268-80
– reference: 18664624 - Blood. 2008 Oct 1;112(7):2826-35
– reference: 22922259 - J Clin Invest. 2012 Sep;122(9):3271-80
– reference: 17115046 - Nat Med. 2006 Dec;12(12):1365-71
– reference: 19079256 - Nat Med. 2009 Jan;15(1):34-41
– reference: 20972331 - J Clin Invest. 2010 Nov;120(11):3878-90
– reference: 15956558 - J Virol. 2005 Jul;79(13):8131-41
– reference: 20821041 - J Clin Immunol. 2011 Feb;31(1):89-98
– reference: 27120156 - Nature. 2016 May 5;533(7601):105-109
– reference: 15708986 - J Virol. 2005 Mar;79(5):2666-77
– reference: 16632602 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7048-53
– reference: 28289286 - Nature. 2017 Mar 23;543(7646):559-563
– reference: 23349627 - PLoS Pathog. 2013 Jan;9(1):e1003011
– reference: 20887227 - J Infect Dis. 2010 Nov 1;202 Suppl 3:S371-6
– reference: 19319142 - Nat Rev Immunol. 2009 Apr;9(4):235-45
– reference: 15053337 - Curr HIV Res. 2004 Jan;2(1):11-21
– reference: 12699358 - Curr Mol Med. 2003 May;3(3):209-16
– reference: 16989638 - Expert Rev Vaccines. 2006 Aug;5(4):579-95
– reference: 14598566 - AIDS Rev. 2003 Jul-Sep;5(3):172-7
– reference: 16522814 - Blood. 2006 Jul 1;108(1):209-17
– reference: 22922258 - J Clin Invest. 2012 Sep;122(9):3281-94
– reference: 20962324 - Blood. 2011 Jan 13;117(2):530-41
– reference: 24374153 - Vaccine. 2014 Feb 7;32(7):872-80
– reference: 19372883 - Curr Opin HIV AIDS. 2007 May;2(3):169-76
– reference: 23392635 - Curr Protoc Immunol. 2013 Feb;Chapter 12:Unit 12.13.
– reference: 22403383 - Science. 2012 Mar 9;335(6073):1188-93
– reference: 22713648 - Leukemia. 2013 Jan;27(1):170-82
– reference: 16501086 - J Virol. 2006 Mar;80(6):2771-83
– reference: 19959874 - J Clin Invest. 2009 Dec;119(12):3556-72
– reference: 19630581 - Annu Rev Med. 2009;60:485-95
SSID ssj0014464
Score 2.3196907
Snippet We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Antibodies, Neutralizing - blood
Antibodies, Viral - biosynthesis
Antibodies, Viral - blood
B-Lymphocyte Subsets - immunology
B-Lymphocyte Subsets - physiology
B-Lymphocytes, Regulatory - immunology
B-Lymphocytes, Regulatory - physiology
Cercopithecus aethiops
Disease Progression
Epitopes - chemistry
Epitopes - immunology
HIV Infections - virology
Humans
Immunity, Humoral
Immunologic Memory
Interleukin-10 - blood
Lymphocyte Count
Macaca nemestrina
Pathogenesis and Immunity
Simian Acquired Immunodeficiency Syndrome - immunology
Simian Acquired Immunodeficiency Syndrome - virology
Simian Immunodeficiency Virus - immunology
Simian Immunodeficiency Virus - metabolism
Simian Immunodeficiency Virus - pathogenicity
T-Lymphocytes, Helper-Inducer - immunology
Title Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction
URI https://www.ncbi.nlm.nih.gov/pubmed/28931679
https://www.proquest.com/docview/1941356273
https://pubmed.ncbi.nlm.nih.gov/PMC5686751
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvY_dll6LB9hTcxbasyA97WNOWtrAxaFryZixZWg2pXZKY0f36nSP5lqSFbS8iWIoN-o6kcyR93yHko-AiHfmAAKyeqcdUrL10lHFvrDORGRRUt5nnvn3nx-fsdBbNuvydll2yknvq9628kv9BFZ4BrsiS_Qdk25fCA_gN-EIJCEP5Vxj_APethNpcwbheWFqK05A9y69w4J4g-aPMNKpEWIrlRb6oll4DCfia-8MJbt4d3CxxgWtB2vZWkQ7X34CH8B1Q8SalSW3y7uHhzzxzd7rcydCl4wL17sxXX85y_Uu7U45lPm9NalY5cc983qyj9TYELG3dlQ7tpk5UJkX_qz-3ukxctQ05YvH2nB0gD-H04mQPs3X6nuNy9uC7vrL4QWiItP24W7na-4RN1X3yIIBwIWh2berTJAh5WUN6CMTn_qdQDLr-87pnshVubN6a7bkh0yfkcY0I_eqM4Sm5p4tn5KHLKHrznEw7k6CdSdDSUGcSdNMk6KZJ0H2KJkF7JvGCnB8dTifHXp04w1OhYCsv8LlJfeajuBuqDxkZasUCKNlIZUKHUjFmxEjHhotMgk8KozKLuOEmUCHM8y_JTlEW-jWhysiUSz-UPNJMyEjEAeYwy1SkODeSD8iw6bRE1arymNxkntjoMhAJ9HZiezvxxwPyqW197dRU7mj3oen_BKY7PMNKC11Wy8SPwesCn30cDsgrh0f7pgbIARmvIdU2QCn19Zoiv7SS6hEXEDn7b-5851vyqLP6d2Rntaj0e3BHV3LX2tofiT-McA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenic+Correlates+of+Simian+Immunodeficiency+Virus-Associated+B+Cell+Dysfunction&rft.jtitle=Journal+of+virology&rft.au=Brocca-Cofano%2C+Egidio&rft.au=Kuhrt%2C+David&rft.au=Siewe%2C+Basile&rft.au=Xu%2C+Cuiling&rft.date=2017-12-01&rft.eissn=1098-5514&rft.volume=91&rft.issue=23&rft_id=info:doi/10.1128%2FJVI.01051-17&rft_id=info%3Apmid%2F28931679&rft.externalDocID=28931679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon