Twelve tips to leverage AI for efficient and effective medical question generation: A guide for educators using Chat GPT
Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such...
Saved in:
Published in | Medical teacher Vol. 46; no. 8; pp. 1021 - 1026 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis Ltd
02.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.
This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students.
Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design.
Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm. |
---|---|
AbstractList | Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.
This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students.
Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design.
Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm. Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.BACKGROUNDCrafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students.AIMSThis study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students.Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design.DESCRIPTIONLeveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design.Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.CONCLUSIONIntegrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm. BackgroundCrafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.AimsThis study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator’s productivity and enable self-directed learning for students.DescriptionLeveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom’s taxonomy and core knowledge domains while promoting best practices in assessment design.ConclusionIntegrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm. |
Author | Indran, Inthrani Raja Gupta, Neelima Paranthaman, Priya Mustafa, Nurulhuda |
Author_xml | – sequence: 1 givenname: Inthrani Raja orcidid: 0000-0002-3487-3948 surname: Indran fullname: Indran, Inthrani Raja organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore – sequence: 2 givenname: Priya surname: Paranthaman fullname: Paranthaman, Priya organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore – sequence: 3 givenname: Neelima orcidid: 0009-0002-0810-3226 surname: Gupta fullname: Gupta, Neelima organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore – sequence: 4 givenname: Nurulhuda surname: Mustafa fullname: Mustafa, Nurulhuda organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38146711$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPCTwBZ4sJlw9hex144RRGUSpXgEKTeLK93HFxtvMH2Fvj37DYph144zYz0vdHMexfkLA4RCXnNYMlAw3tgNWeyuV1y4GLJeVMrEM_IgtWrVcW0uj0ji5mpZuicXOR8BwCyaeQLci70hCnGFuT39hf290hLOGRaBtrjPSa7Q7q-pn5IFL0PLmAs1MZuntCVMPF77IKzPf05Yi5hiHSHcRLO7Qe6prsxdHhc0I3OliFlOuYQd3TzwxZ69W37kjz3ts_46lQvyffPn7abL9XN16vrzfqmckLXpWKoOhCac_Bcy5a3WoB0WivetjVOvyLrfCc41p412tuV90p3SkldS6GAiUvy7rj3kIaHY80-ZId9byMOYza8gRXTAE0zoW-foHfDmOJ0nRHQAOdS6Jl6c6LGdnLBHFLY2_THPHo6AfIIuDTknND_QxiYOTvzmJ2ZszOn7Cbdxyc6F8qDoyXZ0P9H_Re725yb |
CitedBy_id | crossref_primary_10_1080_0142159X_2024_2327477 crossref_primary_10_1080_0142159X_2024_2434101 crossref_primary_10_1007_s10639_025_13476_x crossref_primary_10_20344_amp_22506 crossref_primary_10_15388_Amed_2024_31_2_18 crossref_primary_10_1080_0142159X_2024_2314723 crossref_primary_10_1515_gme_2024_0021 crossref_primary_10_1080_0142159X_2024_2422006 crossref_primary_10_1007_s00228_024_03649_x crossref_primary_10_1080_08998280_2024_2418752 crossref_primary_10_1016_j_acpath_2024_100119 crossref_primary_10_3934_math_2024963 crossref_primary_10_1007_s42979_024_02963_6 crossref_primary_10_1016_j_resuscitation_2024_110411 crossref_primary_10_3390_bdcc8100139 |
Cites_doi | 10.1148/radiol.230922 10.1186/1472-6920-7-49 10.1080/10872981.2021.2005505 10.5688/ajpe766114 10.1016/j.iotcps.2023.04.003 10.4103/2230-8229.97543 10.1016/j.procir.2023.05.002 10.3389/fpubh.2022.1118116 10.1002/ase.1507 10.1002/brx2.30 10.1227/neu.0000000000002551 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION NPM 7QJ K9. 7X8 |
DOI | 10.1080/0142159X.2023.2294703 |
DatabaseName | CrossRef PubMed Applied Social Sciences Index & Abstracts (ASSIA) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Applied Social Sciences Index and Abstracts (ASSIA) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Education |
EISSN | 1466-187X |
EndPage | 1026 |
ExternalDocumentID | 38146711 10_1080_0142159X_2023_2294703 |
Genre | Journal Article |
GroupedDBID | --- -W8 00X 03L 0R~ 29M 36B 4.4 5GY 5RE AAGDL AAHSB AALUX AAMIU AAPUL AAQRR AAWTL AAYXX ABBKH ABDBF ABEIZ ABIVO ABJNI ABLIJ ABLJU ABLKL ABUPF ABWVI ABXYU ACENM ACGEJ ACGFS ACIEZ ACUHS ADCVX ADRBQ ADXPE ADYSH AECIN AENEX AEOZL AFKVX AFRVT AGDLA AGFJD AGRBW AGYJP AHMBA AIJEM AIRBT AJWEG AKBVH ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALSLI ALYBC AMDAE AMPGV B0M BABNJ BLEHA BOHLJ CCCUG CITATION CS3 DKSSO EAP EAS EBC EBD EBS EDJ EHN EMB EMK EMOBN EPL EPT ESO ESX F5P H13 HZ~ KRBQP KSSTO KWAYT KYCEM LJTGL M4Z O9- P2P Q~Q RNANH RPD RVRKI SV3 TBQAZ TDBHL TERGH TFDNU TFL TFW TUROJ TUS UEQFS V1S ~1N .GO NPM TASJS 7QJ K9. 7X8 |
ID | FETCH-LOGICAL-c384t-1e7d038220f285b2b8305c8872bb4e466e1dfd32e4f198fa6ff78d77584537013 |
ISSN | 0142-159X 1466-187X |
IngestDate | Thu Jul 10 19:10:32 EDT 2025 Wed Aug 13 06:52:07 EDT 2025 Mon Jul 21 06:05:45 EDT 2025 Tue Jul 01 01:46:34 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | AI questions medical assessment Chat GPT |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-1e7d038220f285b2b8305c8872bb4e466e1dfd32e4f198fa6ff78d77584537013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3487-3948 0009-0002-0810-3226 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/0142159X.2023.2294703?needAccess=true |
PMID | 38146711 |
PQID | 3090225389 |
PQPubID | 33662 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2906180099 proquest_journals_3090225389 pubmed_primary_38146711 crossref_primary_10_1080_0142159X_2023_2294703 crossref_citationtrail_10_1080_0142159X_2023_2294703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-02 |
PublicationDateYYYYMMDD | 2024-08-02 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Medical teacher |
PublicationTitleAlternate | Med Teach |
PublicationYear | 2024 |
Publisher | Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_12_1 e_1_3_4_3_1 e_1_3_4_13_1 e_1_3_4_2_1 e_1_3_4_10_1 e_1_3_4_11_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_6_1 e_1_3_4_5_1 |
References_xml | – ident: e_1_3_4_10_1 doi: 10.1148/radiol.230922 – ident: e_1_3_4_9_1 doi: 10.1186/1472-6920-7-49 – ident: e_1_3_4_8_1 – ident: e_1_3_4_13_1 doi: 10.1080/10872981.2021.2005505 – ident: e_1_3_4_6_1 doi: 10.5688/ajpe766114 – ident: e_1_3_4_11_1 doi: 10.1016/j.iotcps.2023.04.003 – ident: e_1_3_4_2_1 doi: 10.4103/2230-8229.97543 – ident: e_1_3_4_5_1 doi: 10.1016/j.procir.2023.05.002 – ident: e_1_3_4_7_1 doi: 10.3389/fpubh.2022.1118116 – ident: e_1_3_4_12_1 doi: 10.1002/ase.1507 – ident: e_1_3_4_4_1 doi: 10.1002/brx2.30 – ident: e_1_3_4_3_1 doi: 10.1227/neu.0000000000002551 |
SSID | ssj0005995 |
Score | 2.5475688 |
Snippet | Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions.... BackgroundCrafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1021 |
SubjectTerms | Artificial intelligence Best practice Chatbots Classification Evaluation Experts Independent study Innovations Medical education Multiple choice Quality assessment Selfdirected learning |
Title | Twelve tips to leverage AI for efficient and effective medical question generation: A guide for educators using Chat GPT |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38146711 https://www.proquest.com/docview/3090225389 https://www.proquest.com/docview/2906180099 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZC6UvY-tu2bqhwd6CQyzLsb03d1vbDFLCSCFvRralJiN1Qmrv9ut3ji5OCi27vJggxTLJ9_noHOnTOYS8k0UUlmGpPGDwwON-HnkiVoknBXw_KFRS6CoR44vh-SX_PAtnnc56R7XU1Hm_-HXnuZL_QRXaAFc8JfsPyLaDQgN8BnzhCgjD9e8w_i6X32SvXqx1noalhF-AGpx0ZDJ56_QQTkRulBsoFLq2mzN6SkD4r3TuaSfzSHtXzaK0ycC1_gML8jRGITAXde9sMt31ad1eT22SQ7dkq8qNWV0dYTEGUS16X8TXdhaYCGiq58KuwE42i59t31mzNk7thZTLxXbmGONpL2V6mk2znDd2PcEuWzCuRXPG7kpjavlw6PlxNNsxn_6dRt2qIH0O7kky62PB9z5jCY90doR6B-j1tUY6wHXNyBrx29m0XdcDss8gsADLuJ-efDw53cqCkiR0J70wB_tdTz0kB26c2-7MPTGK9lWmj8hDG2TQ1DDmMenI6gjrc1stzxE5GFtJxRPyw5CIIolovaKORDQdUWAAbUlEgUS0JRG1JKKORHRLovc0pZpCZgBHIaopRJFCFCj0lFyefpp-OPdsOQ6vCGJee76MykEADuVAsTjMWR7DXFHAJMXynEtAU_qlKgMmufKTWImhUlFcRhCQ8jCIINR4RvaqVSVfEFr4qsgDPPjCE84FRN1SYPHQJA-FUIx1CXf_albYXPVYMmWZ-S6lrcUlQ1wyi0uX9Nvb1iZZy59uOHaQZfa9vskClCozcASSLnnbdoPVxa00UclVc5NhkQQ_xvCqS54bqNsnOmq8vLfnFTncvhLHZK_eNPI1-LZ1_sbS8TccnJ9y |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twelve+tips+to+leverage+AI+for+efficient+and+effective+medical+question+generation%3A+A+guide+for+educators+using+Chat+GPT&rft.jtitle=Medical+teacher&rft.au=Indran%2C+Inthrani+Raja&rft.au=Paranthaman%2C+Priya&rft.au=Gupta%2C+Neelima&rft.au=Mustafa%2C+Nurulhuda&rft.date=2024-08-02&rft.eissn=1466-187X&rft.spage=1&rft_id=info:doi/10.1080%2F0142159X.2023.2294703&rft_id=info%3Apmid%2F38146711&rft.externalDocID=38146711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-159X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-159X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-159X&client=summon |