Twelve tips to leverage AI for efficient and effective medical question generation: A guide for educators using Chat GPT

Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such...

Full description

Saved in:
Bibliographic Details
Published inMedical teacher Vol. 46; no. 8; pp. 1021 - 1026
Main Authors Indran, Inthrani Raja, Paranthaman, Priya, Gupta, Neelima, Mustafa, Nurulhuda
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Ltd 02.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations. This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students. Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design. Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.
AbstractList Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations. This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students. Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design. Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.
Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.BACKGROUNDCrafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students.AIMSThis study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students.Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design.DESCRIPTIONLeveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design.Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.CONCLUSIONIntegrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.
BackgroundCrafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations.AimsThis study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator’s productivity and enable self-directed learning for students.DescriptionLeveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom’s taxonomy and core knowledge domains while promoting best practices in assessment design.ConclusionIntegrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.
Author Indran, Inthrani Raja
Gupta, Neelima
Paranthaman, Priya
Mustafa, Nurulhuda
Author_xml – sequence: 1
  givenname: Inthrani Raja
  orcidid: 0000-0002-3487-3948
  surname: Indran
  fullname: Indran, Inthrani Raja
  organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
– sequence: 2
  givenname: Priya
  surname: Paranthaman
  fullname: Paranthaman, Priya
  organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
– sequence: 3
  givenname: Neelima
  orcidid: 0009-0002-0810-3226
  surname: Gupta
  fullname: Gupta, Neelima
  organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
– sequence: 4
  givenname: Nurulhuda
  surname: Mustafa
  fullname: Mustafa, Nurulhuda
  organization: Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38146711$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPCTwBZ4sJlw9hex144RRGUSpXgEKTeLK93HFxtvMH2Fvj37DYph144zYz0vdHMexfkLA4RCXnNYMlAw3tgNWeyuV1y4GLJeVMrEM_IgtWrVcW0uj0ji5mpZuicXOR8BwCyaeQLci70hCnGFuT39hf290hLOGRaBtrjPSa7Q7q-pn5IFL0PLmAs1MZuntCVMPF77IKzPf05Yi5hiHSHcRLO7Qe6prsxdHhc0I3OliFlOuYQd3TzwxZ69W37kjz3ts_46lQvyffPn7abL9XN16vrzfqmckLXpWKoOhCac_Bcy5a3WoB0WivetjVOvyLrfCc41p412tuV90p3SkldS6GAiUvy7rj3kIaHY80-ZId9byMOYza8gRXTAE0zoW-foHfDmOJ0nRHQAOdS6Jl6c6LGdnLBHFLY2_THPHo6AfIIuDTknND_QxiYOTvzmJ2ZszOn7Cbdxyc6F8qDoyXZ0P9H_Re725yb
CitedBy_id crossref_primary_10_1080_0142159X_2024_2327477
crossref_primary_10_1080_0142159X_2024_2434101
crossref_primary_10_1007_s10639_025_13476_x
crossref_primary_10_20344_amp_22506
crossref_primary_10_15388_Amed_2024_31_2_18
crossref_primary_10_1080_0142159X_2024_2314723
crossref_primary_10_1515_gme_2024_0021
crossref_primary_10_1080_0142159X_2024_2422006
crossref_primary_10_1007_s00228_024_03649_x
crossref_primary_10_1080_08998280_2024_2418752
crossref_primary_10_1016_j_acpath_2024_100119
crossref_primary_10_3934_math_2024963
crossref_primary_10_1007_s42979_024_02963_6
crossref_primary_10_1016_j_resuscitation_2024_110411
crossref_primary_10_3390_bdcc8100139
Cites_doi 10.1148/radiol.230922
10.1186/1472-6920-7-49
10.1080/10872981.2021.2005505
10.5688/ajpe766114
10.1016/j.iotcps.2023.04.003
10.4103/2230-8229.97543
10.1016/j.procir.2023.05.002
10.3389/fpubh.2022.1118116
10.1002/ase.1507
10.1002/brx2.30
10.1227/neu.0000000000002551
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7QJ
K9.
7X8
DOI 10.1080/0142159X.2023.2294703
DatabaseName CrossRef
PubMed
Applied Social Sciences Index & Abstracts (ASSIA)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Applied Social Sciences Index and Abstracts (ASSIA)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Education
EISSN 1466-187X
EndPage 1026
ExternalDocumentID 38146711
10_1080_0142159X_2023_2294703
Genre Journal Article
GroupedDBID ---
-W8
00X
03L
0R~
29M
36B
4.4
5GY
5RE
AAGDL
AAHSB
AALUX
AAMIU
AAPUL
AAQRR
AAWTL
AAYXX
ABBKH
ABDBF
ABEIZ
ABIVO
ABJNI
ABLIJ
ABLJU
ABLKL
ABUPF
ABWVI
ABXYU
ACENM
ACGEJ
ACGFS
ACIEZ
ACUHS
ADCVX
ADRBQ
ADXPE
ADYSH
AECIN
AENEX
AEOZL
AFKVX
AFRVT
AGDLA
AGFJD
AGRBW
AGYJP
AHMBA
AIJEM
AIRBT
AJWEG
AKBVH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALSLI
ALYBC
AMDAE
AMPGV
B0M
BABNJ
BLEHA
BOHLJ
CCCUG
CITATION
CS3
DKSSO
EAP
EAS
EBC
EBD
EBS
EDJ
EHN
EMB
EMK
EMOBN
EPL
EPT
ESO
ESX
F5P
H13
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
O9-
P2P
Q~Q
RNANH
RPD
RVRKI
SV3
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
TUS
UEQFS
V1S
~1N
.GO
NPM
TASJS
7QJ
K9.
7X8
ID FETCH-LOGICAL-c384t-1e7d038220f285b2b8305c8872bb4e466e1dfd32e4f198fa6ff78d77584537013
ISSN 0142-159X
1466-187X
IngestDate Thu Jul 10 19:10:32 EDT 2025
Wed Aug 13 06:52:07 EDT 2025
Mon Jul 21 06:05:45 EDT 2025
Tue Jul 01 01:46:34 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords AI
questions
medical assessment
Chat GPT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-1e7d038220f285b2b8305c8872bb4e466e1dfd32e4f198fa6ff78d77584537013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3487-3948
0009-0002-0810-3226
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/0142159X.2023.2294703?needAccess=true
PMID 38146711
PQID 3090225389
PQPubID 33662
PageCount 6
ParticipantIDs proquest_miscellaneous_2906180099
proquest_journals_3090225389
pubmed_primary_38146711
crossref_primary_10_1080_0142159X_2023_2294703
crossref_citationtrail_10_1080_0142159X_2023_2294703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-02
PublicationDateYYYYMMDD 2024-08-02
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Medical teacher
PublicationTitleAlternate Med Teach
PublicationYear 2024
Publisher Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_12_1
e_1_3_4_3_1
e_1_3_4_13_1
e_1_3_4_2_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_6_1
e_1_3_4_5_1
References_xml – ident: e_1_3_4_10_1
  doi: 10.1148/radiol.230922
– ident: e_1_3_4_9_1
  doi: 10.1186/1472-6920-7-49
– ident: e_1_3_4_8_1
– ident: e_1_3_4_13_1
  doi: 10.1080/10872981.2021.2005505
– ident: e_1_3_4_6_1
  doi: 10.5688/ajpe766114
– ident: e_1_3_4_11_1
  doi: 10.1016/j.iotcps.2023.04.003
– ident: e_1_3_4_2_1
  doi: 10.4103/2230-8229.97543
– ident: e_1_3_4_5_1
  doi: 10.1016/j.procir.2023.05.002
– ident: e_1_3_4_7_1
  doi: 10.3389/fpubh.2022.1118116
– ident: e_1_3_4_12_1
  doi: 10.1002/ase.1507
– ident: e_1_3_4_4_1
  doi: 10.1002/brx2.30
– ident: e_1_3_4_3_1
  doi: 10.1227/neu.0000000000002551
SSID ssj0005995
Score 2.5475688
Snippet Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions....
BackgroundCrafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1021
SubjectTerms Artificial intelligence
Best practice
Chatbots
Classification
Evaluation
Experts
Independent study
Innovations
Medical education
Multiple choice
Quality assessment
Selfdirected learning
Title Twelve tips to leverage AI for efficient and effective medical question generation: A guide for educators using Chat GPT
URI https://www.ncbi.nlm.nih.gov/pubmed/38146711
https://www.proquest.com/docview/3090225389
https://www.proquest.com/docview/2906180099
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZC6UvY-tu2bqhwd6CQyzLsb03d1vbDFLCSCFvRralJiN1Qmrv9ut3ji5OCi27vJggxTLJ9_noHOnTOYS8k0UUlmGpPGDwwON-HnkiVoknBXw_KFRS6CoR44vh-SX_PAtnnc56R7XU1Hm_-HXnuZL_QRXaAFc8JfsPyLaDQgN8BnzhCgjD9e8w_i6X32SvXqx1noalhF-AGpx0ZDJ56_QQTkRulBsoFLq2mzN6SkD4r3TuaSfzSHtXzaK0ycC1_gML8jRGITAXde9sMt31ad1eT22SQ7dkq8qNWV0dYTEGUS16X8TXdhaYCGiq58KuwE42i59t31mzNk7thZTLxXbmGONpL2V6mk2znDd2PcEuWzCuRXPG7kpjavlw6PlxNNsxn_6dRt2qIH0O7kky62PB9z5jCY90doR6B-j1tUY6wHXNyBrx29m0XdcDss8gsADLuJ-efDw53cqCkiR0J70wB_tdTz0kB26c2-7MPTGK9lWmj8hDG2TQ1DDmMenI6gjrc1stzxE5GFtJxRPyw5CIIolovaKORDQdUWAAbUlEgUS0JRG1JKKORHRLovc0pZpCZgBHIaopRJFCFCj0lFyefpp-OPdsOQ6vCGJee76MykEADuVAsTjMWR7DXFHAJMXynEtAU_qlKgMmufKTWImhUlFcRhCQ8jCIINR4RvaqVSVfEFr4qsgDPPjCE84FRN1SYPHQJA-FUIx1CXf_albYXPVYMmWZ-S6lrcUlQ1wyi0uX9Nvb1iZZy59uOHaQZfa9vskClCozcASSLnnbdoPVxa00UclVc5NhkQQ_xvCqS54bqNsnOmq8vLfnFTncvhLHZK_eNPI1-LZ1_sbS8TccnJ9y
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twelve+tips+to+leverage+AI+for+efficient+and+effective+medical+question+generation%3A+A+guide+for+educators+using+Chat+GPT&rft.jtitle=Medical+teacher&rft.au=Indran%2C+Inthrani+Raja&rft.au=Paranthaman%2C+Priya&rft.au=Gupta%2C+Neelima&rft.au=Mustafa%2C+Nurulhuda&rft.date=2024-08-02&rft.eissn=1466-187X&rft.spage=1&rft_id=info:doi/10.1080%2F0142159X.2023.2294703&rft_id=info%3Apmid%2F38146711&rft.externalDocID=38146711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-159X&client=summon