Real-time imaging of single neuronal cell apoptosis in patients with glaucoma
See Herms and Schön (doi: 10.1093/brain/awx100 ) for a scientific commentary on this article. Glaucoma is often diagnosed late when vision loss has already occurred. Cordeiro et al . report a new fluorescent marker for retinal imaging that can safely visualise real-time in vivo neuronal apoptosis in...
Saved in:
Published in | Brain (London, England : 1878) Vol. 140; no. 6; pp. 1757 - 1767 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awx088 |
Cover
Loading…
Abstract | See Herms and Schön (doi:
10.1093/brain/awx100
) for a scientific commentary on this article.
Glaucoma is often diagnosed late when vision loss has already occurred. Cordeiro
et al
. report a new fluorescent marker for retinal imaging that can safely visualise real-time
in vivo
neuronal apoptosis in patients. Increased labelling is observed in patients with progressive neurodegenerative disease compared to healthy controls.
See Herms and Schön (doi:
10.1093/brain/awx100
) for a scientific commentary on this article.
Retinal cell apoptosis occurs in many ocular neurodegenerative conditions including glaucoma—the major cause of irreversible blindness worldwide. Using a new imaging technique that we have called DARC (detection of apoptosing retinal cells), which until now has only been demonstrated in animal models, we assessed if annexin 5 labelled with fluorescent dye DY-776 (ANX776) could be used safely in humans to identify retinal cell apoptosis. Eight patients with glaucomatous neurodegeneration and evidence of progressive disease, and eight healthy subjects were randomly assigned to intravenous ANX776 doses of 0.1, 0.2, 0.4 and 0.5 mg in an open-label, phase 1 clinical trial. In addition to assessing the safety, tolerability and pharmacokinetics of ANX776, the study aimed to explore whether DARC could successfully visualize individual retinal cell apoptosis
in vivo
in humans, with the DARC count defined as the total number of unique ANX776-labelled spots. DARC enabled retinal cell apoptosis to be identified in the human retina using ANX776. Single ANX776-labelled cells were visualized in a dose-dependent pattern (
P <
0.001) up to 6 h after injection. The DARC count was significantly higher (2.37-fold, 95% confidence interval: 1.4–4.03,
P =
0.003) in glaucoma patients compared to healthy controls, and was significantly (
P =
0.045) greater in patients who later showed increasing rates of disease progression, based on either optic disc, retinal nerve fibre layer or visual field parameters. Additionally, the DARC count significantly correlated with decreased central corneal thickness (Spearman’s R = −0.68,
P =
0.006) and increased cup-disc ratios (Spearman’s R = 0.47,
P =
0.038) in glaucoma patients and with increased age (Spearman’s R = 0.77,
P =
0.001) in healthy controls. Finally, ANX776 was found to be safe and well-tolerated with no serious adverse events, and a short half-life (10–36 min). This proof-of-concept study demonstrates that retinal cell apoptosis can be identified in the human retina with increased levels of activity in glaucomatous neurodegenerative disease. To our knowledge, this is the first time individual neuronal apoptosis has been visualized
in vivo
in humans and is the first demonstration of detection of individual apoptotic cells in a neurodegenerative disease. Furthermore, our results suggest the level of apoptosis (‘DARC count’) is predictive of disease activity, indicating the potential of DARC as a surrogate marker. Although further trials are clearly needed, this study validates experimental findings supporting the use of DARC as a method of detection and monitoring of patients with glaucomatous neurodegeneration, where retinal ganglion cell apoptosis is an established process and where there is a real need for tools to non-invasively assess treatment efficacy. |
---|---|
AbstractList | See Herms and Schön (doi:
10.1093/brain/awx100
) for a scientific commentary on this article.
Glaucoma is often diagnosed late when vision loss has already occurred. Cordeiro
et al
. report a new fluorescent marker for retinal imaging that can safely visualise real-time
in vivo
neuronal apoptosis in patients. Increased labelling is observed in patients with progressive neurodegenerative disease compared to healthy controls.
See Herms and Schön (doi:
10.1093/brain/awx100
) for a scientific commentary on this article.
Retinal cell apoptosis occurs in many ocular neurodegenerative conditions including glaucoma—the major cause of irreversible blindness worldwide. Using a new imaging technique that we have called DARC (detection of apoptosing retinal cells), which until now has only been demonstrated in animal models, we assessed if annexin 5 labelled with fluorescent dye DY-776 (ANX776) could be used safely in humans to identify retinal cell apoptosis. Eight patients with glaucomatous neurodegeneration and evidence of progressive disease, and eight healthy subjects were randomly assigned to intravenous ANX776 doses of 0.1, 0.2, 0.4 and 0.5 mg in an open-label, phase 1 clinical trial. In addition to assessing the safety, tolerability and pharmacokinetics of ANX776, the study aimed to explore whether DARC could successfully visualize individual retinal cell apoptosis
in vivo
in humans, with the DARC count defined as the total number of unique ANX776-labelled spots. DARC enabled retinal cell apoptosis to be identified in the human retina using ANX776. Single ANX776-labelled cells were visualized in a dose-dependent pattern (
P <
0.001) up to 6 h after injection. The DARC count was significantly higher (2.37-fold, 95% confidence interval: 1.4–4.03,
P =
0.003) in glaucoma patients compared to healthy controls, and was significantly (
P =
0.045) greater in patients who later showed increasing rates of disease progression, based on either optic disc, retinal nerve fibre layer or visual field parameters. Additionally, the DARC count significantly correlated with decreased central corneal thickness (Spearman’s R = −0.68,
P =
0.006) and increased cup-disc ratios (Spearman’s R = 0.47,
P =
0.038) in glaucoma patients and with increased age (Spearman’s R = 0.77,
P =
0.001) in healthy controls. Finally, ANX776 was found to be safe and well-tolerated with no serious adverse events, and a short half-life (10–36 min). This proof-of-concept study demonstrates that retinal cell apoptosis can be identified in the human retina with increased levels of activity in glaucomatous neurodegenerative disease. To our knowledge, this is the first time individual neuronal apoptosis has been visualized
in vivo
in humans and is the first demonstration of detection of individual apoptotic cells in a neurodegenerative disease. Furthermore, our results suggest the level of apoptosis (‘DARC count’) is predictive of disease activity, indicating the potential of DARC as a surrogate marker. Although further trials are clearly needed, this study validates experimental findings supporting the use of DARC as a method of detection and monitoring of patients with glaucomatous neurodegeneration, where retinal ganglion cell apoptosis is an established process and where there is a real need for tools to non-invasively assess treatment efficacy. |
Author | Guo, Li Cordeiro, Maria F. Davis, Benjamin M. Jeylani, Seham Normando, Eduardo M. A’Hern, Roger Cardoso, M. Jorge Bloom, Philip A. Miodragovic, Serge Ourselin, Sebastien |
AuthorAffiliation | 4 Translational Imaging Group, Centre for Medical Image Computing, University College London, Wolfson House, Stephenson Way, London, NW1 2HE London, UK 3 The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK 5 81 Hillier Road, London SW11 6AX, UK 2 The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK 1 Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK |
AuthorAffiliation_xml | – name: 3 The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK – name: 4 Translational Imaging Group, Centre for Medical Image Computing, University College London, Wolfson House, Stephenson Way, London, NW1 2HE London, UK – name: 1 Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK – name: 5 81 Hillier Road, London SW11 6AX, UK – name: 2 The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK |
Author_xml | – sequence: 1 givenname: Maria F. surname: Cordeiro fullname: Cordeiro, Maria F. organization: Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK, The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK, The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK – sequence: 2 givenname: Eduardo M. surname: Normando fullname: Normando, Eduardo M. organization: The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK, The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK – sequence: 3 givenname: M. Jorge surname: Cardoso fullname: Cardoso, M. Jorge organization: Translational Imaging Group, Centre for Medical Image Computing, University College London, Wolfson House, Stephenson Way, London, NW1 2HE London, UK – sequence: 4 givenname: Serge surname: Miodragovic fullname: Miodragovic, Serge organization: The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK – sequence: 5 givenname: Seham surname: Jeylani fullname: Jeylani, Seham organization: The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK – sequence: 6 givenname: Benjamin M. surname: Davis fullname: Davis, Benjamin M. organization: Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK – sequence: 7 givenname: Li surname: Guo fullname: Guo, Li organization: Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK – sequence: 8 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien organization: Translational Imaging Group, Centre for Medical Image Computing, University College London, Wolfson House, Stephenson Way, London, NW1 2HE London, UK – sequence: 9 givenname: Roger surname: A’Hern fullname: A’Hern, Roger organization: 81 Hillier Road, London SW11 6AX, UK – sequence: 10 givenname: Philip A. surname: Bloom fullname: Bloom, Philip A. organization: The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK, The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28449038$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v1DAQxS20Fbst3DgjHzkQdvy58QUJVXxJW1WqytmaZJ2tkWOHOKHw3-PtlopWnOYwv3kzb94pWcQUHSGvGLxjYMS6GdHHNd7-grp-RlZMaqg4U3pBVgCgq9ooWJLTnL8DMCm4fk6WvJbSgKhX5OLKYagm3zvqe9z7uKepo7nU4Gh085giBtq6ECgOaZhS9pn6SAecvItTprd-uqH7gHObenxBTjoM2b28r2fk26eP1-dfqu3l56_nH7ZVK2o5VazduQ02mu8UUygBJQOuuak1OCd2RvGGGa4a7SQojWg2ZtMx1hrGZFc8iTPy_qg7zE3vdm25ZMRgh7F4GH_bhN4-7kR_Y_fpp1VSKq5kEXhzLzCmH7PLk-19PrjE6NKcLauNUAqEgIK-_nfXw5K_PyzA2yPQjinn0XUPCAN7iMjeRWSPERWcP8FbP5VvpsOlPvx_6A9tAJfi |
CitedBy_id | crossref_primary_10_1038_s41598_022_09677_w crossref_primary_10_1080_17469899_2022_2101449 crossref_primary_10_1038_s41598_018_38363_z crossref_primary_10_1159_000504892 crossref_primary_10_1089_jop_2017_0125 crossref_primary_10_18008_1816_5095_2019_4_479_486 crossref_primary_10_1080_02713683_2019_1663385 crossref_primary_10_1016_j_brainres_2019_02_008 crossref_primary_10_1093_hmg_ddx273 crossref_primary_10_1002_alz_12179 crossref_primary_10_1016_j_preteyeres_2022_101160 crossref_primary_10_1080_17469899_2021_1835470 crossref_primary_10_1016_j_preteyeres_2019_07_005 crossref_primary_10_1016_j_survophthal_2024_07_001 crossref_primary_10_1093_braincomms_fcz035 crossref_primary_10_4236_wjns_2020_101007 crossref_primary_10_1080_17434440_2020_1816167 crossref_primary_10_1080_17469899_2018_1465820 crossref_primary_10_1371_journal_pone_0245369 crossref_primary_10_3390_nu11122931 crossref_primary_10_1016_j_ophtha_2018_06_017 crossref_primary_10_1016_j_preteyeres_2020_100875 crossref_primary_10_1016_j_preteyeres_2021_100976 crossref_primary_10_1146_annurev_vision_102016_061422 crossref_primary_10_1073_pnas_1711734114 crossref_primary_10_1080_02713683_2022_2068182 crossref_primary_10_1186_s40478_018_0650_x crossref_primary_10_1038_s41598_020_60427_2 crossref_primary_10_1177_0192623320976375 crossref_primary_10_3892_ijmm_2019_4080 crossref_primary_10_3390_cells7060060 crossref_primary_10_3390_biom11081215 crossref_primary_10_1038_s41582_022_00618_9 crossref_primary_10_1002_mds_27454 crossref_primary_10_1016_j_bbrc_2023_09_076 crossref_primary_10_1016_j_preteyeres_2020_100920 crossref_primary_10_1109_RBME_2022_3161352 crossref_primary_10_1007_s00347_018_0670_8 crossref_primary_10_1021_acs_bioconjchem_0c00435 crossref_primary_10_1159_000513584 crossref_primary_10_3389_fneur_2022_964197 crossref_primary_10_3390_genes10060453 crossref_primary_10_1080_14737159_2020_1758067 crossref_primary_10_1007_s11095_018_2557_4 crossref_primary_10_1016_j_exer_2018_11_005 crossref_primary_10_3390_ijms251910485 crossref_primary_10_4103_1673_5374_306062 crossref_primary_10_1016_j_bios_2021_113700 crossref_primary_10_1097_IIO_0000000000000228 crossref_primary_10_23736_S2785_1265_23_01882_7 crossref_primary_10_1186_s12964_023_01427_3 crossref_primary_10_1001_jamaophthalmol_2022_2141 crossref_primary_10_1016_j_yaoo_2021_05_003 crossref_primary_10_1038_s41433_018_0227_8 crossref_primary_10_3390_ijms19041218 crossref_primary_10_1186_s13195_019_0516_x crossref_primary_10_3390_cells13090775 crossref_primary_10_1089_biores_2017_0036 crossref_primary_10_1002_jcp_27549 crossref_primary_10_3390_ph17080979 crossref_primary_10_1080_17469899_2019_1604222 crossref_primary_10_1177_2040622319882205 crossref_primary_10_3389_fphar_2021_729249 crossref_primary_10_1016_j_preteyeres_2020_100899 crossref_primary_10_1186_s40478_018_0577_2 crossref_primary_10_1002_bab_2107 crossref_primary_10_1167_tvst_13_1_20 crossref_primary_10_1167_iovs_62_3_34 crossref_primary_10_1097_IIO_0000000000000285 crossref_primary_10_1002_jcp_30834 crossref_primary_10_1016_j_exer_2019_107833 crossref_primary_10_1038_s41598_018_19969_9 crossref_primary_10_3390_biomedicines12030633 crossref_primary_10_3389_fneur_2018_00338 crossref_primary_10_1111_bcp_14507 crossref_primary_10_2174_1566524022666220508182051 crossref_primary_10_1002_dad2_12327 crossref_primary_10_1155_2018_5489476 crossref_primary_10_4103_1673_5374_235017 crossref_primary_10_1016_j_dadm_2019_05_002 crossref_primary_10_1080_14737159_2020_1865806 crossref_primary_10_1039_D2LC00431C crossref_primary_10_3389_fphar_2023_1149708 crossref_primary_10_1016_j_ophtha_2017_10_011 crossref_primary_10_12968_opti_2019_3_213215 |
Cites_doi | 10.1016/j.ophtha.2007.03.016 10.2967/jnumed.109.068429 10.1001/archopht.124.6.853 10.1167/iovs.08-1753 10.1016/j.ajo.2010.09.026 10.1016/S0021-5155(97)00013-0 10.1016/j.neuroimage.2004.04.030 10.1097/MD.0000000000004209 10.1001/archopht.1997.01100160201010 10.1111/aos.12788 10.1117/1.JMI.1.2.024003 10.1001/archopht.120.6.714 10.1016/j.ophtha.2016.02.017 10.1073/pnas.0703707104 10.1038/cddis.2009.3 10.1021/bc3003309 10.1016/j.yexcr.2009.10.004 10.1002/9780470744055 10.1007/s10384-011-0110-7 10.1096/fj.13-235440 10.1167/iovs.13-12236 10.1016/S0039-6257(99)00029-6 10.1001/archopht.126.8.1030 10.1167/iovs.07-1335 10.1016/S0039-6257(01)00204-1 10.2310/7290.2010.00058 10.1001/archophthalmol.2009.297 10.1038/cddis.2014.399 10.1016/S0014-4835(95)80056-5 10.1097/IJG.0b013e318255da30 10.1109/TBME.2011.2109001 10.1073/pnas.0405479101 10.1016/j.ab.2004.02.043 10.1016/j.exer.2006.08.009 10.1007/s12640-014-9488-6 10.1016/j.ophtha.2014.05.013 10.1167/iovs.04-0832 10.1016/j.ajo.2012.04.022 10.1016/j.cmpb.2009.09.002 10.1016/S0197-4580(02)00059-3 10.4103/0974-9233.110605 10.1016/S0140-6736(10)61423-7 10.1016/j.molonc.2012.01.010 10.1038/eye.2009.309 10.1186/s40478-016-0346-z 10.1080/02713680701585872 10.1056/NEJMra0804630 10.1126/science.1112125 10.1016/j.ajo.2011.06.004 10.1016/j.ophtha.2011.03.018 10.1002/1097-0185(20001001)260:2<124::AID-AR20>3.0.CO;2-D 10.1007/s00347-009-1952-y 10.1167/iovs.05-0754 10.1167/iovs.08-2970 |
ContentType | Journal Article |
Copyright | The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. 2017 |
Copyright_xml | – notice: The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. – notice: The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/awx088 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 1767 |
ExternalDocumentID | PMC5445254 28449038 10_1093_brain_awx088 |
Genre | Randomized Controlled Trial Journal Article Clinical Trial, Phase I |
GrantInformation_xml | – fundername: ; grantid: WT099729 |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c384t-1cde7ab62d515a40a4102629860ee3d952b1925b6e4056aa9797f11c9114f0063 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 18:07:39 EDT 2025 Fri Jul 11 10:12:46 EDT 2025 Wed Feb 19 02:26:17 EST 2025 Tue Jul 01 00:46:09 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | apoptosis real-time visualization retinal imaging glaucoma |
Language | English |
License | The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-1cde7ab62d515a40a4102629860ee3d952b1925b6e4056aa9797f11c9114f0063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 See Herms and Schön (doi:10.1093/brain/awx100) for a scientific commentary on this article. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5445254 |
PMID | 28449038 |
PQID | 1893550330 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5445254 proquest_miscellaneous_1893550330 pubmed_primary_28449038 crossref_primary_10_1093_brain_awx088 crossref_citationtrail_10_1093_brain_awx088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Henry ( key 20180226040250_awx088-B22) 2012; 6 Bengtsson ( key 20180226040250_awx088-B4) 2009; 127 Pathak ( key 20180226040250_awx088-B44) 2013; 54 Aptel ( key 20180226040250_awx088-B2) 2015; 93 Medeiros ( key 20180226040250_awx088-B36) 2012; 154 Wolf-Schnurrbusch ( key 20180226040250_awx088-B59) 2009; 50 Zeyen ( key 20180226040250_awx088-B61) 1999; 274 Adanja ( key 20180226040250_awx088-B1) 2010; 316 Cordeiro ( key 20180226040250_awx088-B9) 2010; 1 Modat ( key 20180226040250_awx088-B38) 2010; 98 Krupin ( key 20180226040250_awx088-B29) 2011; 151 Tait ( key 20180226040250_awx088-B52) 2004; 329 Kyari ( key 20180226040250_awx088-B32) 2013; 20 Guo ( key 20180226040250_awx088-B18) 2006; 47 Tatton ( key 20180226040250_awx088-B54) 2001; 45 Harwerth ( key 20180226040250_awx088-B21) 2008; 49 Hirooka ( key 20180226040250_awx088-B23) 2016; 95 Quigley ( key 20180226040250_awx088-B45) 2011; 377 Galvao ( key 20180226040250_awx088-B12) 2014; 28 Brunelli ( key 20180226040250_awx088-B6) 2009 Kerrigan ( key 20180226040250_awx088-B27) 1997; 115 Harwerth ( key 20180226040250_awx088-B20) 2006; 124 Guo ( key 20180226040250_awx088-B17) 2007; 104 Reichstein ( key 20180226040250_awx088-B47) 2007; 84 Garcia-Valenzuela ( key 20180226040250_awx088-B13) 1995; 61 Kwon ( key 20180226040250_awx088-B31) 2009; 360 Guo ( key 20180226040250_awx088-B16) 2005; 46 Kujoth ( key 20180226040250_awx088-B30) 2005; 309 Tait ( key 20180226040250_awx088-B53) 2006; 47 Gordon ( key 20180226040250_awx088-B14) 2002; 120 Schmitz-Valckenberg ( key 20180226040250_awx088-B50) 2008; 49 Smith ( key 20180226040250_awx088-B51) 2012; 23 Normando ( key 20180226040250_awx088-B41) 2016; 4 Tham ( key 20180226040250_awx088-B55) 2014; 121 Yu ( key 20180226040250_awx088-B60) 2016; 123 Leske ( key 20180226040250_awx088-B33) 2007; 114 Vangestel ( key 20180226040250_awx088-B56) 2011; 10 Maass ( key 20180226040250_awx088-B35) 2007; 32 Okisaka ( key 20180226040250_awx088-B43) 1997; 41 Schmitz-Valckenberg ( key 20180226040250_awx088-B49) 2010; 107 Cho ( key 20180226040250_awx088-B8) 2012; 56 Varma ( key 20180226040250_awx088-B57) 2011; 152 Kerrigan-Baumrind ( key 20180226040250_awx088-B28) 2000; 41 Nickells ( key 20180226040250_awx088-B40) 1999; 43 Dewan ( key 20180226040250_awx088-B11) 2011; 58 Brandt ( key 20180226040250_awx088-B5) 2012; 119 Neufeld ( key 20180226040250_awx088-B39) 2003; 24 Quigley ( key 20180226040250_awx088-B46) 1995; 36 Benali ( key 20180226040250_awx088-B3) 2014; 13 Salt ( key 20180226040250_awx088-B48) 2014; 26 Cordeiro ( key 20180226040250_awx088-B10) 2004; 101 Keane ( key 20180226040250_awx088-B25) 2010; 24 Jonas ( key 20180226040250_awx088-B24) 1992; 33 Chauhan ( key 20180226040250_awx088-B7) 2008; 126 Modat ( key 20180226040250_awx088-B37) 2014; 1 Normando ( key 20180226040250_awx088-B42) 2013; 10 Harman ( key 20180226040250_awx088-B19) 2000; 260 Guo ( key 20180226040250_awx088-B15) 2014; 5 Wang ( key 20180226040250_awx088-B58) 2013; 22 Lewis ( key 20180226040250_awx088-B34) 2004; 23 Kenis ( key 20180226040250_awx088-B26) 2010; 51 28549130 - Brain. 2017 Jun 1;140(6):1542-1543 |
References_xml | – volume: 114 start-page: 1965 year: 2007 ident: key 20180226040250_awx088-B33 article-title: Predictors of long-term progression in the early manifest glaucoma trial publication-title: Ophthalmology doi: 10.1016/j.ophtha.2007.03.016 – volume: 51 start-page: 259 year: 2010 ident: key 20180226040250_awx088-B26 article-title: Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging publication-title: J Nucl Med doi: 10.2967/jnumed.109.068429 – volume: 124 start-page: 853 year: 2006 ident: key 20180226040250_awx088-B20 article-title: Visual field defects and retinal ganglion cell losses in patients with glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.124.6.853 – volume: 49 start-page: 4437 year: 2008 ident: key 20180226040250_awx088-B21 article-title: Age-related losses of retinal ganglion cells and axons publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.08-1753 – volume: 151 start-page: 671 year: 2011 ident: key 20180226040250_awx088-B29 article-title: A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2010.09.026 – volume: 41 start-page: 84 year: 1997 ident: key 20180226040250_awx088-B43 article-title: Apoptosis in retinal ganglion cell decrease in human glaucomatous eyes publication-title: Jpn J Ophthalmol doi: 10.1016/S0021-5155(97)00013-0 – volume: 23 start-page: 75 year: 2004 ident: key 20180226040250_awx088-B34 article-title: Correction of differential intensity inhomogeneity in longitudinal MR images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.030 – volume: 95 start-page: e4209 year: 2016 ident: key 20180226040250_awx088-B23 article-title: Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: an observational cohort study publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000004209 – volume: 115 start-page: 1031 year: 1997 ident: key 20180226040250_awx088-B27 article-title: TUNEL-positive ganglion cells in human primary open-angle glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.1997.01100160201010 – volume: 93 start-page: e615 year: 2015 ident: key 20180226040250_awx088-B2 article-title: Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1 publication-title: Acta Ophthalmol doi: 10.1111/aos.12788 – volume: 1 start-page: 024003 year: 2014 ident: key 20180226040250_awx088-B37 article-title: Global image registration using a symmetric block-matching approach publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.1.2.024003 – volume: 120 start-page: 714 year: 2002 ident: key 20180226040250_awx088-B14 article-title: The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.120.6.714 – volume: 13 start-page: 1 year: 2014 ident: key 20180226040250_awx088-B3 article-title: Preclinical validation of 99mTc-annexin A5‐128 in experimental autoimmune myocarditis and infective endocarditis: comparison with 99mTc-HYNIC-annexin A5 publication-title: Mol Imaging – volume: 123 start-page: 1201 year: 2016 ident: key 20180226040250_awx088-B60 article-title: Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.02.017 – volume: 104 start-page: 13444 year: 2007 ident: key 20180226040250_awx088-B17 article-title: Targeting amyloid-beta in glaucoma treatment publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0703707104 – volume: 1 start-page: e3 year: 2010 ident: key 20180226040250_awx088-B9 article-title: Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo publication-title: Cell Death Dis doi: 10.1038/cddis.2009.3 – volume: 23 start-page: 1989 year: 2012 ident: key 20180226040250_awx088-B51 article-title: Biomarkers and molecular probes for cell death imaging and targeted therapeutics publication-title: Bioconjug Chem doi: 10.1021/bc3003309 – volume: 316 start-page: 181 year: 2010 ident: key 20180226040250_awx088-B1 article-title: Automated tracking of unmarked cells migrating in three-dimensional matrices applied to anti-cancer drug screening publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2009.10.004 – volume-title: Template matching techniques in computer vision: theory and practice year: 2009 ident: key 20180226040250_awx088-B6 doi: 10.1002/9780470744055 – volume: 56 start-page: 128 year: 2012 ident: key 20180226040250_awx088-B8 article-title: Progression detection in different stages of glaucoma: mean deviation versus visual field index publication-title: Jpn J Ophthalmol doi: 10.1007/s10384-011-0110-7 – volume: 28 start-page: 1317 year: 2014 ident: key 20180226040250_awx088-B12 article-title: Unexpected low-dose toxicity of the universal solvent DMSO publication-title: FASEB J doi: 10.1096/fj.13-235440 – volume: 54 start-page: 5505 year: 2013 ident: key 20180226040250_awx088-B44 article-title: Nonlinear, multilevel mixed-effects approach for modeling longitudinal standard automated perimetry data in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-12236 – volume: 274 start-page: 61 year: 1999 ident: key 20180226040250_awx088-B61 article-title: Target pressures in glaucoma publication-title: Bull Soc Belge Ophtalmol – volume: 43 start-page: S151 year: 1999 ident: key 20180226040250_awx088-B40 article-title: Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death publication-title: Surv Ophthalmol doi: 10.1016/S0039-6257(99)00029-6 – volume: 126 start-page: 1030 year: 2008 ident: key 20180226040250_awx088-B7 article-title: Canadian Glaucoma Study: 2. risk factors for the progression of open-angle glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.126.8.1030 – volume: 49 start-page: 2773 year: 2008 ident: key 20180226040250_awx088-B50 article-title: Real-time in vivo imaging of retinal cell apoptosis after laser exposure publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.07-1335 – volume: 45 start-page: S268 year: 2001 ident: key 20180226040250_awx088-B54 article-title: In situ detection of apoptosis in normal pressure glaucoma publication-title: a preliminary examination. Surv Ophthalmol doi: 10.1016/S0039-6257(01)00204-1 – volume: 10 start-page: 340 year: 2011 ident: key 20180226040250_awx088-B56 article-title: In vivo imaging of apoptosis in oncology: an update publication-title: Mol Imaging doi: 10.2310/7290.2010.00058 – volume: 127 start-page: 1610 year: 2009 ident: key 20180226040250_awx088-B4 article-title: Prediction of glaucomatous visual field loss by extrapolation of linear trends publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2009.297 – volume: 5 start-page: e1460 year: 2014 ident: key 20180226040250_awx088-B15 article-title: Direct optic nerve sheath (DONS) application of Schwann cells prolongs retinal ganglion cell survival in vivo publication-title: Cell Death Dis doi: 10.1038/cddis.2014.399 – volume: 61 start-page: 33 year: 1995 ident: key 20180226040250_awx088-B13 article-title: Programmed cell death of retinal ganglion cells during experimental glaucoma publication-title: Exp Eye Res doi: 10.1016/S0014-4835(95)80056-5 – volume: 22 start-page: 652 year: 2013 ident: key 20180226040250_awx088-B58 article-title: Comparison of neuroretinal rim area measurements made by the Heidelberg Retina Tomograph I and the Heidelberg Retina Tomograph II publication-title: J Glaucoma doi: 10.1097/IJG.0b013e318255da30 – volume: 58 start-page: 1637 year: 2011 ident: key 20180226040250_awx088-B11 article-title: Tracking biological cells in time-lapse microscopy: an adaptive technique combining motion and topological features publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2109001 – volume: 101 start-page: 13352 year: 2004 ident: key 20180226040250_awx088-B10 article-title: Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0405479101 – volume: 329 start-page: 112 year: 2004 ident: key 20180226040250_awx088-B52 article-title: Measurement of the affinity and cooperativity of annexin V-membrane binding under conditions of low membrane occupancy publication-title: Anal Biochem doi: 10.1016/j.ab.2004.02.043 – volume: 84 start-page: 13 year: 2007 ident: key 20180226040250_awx088-B47 article-title: Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma publication-title: Exp Eye Res doi: 10.1016/j.exer.2006.08.009 – volume: 26 start-page: 440 year: 2014 ident: key 20180226040250_awx088-B48 article-title: Effect of the Abeta aggregation modulator MRZ-99030 on retinal damage in an animal model of glaucoma publication-title: Neurotox Res doi: 10.1007/s12640-014-9488-6 – volume: 121 start-page: 2081 year: 2014 ident: key 20180226040250_awx088-B55 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.05.013 – volume: 46 start-page: 175 year: 2005 ident: key 20180226040250_awx088-B16 article-title: Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.04-0832 – volume: 154 start-page: 814 year: 2012 ident: key 20180226040250_awx088-B36 article-title: Estimating the rate of retinal ganglion cell loss in glaucoma publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2012.04.022 – volume: 98 start-page: 278 year: 2010 ident: key 20180226040250_awx088-B38 article-title: Fast free-form deformation using graphics processing units publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2009.09.002 – volume: 47 start-page: 1546 year: 2006 ident: key 20180226040250_awx088-B53 article-title: Improved detection of cell death in vivo with annexin V radiolabeled by site-specific methods publication-title: J Nucl Med – volume: 24 start-page: 167 year: 2003 ident: key 20180226040250_awx088-B39 article-title: The inherent, age-dependent loss of retinal ganglion cells is related to the lifespan of the species publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00059-3 – volume: 20 start-page: 111 year: 2013 ident: key 20180226040250_awx088-B32 article-title: Epidemiology of glaucoma in sub-saharan Africa: prevalence, incidence and risk factors publication-title: Middle East Afr J Ophthalmol doi: 10.4103/0974-9233.110605 – volume: 377 start-page: 1367 year: 2011 ident: key 20180226040250_awx088-B45 article-title: Glaucoma publication-title: Lancet doi: 10.1016/S0140-6736(10)61423-7 – volume: 6 start-page: 140 year: 2012 ident: key 20180226040250_awx088-B22 article-title: Cancer biomarkers publication-title: Mol Oncol doi: 10.1016/j.molonc.2012.01.010 – volume: 24 start-page: 422 year: 2010 ident: key 20180226040250_awx088-B25 article-title: Imaging chorioretinal vascular disease publication-title: Eye (Lond) doi: 10.1038/eye.2009.309 – volume: 41 start-page: 741 year: 2000 ident: key 20180226040250_awx088-B28 article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons publication-title: Invest Ophthalmol Vis Sci – volume: 4 start-page: 86 year: 2016 ident: key 20180226040250_awx088-B41 article-title: The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-016-0346-z – volume: 32 start-page: 851 year: 2007 ident: key 20180226040250_awx088-B35 article-title: Assessment of rat and mouse RGC apoptosis imaging in vivo with different scanning laser ophthalmoscopes publication-title: Curr Eye Res doi: 10.1080/02713680701585872 – volume: 360 start-page: 1113 year: 2009 ident: key 20180226040250_awx088-B31 article-title: Primary open-angle glaucoma publication-title: N Engl J Med doi: 10.1056/NEJMra0804630 – volume: 309 start-page: 481 year: 2005 ident: key 20180226040250_awx088-B30 article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging publication-title: Science doi: 10.1126/science.1112125 – volume: 152 start-page: 515 year: 2011 ident: key 20180226040250_awx088-B57 article-title: An assessment of the health and economic burdens of glaucoma publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2011.06.004 – volume: 33 start-page: 2012 year: 1992 ident: key 20180226040250_awx088-B24 article-title: Human optic nerve fiber count and optic disc size publication-title: Invest Ophthalmol Vis Sci – volume: 119 start-page: 437 year: 2012 ident: key 20180226040250_awx088-B5 article-title: Adjusting intraocular pressure for central corneal thickness does not improve prediction models for primary open-angle glaucoma publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.03.018 – volume: 260 start-page: 124 year: 2000 ident: key 20180226040250_awx088-B19 article-title: Neuronal density in the human retinal ganglion cell layer from 16–77 years publication-title: Anat Rec doi: 10.1002/1097-0185(20001001)260:2<124::AID-AR20>3.0.CO;2-D – volume: 107 start-page: 22 year: 2010 ident: key 20180226040250_awx088-B49 article-title: [In vivo imaging of retinal cell apoptosis following acute light exposure] publication-title: Ophthalmologe doi: 10.1007/s00347-009-1952-y – volume: 47 start-page: 626 year: 2006 ident: key 20180226040250_awx088-B18 article-title: Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.05-0754 – volume: 50 start-page: 3432 year: 2009 ident: key 20180226040250_awx088-B59 article-title: Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.08-2970 – volume: 36 start-page: 774 year: 1995 ident: key 20180226040250_awx088-B46 article-title: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis publication-title: Invest Ophthalmol Vis Sci – volume: 10 start-page: e35 year: 2013 ident: key 20180226040250_awx088-B42 article-title: Imaging in dry AMD publication-title: Drug Discov Today – reference: 28549130 - Brain. 2017 Jun 1;140(6):1542-1543 |
SSID | ssj0014326 |
Score | 2.5287328 |
Snippet | See Herms and Schön (doi:
10.1093/brain/awx100
) for a scientific commentary on this article.
Glaucoma is often diagnosed late when vision loss has already... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1757 |
SubjectTerms | Adult Annexins - administration & dosage Annexins - adverse effects Annexins - pharmacokinetics Apoptosis Female Fluorescent Dyes Glaucoma - diagnostic imaging Humans Male Middle Aged Optical Imaging - methods Original Retinal Ganglion Cells - cytology Retinoscopy - methods |
Title | Real-time imaging of single neuronal cell apoptosis in patients with glaucoma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28449038 https://www.proquest.com/docview/1893550330 https://pubmed.ncbi.nlm.nih.gov/PMC5445254 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dq9MwFA96BfFF_HZ-EUGfSr1tmqbto1w2Lpe7CbLB3krSJFq4tmO3Q_Gv9-Sj7aYTrr6ELUmzkvNb-stpzu8g9I4ZDq8JC1WV8pAWSociT3MoiIo5y5UuTLzzfMHOV_Rina5Hh76NLunEh-rn0biS_7Eq1IFdTZTsP1h2GBQq4DPYF0qwMJQ3svFnYHmhyQ4f1N98tiEdmM3_lQqsUKWhmsY1H_BNu-laIz4yaqn6wDbgzzu4OX7wetckjjia7cO5EPIs33MhnBn9ztoFzMxh783H48ILG5QgbdNUGji2wd57D_h67S4LLoxvfjB_3cot_9LCMmbds6pv8_6JOBvPUfkllbIoBGLhBa-P1PXrsNNt8oDbX1WB4mRHl3snhSW21oky499_RC5H4KGu9uJTOVtdXpbL6Xp5G90hsKGwST7Ww2EgII3Ex6G5-_IhEjD-qR391I19SF7-2JH8frB2j6ksH6D7fouBPzq8PES3VPMI3Z37QxSP0XyADfawwa3GDja4hw02sMEDbHDd4B422MAG97B5glaz6fLsPPRZNcIqyWkXxpVUGReMSKCynEacAsdkpMhZpFQii5QIYP2pYAq4POO8yIpMx3EFT0WqDaN9ik6atlHPEc6kEAlNFeGVpFQLDvyP54QTHWsZpXKCgn66yspLzpvMJ1elO_qQlHZySze5E_R-6L1xUit_6fe2n_kS1kIzHbxR7e66jHOTLSBKkmiCnjlLDCMBDaNFlMDV2YGNhg5GZ_2wpam_Wr11o1dFUvriBr_7Et0b_wOv0Em33anXwFo78cYC7hc1y5zJ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+imaging+of+single+neuronal+cell+apoptosis+in+patients+with+glaucoma&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Cordeiro%2C+Maria+F&rft.au=Normando%2C+Eduardo+M&rft.au=Cardoso%2C+M+Jorge&rft.au=Miodragovic%2C+Serge&rft.date=2017-06-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=140&rft.issue=6&rft.spage=1757&rft_id=info:doi/10.1093%2Fbrain%2Fawx088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |