Development of two-phase neural network-genetic algorithm hybrid model in modeling damage evolution in roll forming of aluminum sheet
In this paper a two-phase artificial neural network-genetic algorithm (ANN-GA) hybrid model has been developed for the modeling and prediction of the damage evolution in the roll forming (RF) process of aluminum sheet metal, as a function of process parameters. The multilayer perceptron is used to b...
Saved in:
Published in | International journal of material forming Vol. 6; no. 4; pp. 423 - 436 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Paris
Springer Paris
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper a two-phase artificial neural network-genetic algorithm (ANN-GA) hybrid model has been developed for the modeling and prediction of the damage evolution in the roll forming (RF) process of aluminum sheet metal, as a function of process parameters. The multilayer perceptron is used to build the network while the genetic algorithm (GA) is employed to optimize the network structure in the modeling phase. In detail, the number of hidden layer, hidden neurons, weights and biases of the network are optimized by GA to minimize the error between predicted values and actual results. After the modeling phase the optimization of parameters is carried out in the optimization phase to minimize the damage in the aluminum sheet during the forming process. In this work the experimental data used for training and verifying the network is obtained automatically by the integration between CAD-CAE. As a result, the predicted results are validated with the actual values and a good agreement is observed. Moreover, the parametric study also is performed to find the relative influences of process parameters on the damage evolution. It is proven that the hybrid model is the powerful tool for modeling and predicting such a highly nonlinear problem as the damage evolution in RF process. The developed two-phase ANN – GA hybrid model is a new approach that can bring benefits to the forming industry by predicting and preventing the failure at the design stage, as well as improving efficiently the product's quality by optimizing the process parameters. |
---|---|
AbstractList | In this paper a two-phase artificial neural network-genetic algorithm (ANN-GA) hybrid model has been developed for the modeling and prediction of the damage evolution in the roll forming (RF) process of aluminum sheet metal, as a function of process parameters. The multilayer perceptron is used to build the network while the genetic algorithm (GA) is employed to optimize the network structure in the modeling phase. In detail, the number of hidden layer, hidden neurons, weights and biases of the network are optimized by GA to minimize the error between predicted values and actual results. After the modeling phase the optimization of parameters is carried out in the optimization phase to minimize the damage in the aluminum sheet during the forming process. In this work the experimental data used for training and verifying the network is obtained automatically by the integration between CAD-CAE. As a result, the predicted results are validated with the actual values and a good agreement is observed. Moreover, the parametric study also is performed to find the relative influences of process parameters on the damage evolution. It is proven that the hybrid model is the powerful tool for modeling and predicting such a highly nonlinear problem as the damage evolution in RF process. The developed two-phase ANN – GA hybrid model is a new approach that can bring benefits to the forming industry by predicting and preventing the failure at the design stage, as well as improving efficiently the product's quality by optimizing the process parameters. |
Author | Park, Hong-Seok Anh, Tran-Viet |
Author_xml | – sequence: 1 givenname: Hong-Seok surname: Park fullname: Park, Hong-Seok organization: School of Mechanical and Automotive engineering, University of Ulsan – sequence: 2 givenname: Tran-Viet surname: Anh fullname: Anh, Tran-Viet email: vietanhntth@gmail.com organization: School of Mechanical and Automotive engineering, University of Ulsan |
BookMark | eNp9UMtOwzAQtFCRKKUfwM0_YLDdxE6OqDwlJC5wjpx6naQ4dmUnRf0A_htHQRzZy4x2d_Yxl2jhvAOErhm9YZTK28g4L0pCGSeMloLkZ2jJSkGJ4Cxb_HEqLtA6xj1NseFS8myJvu_hCNYfenAD9gYPX54cWhUBOxiDsglSKnySBhLrdljZxoduaHvcnurQadx7DRZ3biada7BWvWoAw9Hbcei8m4rBW4uND_3UkPYoOyY69ji2AMMVOjfKRlj_4gp9PD68b5_J69vTy_bulew2RTYQpmjOS6mNNoUWdSYNU9rkYPKaCbWRutRCKV7TvJCaUSUky0rBdC6l5iI9vUJsnrsLPsYApjqErlfhVDFaTVZWs5VVsrKarKzypOGzJqZe10Co9n4MLp35j-gHhK57fw |
CitedBy_id | crossref_primary_10_1007_s12540_020_00758_x crossref_primary_10_1088_0957_0233_27_1_015801 crossref_primary_10_1007_s10553_023_01613_6 crossref_primary_10_1007_s00158_021_02861_y crossref_primary_10_9773_sosei_55_693 crossref_primary_10_1016_j_matdes_2015_04_004 crossref_primary_10_3901_CJME_2015_0824_106 |
Cites_doi | 10.1016/j.matdes.2008.09.018 10.1016/j.ijheatmasstransfer.2010.07.006 10.1016/j.jmatprotec.2007.08.073 10.1016/j.jmatprotec.2008.01.014 10.1016/j.jmatprotec.2007.06.071 10.1007/s00170-009-2252-z 10.1016/j.jmatprotec.2008.04.055 10.1016/j.jmatprotec.2009.10.010 10.1016/j.matdes.2010.02.012 10.1016/j.jmatprotec.2007.09.039 10.1016/j.jmatprotec.2005.01.009 10.1016/j.tws.2006.01.008 10.1016/S0890-6955(03)00102-0 10.1016/j.jmatprotec.2008.03.019 10.1016/j.matdes.2005.04.010 10.1533/ijcr.2004.0289 10.1016/j.matdes.2009.06.019 10.1016/j.jmatprotec.2008.10.020 10.1016/j.cad.2010.06.003 |
ContentType | Journal Article |
Copyright | Springer-Verlag France 2012 |
Copyright_xml | – notice: Springer-Verlag France 2012 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12289-012-1096-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1960-6214 |
EndPage | 436 |
ExternalDocumentID | 10_1007_s12289_012_1096_5 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 29J 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 8TC 8UJ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c384t-1a05297dfdf8d6b47f1adf5ef5b16a37d9d6aa2b0587d10a6714961d577d26003 |
IEDL.DBID | AGYKE |
ISSN | 1960-6206 |
IngestDate | Thu Sep 12 18:41:18 EDT 2024 Sat Dec 16 12:01:44 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Roll forming ANN-GA hybrid model Damage evolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-1a05297dfdf8d6b47f1adf5ef5b16a37d9d6aa2b0587d10a6714961d577d26003 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1007_s12289_012_1096_5 springer_journals_10_1007_s12289_012_1096_5 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | International journal of material forming |
PublicationTitleAbbrev | Int J Mater Form |
PublicationYear | 2013 |
Publisher | Springer Paris |
Publisher_xml | – name: Springer Paris |
References | Lin, Liu, Chen, Zhong (CR21) 2009; 209 Bui, Ponthot (CR2) 2008; 202 Pal, Pal, Samantaray (CR17) 2008; 202 Park, Dang (CR20) 2010; 42 Wei, Yuying (CR6) 2008; 208 Kut (CR13) 2010; 31 Wang, Gelgele, Wang, Yuan, Fang (CR9) 2003; 43 Dey, Pratihar, Datta, Jha, Saha, Bapat (CR18) 2009; 209 Zeng, Li, Yu, Lai (CR3) 2008; 30 Yu, Lin, Zhao (CR15) 2007; 28 Plemenos, Miaoulis (CR22) 2009; 240 Ledoux, Sebastian, Samper (CR8) 2010; 210 Ozerdem, Kolukisa (CR16) 2008; 199 CR14 Fu, Mo, Chen, Chen (CR11) 2010; 31 Son, Lee, Kim, Choi (CR5) 2005; 164–165 Rao, Rangajanardhaa, Rao, Rao (CR19) 2009; 209 Paralikas, Salonitis, Chryssolouris (CR4) 2009; 47 Tehrani, Hartley, Naeini, Khademizadeh (CR1) 2006; 44 Hooputra, Gese, Dell, Werner (CR12) 2004; 9 Sun, Fang, Han (CR10) 2010; 53 Shahani, Setayeshi, Nodamaie, Asadi, Rezaie (CR7) 2009; 209 1096_CR14 K Wang (1096_CR9) 2003; 43 1096_CR20 S Kut (1096_CR13) 2010; 31 J Paralikas (1096_CR4) 2009; 47 QV Bui (1096_CR2) 2008; 202 JS Son (1096_CR5) 2005; 164–165 L Wei (1096_CR6) 2008; 208 D Plemenos (1096_CR22) 2009; 240 YC Lin (1096_CR21) 2009; 209 Y Ledoux (1096_CR8) 2010; 210 Z Fu (1096_CR11) 2010; 31 J Sun (1096_CR10) 2010; 53 MS Tehrani (1096_CR1) 2006; 44 GKM Rao (1096_CR19) 2009; 209 G Zeng (1096_CR3) 2008; 30 Z Yu (1096_CR15) 2007; 28 H Hooputra (1096_CR12) 2004; 9 V Dey (1096_CR18) 2009; 209 MS Ozerdem (1096_CR16) 2008; 199 AR Shahani (1096_CR7) 2009; 209 S Pal (1096_CR17) 2008; 202 |
References_xml | – volume: 42 start-page: 889 issue: 10 year: 2010 end-page: 902 ident: CR20 article-title: Structural optimization based on CAD-CAE integration and metamodeling techniques publication-title: Computer - Aided Design contributor: fullname: Dang – volume: 30 start-page: 1930 year: 2008 end-page: 1938 ident: CR3 article-title: Optimization design of roll profiles for cold roll forming based on response surface method publication-title: Mater Des doi: 10.1016/j.matdes.2008.09.018 contributor: fullname: Lai – volume: 53 start-page: 5509 year: 2010 end-page: 5518 ident: CR10 article-title: Optimization of concrete hollow brick using hybrid genetic algorithm combining with artificial neural networks publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.07.006 contributor: fullname: Han – volume: 202 start-page: 275 year: 2008 end-page: 282 ident: CR2 article-title: Numerical simulation of cold roll-forming processes publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.08.073 contributor: fullname: Ponthot – volume: 208 start-page: 499 year: 2008 end-page: 506 ident: CR6 article-title: Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.01.014 contributor: fullname: Yuying – volume: 199 start-page: 437 year: 2008 end-page: 439 ident: CR16 article-title: Artificial Neural Network approach to predict mechanical properties of hotrolled, non resulfurized, AISI 10xx series carbon steel bars publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.06.071 contributor: fullname: Kolukisa – ident: CR14 – volume: 47 start-page: 1041 year: 2009 end-page: 1052 ident: CR4 article-title: Optimization of roll forming process parameters – a semi-empirical approach publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2252-z contributor: fullname: Chryssolouris – volume: 209 start-page: 1920 year: 2009 end-page: 1935 ident: CR7 article-title: Prediction of influence parameters on the hot rolling process using finite element method and neural network publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.04.055 contributor: fullname: Rezaie – volume: 210 start-page: 474 year: 2010 end-page: 486 ident: CR8 article-title: Optimization method for stamping tools under reliability constraints using genetic algorithms and finite element simulations publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2009.10.010 contributor: fullname: Samper – volume: 31 start-page: 3244 year: 2010 end-page: 3252 ident: CR13 article-title: The application of the formability utilization indicator for finite element modeling the ductile fracture during the material blanking process publication-title: Mater Des doi: 10.1016/j.matdes.2010.02.012 contributor: fullname: Kut – volume: 202 start-page: 464 year: 2008 end-page: 474 ident: CR17 article-title: Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.09.039 contributor: fullname: Samantaray – volume: 164–165 start-page: 1612 year: 2005 end-page: 1617 ident: CR5 article-title: A study on on-line learning neural network for prediction for rolling force in hot-rolling mill publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.01.009 contributor: fullname: Choi – volume: 44 start-page: 184 year: 2006 end-page: 196 ident: CR1 article-title: Localized edge buckling in cold roll-forming of symmetric channel section publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2006.01.008 contributor: fullname: Khademizadeh – volume: 43 start-page: 995 year: 2003 end-page: 999 ident: CR9 article-title: A hybrid intelligent method for modeling the EDM process publication-title: Int J Mach Tool Manuf doi: 10.1016/S0890-6955(03)00102-0 contributor: fullname: Fang – volume: 209 start-page: 1151 year: 2009 end-page: 1157 ident: CR18 article-title: Optimization of bead geometry in electron beam welding using a Genetic Algorithm publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.03.019 contributor: fullname: Bapat – volume: 28 start-page: 203 year: 2007 end-page: 207 ident: CR15 article-title: Evaluation of fracture limit in automotive aluminum alloy sheet forming publication-title: Mater Des doi: 10.1016/j.matdes.2005.04.010 contributor: fullname: Zhao – volume: 9 start-page: 449 issue: 5 year: 2004 end-page: 464 ident: CR12 article-title: A comprehensive failure model for crashworthiness simulation of aluminum extrusions publication-title: International Journal of Crashworthiness doi: 10.1533/ijcr.2004.0289 contributor: fullname: Werner – volume: 209 start-page: 512 year: 2009 end-page: 1520 ident: CR19 article-title: Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm publication-title: J Mater Process Technol contributor: fullname: Rao – volume: 31 start-page: 267 year: 2010 end-page: 277 ident: CR11 article-title: Using genetic algorithm-backpropagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal publication-title: Mater Des doi: 10.1016/j.matdes.2009.06.019 contributor: fullname: Chen – volume: 240 start-page: 189 year: 2009 end-page: 206 ident: CR22 article-title: Machine learning and pattern analysis methods for profiling in a declarative collaborative framework publication-title: Intelligent Computer Graphics contributor: fullname: Miaoulis – volume: 209 start-page: 4611 year: 2009 end-page: 4616 ident: CR21 article-title: Prediction of static recrystallization in a multi-pass hot deformed low-alloy steel using artificial neural network publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.10.020 contributor: fullname: Zhong – volume: 240 start-page: 189 year: 2009 ident: 1096_CR22 publication-title: Intelligent Computer Graphics contributor: fullname: D Plemenos – volume: 209 start-page: 1151 year: 2009 ident: 1096_CR18 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.03.019 contributor: fullname: V Dey – volume: 43 start-page: 995 year: 2003 ident: 1096_CR9 publication-title: Int J Mach Tool Manuf doi: 10.1016/S0890-6955(03)00102-0 contributor: fullname: K Wang – volume: 31 start-page: 267 year: 2010 ident: 1096_CR11 publication-title: Mater Des doi: 10.1016/j.matdes.2009.06.019 contributor: fullname: Z Fu – volume: 202 start-page: 275 year: 2008 ident: 1096_CR2 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.08.073 contributor: fullname: QV Bui – volume: 199 start-page: 437 year: 2008 ident: 1096_CR16 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.06.071 contributor: fullname: MS Ozerdem – ident: 1096_CR20 doi: 10.1016/j.cad.2010.06.003 – volume: 209 start-page: 1920 year: 2009 ident: 1096_CR7 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.04.055 contributor: fullname: AR Shahani – volume: 31 start-page: 3244 year: 2010 ident: 1096_CR13 publication-title: Mater Des doi: 10.1016/j.matdes.2010.02.012 contributor: fullname: S Kut – volume: 44 start-page: 184 year: 2006 ident: 1096_CR1 publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2006.01.008 contributor: fullname: MS Tehrani – volume: 202 start-page: 464 year: 2008 ident: 1096_CR17 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.09.039 contributor: fullname: S Pal – volume: 209 start-page: 4611 year: 2009 ident: 1096_CR21 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.10.020 contributor: fullname: YC Lin – volume: 164–165 start-page: 1612 year: 2005 ident: 1096_CR5 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.01.009 contributor: fullname: JS Son – volume: 209 start-page: 512 year: 2009 ident: 1096_CR19 publication-title: J Mater Process Technol contributor: fullname: GKM Rao – volume: 28 start-page: 203 year: 2007 ident: 1096_CR15 publication-title: Mater Des doi: 10.1016/j.matdes.2005.04.010 contributor: fullname: Z Yu – volume: 9 start-page: 449 issue: 5 year: 2004 ident: 1096_CR12 publication-title: International Journal of Crashworthiness doi: 10.1533/ijcr.2004.0289 contributor: fullname: H Hooputra – ident: 1096_CR14 – volume: 53 start-page: 5509 year: 2010 ident: 1096_CR10 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.07.006 contributor: fullname: J Sun – volume: 30 start-page: 1930 year: 2008 ident: 1096_CR3 publication-title: Mater Des doi: 10.1016/j.matdes.2008.09.018 contributor: fullname: G Zeng – volume: 47 start-page: 1041 year: 2009 ident: 1096_CR4 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2252-z contributor: fullname: J Paralikas – volume: 208 start-page: 499 year: 2008 ident: 1096_CR6 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.01.014 contributor: fullname: L Wei – volume: 210 start-page: 474 year: 2010 ident: 1096_CR8 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2009.10.010 contributor: fullname: Y Ledoux |
SSID | ssj0000327724 ssib031263577 |
Score | 2.0167959 |
Snippet | In this paper a two-phase artificial neural network-genetic algorithm (ANN-GA) hybrid model has been developed for the modeling and prediction of the damage... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 423 |
SubjectTerms | CAE) and Design Computational Intelligence Computer-Aided Engineering (CAD Engineering Machines Manufacturing Materials Science Mechanical Engineering Original Research Processes |
Title | Development of two-phase neural network-genetic algorithm hybrid model in modeling damage evolution in roll forming of aluminum sheet |
URI | https://link.springer.com/article/10.1007/s12289-012-1096-5 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZausDAG1EelQcmkKvaiZ10rBClAsFEpTJFTmzTCppUbQqCnf_NOQ9oBQzdIuVyUezL3dl332eEztpcOVQyRSA6G-JCDCDSRIwYz-URZwZCkEUj392LXt-9GfBBBbHvrYv4uVlWJDNH_YN1Y8x291AGnqMtCK-iWoE7rXWuH2-vSityqOVXKdCVmT92GKSQeXlZwFqJtURZ3vxL73KAWq6OZkGnu5UDAWcZV6HtNXluztOwGX38ZnJc4Xu20WaRg-JObjQ7qKLjXbSxwEy4hz4XmolwYnD6lpDJECIetgSY8HCct48TsD8Lg8Ty5SmZjtLhGA_fLQgMZ0fs4FGcX4BSrOQYnBfWr4W125tTMENs82YrAO-R4CtH8XyMZ0Ot033U7149XPZIcWIDiRzfTQmVtnDoKaOMr0ToeoZKZbg2PKRCOp5qKyElC1vc9xRtSeHBAk1QBdOlLFO-c4DW4iTWhwhLJn3JhfKpy12hWyHTJjKgw2OCS6rq6LycpmCSE3MEPxTMdmwDGFtbYBcBr6OLchKC4h-d_S99tJL0MVqnbXt6j-1LO0Fr6XSuTyFRScNGYZkNVO2zzheI3d_5 |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIAD4inGMwdOoEhN2qTdcUJMA7adNmm3Km0SOom109aB-AH8b5w-tE2CA7dKdV3JdW1Hn_0ZobsWVy6VTBHIzoZ4kAOINDEjxvd4zJmBFGSnkfsD0R15L2M-rua4F3W3ew1JFpF6NezGmG3voQxCR0sQvo12LL26JcwfsXbtRC619CrVcGURjl0GFWSJLgs4KjFH1Ojmb1o389MmOFrknM4hOqiKRdwuv-4R2tLpMdpfoxA8Qd9rXT84Mzj_zMgsgdSELVMlPJyWfd4EHMXOK2L5_pbNJ3kyxcmXndbCxS4cPEnLC1CKlZxClMH6o3JLe3MO_oJtgWsF4D0SgtokXU7xItE6P0WjztPwsUuq1QokdgMvJ1RahM9XRplAicjzDZXKcG14RIV0fdVSQkoWOTzwFXWk8OEkJagCwypLae-eoUaapfocYclkILlQAfW4J7QTMW1iAzp8Jrikqonua4OGs5JBI1xxJVvrh2B9i4SLkDfRQ23ysPqZFn9LX_xL-hbtdof9Xth7Hrxeoj1m91oUfSlXqJHPl_oaqos8uim86QdkRcYU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBFvcuAECixpk3ZHBIw34gASnEraJGyCddPWgeDO_8ZZW_EQHBC3SnXdNnZsR7Y_A2zUhPaY4pqid7bURx9AlU04tYEvEsEtuiDXjXx-IY-u_ZMbcVPMOe2V1e5lSjLvaXAoTWm209F256PxjXNX6sM4mpGapGIYRnwHjFSBkd3D29ODUqU85sBWilbLgXH2OMaTea5Z4sGJV2WZ6_yJ71dv9TVVOvBA9Um4K789Lzx52O5n8Xby-g3W8R8_NwUTRXRKdnN1moYhk87A-CfMwll4-1RmRNqWZM9t2mmgLyQOGhMfTvPCcoqa6RokiXq8b3ebWaNFGi-uPYwMhu-QZppfIFOiVQvNGjFPxT5wN7uooMRF1I4A36PQijbTfov0GsZkc3BdP7jaO6LFLAeaeKGfUaZcSjHQVttQy9gPLFPaCmNFzKTyAl3TUikeV0UYaFZVMsCjm2QaZacdhr43D5W0nZoFIIqrUAmpQ-YLX5pqzI1NLPIIuBSK6UXYLGUWdXLIjugDnNmtbYRr61LvMhKLsFUKJCp2b-936qU_Ua_D6OV-PTo7vjhdhjHu5mgM6mBWoJJ1-2YVo5ksXis09h3AmOu9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+two-phase+neural+network-genetic+algorithm+hybrid+model+in+modeling+damage+evolution+in+roll+forming+of+aluminum+sheet&rft.jtitle=International+journal+of+material+forming&rft.au=Park%2C+Hong-Seok&rft.au=Anh%2C+Tran-Viet&rft.date=2013-12-01&rft.pub=Springer+Paris&rft.issn=1960-6206&rft.eissn=1960-6214&rft.volume=6&rft.issue=4&rft.spage=423&rft.epage=436&rft_id=info:doi/10.1007%2Fs12289-012-1096-5&rft.externalDocID=10_1007_s12289_012_1096_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1960-6206&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1960-6206&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1960-6206&client=summon |