Interfering with nucleotide excision by the coronavirus 3′-to-5′ exoribonuclease

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for cont...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 51; no. 1; pp. 315 - 336
Main Authors Chinthapatla, Rukesh, Sotoudegan, Mohamad, Srivastava, Pankaj, Anderson, Thomas K, Moustafa, Ibrahim M, Passow, Kellan T, Kennelly, Samantha A, Moorthy, Ramkumar, Dulin, David, Feng, Joy Y, Harki, Daniel A, Kirchdoerfer, Robert N, Cameron, Craig E, Arnold, Jamie J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 11.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3′-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3′-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
AbstractList Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3′-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3′-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Author Harki, Daniel A
Srivastava, Pankaj
Kennelly, Samantha A
Moorthy, Ramkumar
Sotoudegan, Mohamad
Kirchdoerfer, Robert N
Feng, Joy Y
Chinthapatla, Rukesh
Arnold, Jamie J
Passow, Kellan T
Cameron, Craig E
Moustafa, Ibrahim M
Dulin, David
Anderson, Thomas K
Author_xml – sequence: 1
  givenname: Rukesh
  surname: Chinthapatla
  fullname: Chinthapatla, Rukesh
– sequence: 2
  givenname: Mohamad
  surname: Sotoudegan
  fullname: Sotoudegan, Mohamad
– sequence: 3
  givenname: Pankaj
  surname: Srivastava
  fullname: Srivastava, Pankaj
– sequence: 4
  givenname: Thomas K
  surname: Anderson
  fullname: Anderson, Thomas K
– sequence: 5
  givenname: Ibrahim M
  surname: Moustafa
  fullname: Moustafa, Ibrahim M
– sequence: 6
  givenname: Kellan T
  surname: Passow
  fullname: Passow, Kellan T
– sequence: 7
  givenname: Samantha A
  surname: Kennelly
  fullname: Kennelly, Samantha A
– sequence: 8
  givenname: Ramkumar
  surname: Moorthy
  fullname: Moorthy, Ramkumar
– sequence: 9
  givenname: David
  surname: Dulin
  fullname: Dulin, David
– sequence: 10
  givenname: Joy Y
  orcidid: 0000-0003-4837-1911
  surname: Feng
  fullname: Feng, Joy Y
– sequence: 11
  givenname: Daniel A
  surname: Harki
  fullname: Harki, Daniel A
– sequence: 12
  givenname: Robert N
  surname: Kirchdoerfer
  fullname: Kirchdoerfer, Robert N
– sequence: 13
  givenname: Craig E
  orcidid: 0000-0002-7564-5642
  surname: Cameron
  fullname: Cameron, Craig E
– sequence: 14
  givenname: Jamie J
  surname: Arnold
  fullname: Arnold, Jamie J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36546762$$D View this record in MEDLINE/PubMed
BookMark eNptkctOHDEQRa0IFAaSXdZRL1mkwWW32-5NJITCQ0JiQ9aWx109Y-ixie3mseOb-CS-BPOYKImyKsk-995S3W2y4YNHQr4A3QPa8X1v4v7iylgAKT-QGfCW1U3Xsg0yo5yKGmijtsh2SpeUQgOi-Ui2eCuaVrZsRi5OfcY4YHR-Ud26vKz8ZEcM2fVY4Z11yQVfze-rvMTKhhi8uXFxShV_enisc6hFmQUM0c3Dq9Qk_EQ2BzMm_Pw-d8jPox8Xhyf12fnx6eHBWW25anINbdeqHtAYqQBgYGUlRbtByk5ALyXtOyGp5djLzs4ZE0Yp4IOygilVnvgO-f7mez3NV9hb9DmaUV9HtzLxXgfj9N8_3i31ItzoTjXQMF4Mdt8NYvg1Ycp65ZLFcTQew5Q0k2UBIQRlBf36Z9bvkPUpC8DeABtDShEHbV02uZyvRLtRA9UvfenSl173VUTf_hGtff-LPwOThpuG
CitedBy_id crossref_primary_10_1093_nar_gkad1194
crossref_primary_10_1016_j_compbiomed_2023_107899
crossref_primary_10_1016_j_antiviral_2024_106057
crossref_primary_10_1016_j_antiviral_2024_106034
crossref_primary_10_1128_jvi_01708_24
crossref_primary_10_1016_j_csbj_2023_09_001
crossref_primary_10_1021_acsinfecdis_4c00122
crossref_primary_10_1038_s41573_023_00672_y
crossref_primary_10_1080_15257770_2024_2321600
crossref_primary_10_1093_nar_gkae165
Cites_doi 10.2144/99273bm11
10.1074/jbc.AC120.015720
10.1073/pnas.1921485117
10.1016/j.bbapap.2010.01.006
10.1073/pnas.0508200103
10.1007/978-1-4939-2272-7_12
10.1073/pnas.0403127101
10.1080/17460441.2021.1922385
10.1128/JVI.03259-15
10.3389/fmolb.2021.815845
10.1128/JVI.01246-20
10.1016/j.str.2022.04.014
10.1038/s41580-021-00432-z
10.1177/2040206618775243
10.1016/j.antiviral.2018.04.004
10.1073/pnas.78.12.7350
10.1093/nar/gkm168
10.1007/978-1-62703-691-7_2
10.1146/annurev-virology-011720-095930
10.1038/s41586-018-0238-4
10.1016/S0022-2836(03)00865-9
10.1261/rna.039917.113
10.1073/pnas.1323705111
10.1016/j.cell.2020.07.033
10.1016/bs.enz.2021.07.002
10.1021/acs.jmedchem.1c01481
10.1016/j.lfs.2020.117592
10.2174/1568026621666210728094019
10.1056/NEJMoa2007764
10.3390/molecules27092918
10.1073/pnas.2106379119
10.1073/pnas.1201130109
10.1016/j.celrep.2021.109650
10.1016/j.ab.2005.11.001
10.1039/D1RA06589K
10.1126/science.abi5224
10.1073/pnas.1508686112
10.1073/pnas.2102516118
10.1006/jmbi.1997.1586
10.1016/j.virol.2017.12.024
10.1371/journal.ppat.1006195
10.1042/BCJ20210198
10.1016/j.jbc.2021.101518
10.1146/annurev.bi.54.070185.002055
10.1038/s41594-021-00651-0
10.1038/s41467-020-20542-0
10.1016/j.jbc.2021.101529
10.1016/j.pep.2021.105894
10.1016/S0021-9258(18)34435-1
10.1038/s41586-020-2368-8
10.1021/bi010646j
10.1056/NEJMoa2116044
10.1371/journal.ppat.1003565
10.1016/j.molcel.2020.07.027
10.1016/j.bbapap.2009.06.012
10.1021/bi200350d
10.1177/2040206617738656
10.1016/bs.enz.2021.07.001
10.3389/fmicb.2019.01813
10.1089/nat.2014.0506
10.1021/acscentsci.0c01186
10.1126/science.abi9310
10.1038/s41598-022-13380-1
10.7554/eLife.70968
10.1093/nar/gkab320
10.1016/j.pep.2005.01.016
10.1074/jbc.M114.577353
10.1021/mp060070y
10.1073/pnas.1718806115
10.1021/bi035212y
10.1093/nar/gkab544
10.14348/molcells.2021.0076
10.1074/jbc.M110.162065
10.1126/science.abn0048
10.1016/j.cell.2020.11.016
10.1007/s40265-022-01692-5
10.4161/rna.8.2.15013
10.1002/j.1460-2075.1991.tb07917.x
10.1093/nar/15.10.4145
10.1016/j.celrep.2017.10.005
10.1016/j.chroma.2020.461051
10.1111/febs.15815
10.1093/nar/gkab1303
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac1177
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 336
ExternalDocumentID PMC9841423
36546762
10_1093_nar_gkac1177
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI158463
– fundername: NIAID NIH HHS
  grantid: R01 AI161841
– fundername: NCI NIH HHS
  grantid: P01 CA234228
– fundername: NIGMS NIH HHS
  grantid: R01 GM110129
– fundername: ;
– fundername: ;
  grantid: DFG-DU-1872/4-1
– fundername: ;
  grantid: R01AI161841; P01CA234228; R01GM110129; R01AI158463
– fundername: ;
  grantid: 024.003.019
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAPPN
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M49
M~E
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c384t-16968d1eaa78111f2676809f77951d770d9570c3ed79cb225a8813f8c528879c3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:39:16 EDT 2025
Thu Jul 10 18:33:41 EDT 2025
Wed Feb 19 02:25:07 EST 2025
Tue Jul 01 02:59:19 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-16968d1eaa78111f2676809f77951d770d9570c3ed79cb225a8813f8c528879c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4837-1911
0000-0002-7564-5642
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac1177
PMID 36546762
PQID 2757055502
PQPubID 23479
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9841423
proquest_miscellaneous_2757055502
pubmed_primary_36546762
crossref_citationtrail_10_1093_nar_gkac1177
crossref_primary_10_1093_nar_gkac1177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-11
PublicationDateYYYYMMDD 2023-01-11
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hillen (2023011609414234200_B30) 2020; 584
Liu (2023011609414234200_B63) 2001; 40
Deng (2023011609414234200_B53) 2018; 517
Slusarczyk (2023011609414234200_B7) 2018; 26
Eckstein (2023011609414234200_B67) 2014; 24
Robson (2023011609414234200_B13) 2020; 79
Minskaia (2023011609414234200_B15) 2006; 103
Putney (2023011609414234200_B68) 1981; 78
Meier (2023011609414234200_B83) 2017; 25
Denison (2023011609414234200_B12) 2011; 8
Subissi (2023011609414234200_B52) 2014; 111
Jahns (2023011609414234200_B77) 2022; 50
Kabinger (2023011609414234200_B32) 2021; 28
Bouvet (2023011609414234200_B21) 2014; 289
Arnold (2023011609414234200_B43) 1999; 27
Baddock (2023011609414234200_B45) 2022; 50
Raducanu (2023011609414234200_B39) 2020; 1621
Brautigam (2023011609414234200_B65) 1998; 277
Hackbart (2023011609414234200_B55) 2020; 117
Romaniuk (2023011609414234200_B64) 1982; 257
Seifert (2023011609414234200_B8) 2021; 10
Moeller (2023011609414234200_B49) 2022; 119
Liu (2023011609414234200_B29) 2021; 373
Ogando (2023011609414234200_B14) 2019; 10
Li (2023011609414234200_B80) 2021; 21
Studier (2023011609414234200_B40) 2005; 41
Arnold (2023011609414234200_B37) 2006; 350
Lin (2023011609414234200_B47) 2021; 49
Canal (2023011609414234200_B59) 2021; 478
Deval (2023011609414234200_B26) 2022; 27
Malone (2023011609414234200_B58) 2021; 118
Snijder (2023011609414234200_B16) 2003; 331
Kindler (2023011609414234200_B56) 2017; 13
Seley-Radtke (2023011609414234200_B4) 2018; 154
Riccio (2023011609414234200_B50) 2022; 298
Griffiths (2023011609414234200_B62) 1987; 15
Rivera-Serrano (2023011609414234200_B76) 2020; 7
Elfiky (2023011609414234200_B70) 2020; 253
Beigel (2023011609414234200_B1) 2020; 383
Yan (2023011609414234200_B84) 2021; 184
Serpi (2023011609414234200_B81) 2013; Chapter 15
Bera (2023011609414234200_B75) 2021; 36
Gizzi (2023011609414234200_B73) 2018; 558
Arnold (2023011609414234200_B60) 2004; 43
Ogando (2023011609414234200_B23) 2020; 94
Saramago (2023011609414234200_B51) 2021; 288
Reha-Krantz (2023011609414234200_B27) 2010; 1804
Czarna (2023011609414234200_B22) 2022; 30
Bouvet (2023011609414234200_B20) 2012; 109
Chen (2023011609414234200_B57) 2020; 182
Smidansky (2023011609414234200_B42) 2011; 50
Jayk Bernal (2023011609414234200_B2) 2022; 386
Ma (2023011609414234200_B48) 2021; 185
Ferron (2023011609414234200_B46) 2018; 115
Lamb (2023011609414234200_B3) 2022; 82
Smith (2023011609414234200_B25) 2013; 9
Tchesnokov (2023011609414234200_B33) 2020; 295
Johnson (2023011609414234200_B5) 2021; 49
Moorthy (2023011609414234200_B35) 2021; 11
Ma (2023011609414234200_B19) 2015; 112
Ivanov (2023011609414234200_B54) 2004; 101
Johnson (2023011609414234200_B61) 2010; 1804
Dulin (2023011609414234200_B10) 2017; 21
Beese (2023011609414234200_B17) 1991; 10
Serpi (2023011609414234200_B82) 2021; 16
Becares (2023011609414234200_B24) 2016; 90
Kokic (2023011609414234200_B85) 2021; 12
Maio (2023011609414234200_B44) 2021; 373
Chou (2023011609414234200_B78) 2007; 4
Swanstrom (2023011609414234200_B9) 2022; 375
Gordon (2023011609414234200_B31) 2022; 298
Maheden (2023011609414234200_B6) 2021; 49
Malone (2023011609414234200_B11) 2022; 23
Lim (2023011609414234200_B71) 2021; 44
Lo (2023011609414234200_B72) 2021; 7
Eckstein (2023011609414234200_B66) 1985; 54
Carvajal-Maldonado (2023011609414234200_B28) 2021; 8
Yang (2023011609414234200_B69) 2007; 35
Fairhead (2023011609414234200_B38) 2015; 1266
Chen (2023011609414234200_B18) 2007; 40
Passow (2023011609414234200_B36) 2021; 64
Studier (2023011609414234200_B41) 2014; 1091
Ozga (2023011609414234200_B79) 2010; 285
Das (2023011609414234200_B34) 2013; 19
Jones (2023011609414234200_B74) 2022; 12
35982684 - bioRxiv. 2022 Aug 11
References_xml – volume: 27
  start-page: 450
  year: 1999
  ident: 2023011609414234200_B43
  article-title: Single-nucleotide resolution of RNA strands in the presence of their RNA complements
  publication-title: BioTechniques
  doi: 10.2144/99273bm11
– volume: 295
  start-page: 16156
  year: 2020
  ident: 2023011609414234200_B33
  article-title: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.AC120.015720
– volume: Chapter 15
  start-page: Unit15 15
  year: 2013
  ident: 2023011609414234200_B81
  article-title: Synthesis of phosphoramidate prodrugs: proTide approach
  publication-title: Curr. Protoc. Nucleic Acid Chem.
– volume: 117
  start-page: 8094
  year: 2020
  ident: 2023011609414234200_B55
  article-title: Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1921485117
– volume: 1804
  start-page: 1041
  year: 2010
  ident: 2023011609414234200_B61
  article-title: The kinetic and chemical mechanism of high-fidelity DNA polymerases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2010.01.006
– volume: 103
  start-page: 5108
  year: 2006
  ident: 2023011609414234200_B15
  article-title: Discovery of an RNA virus 3'→5' exoribonuclease that is critically involved in coronavirus RNA synthesis
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0508200103
– volume: 1266
  start-page: 171
  year: 2015
  ident: 2023011609414234200_B38
  article-title: Site-specific biotinylation of purified proteins using BirA
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2272-7_12
– volume: 101
  start-page: 12694
  year: 2004
  ident: 2023011609414234200_B54
  article-title: Major genetic marker of nidoviruses encodes a replicative endoribonuclease
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.0403127101
– volume: 16
  start-page: 1149
  year: 2021
  ident: 2023011609414234200_B82
  article-title: An overview of ProTide technology and its implications to drug discovery
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1080/17460441.2021.1922385
– volume: 90
  start-page: 5399
  year: 2016
  ident: 2023011609414234200_B24
  article-title: Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the Innate immune response
  publication-title: J. Virol.
  doi: 10.1128/JVI.03259-15
– volume: 8
  start-page: 815845
  year: 2021
  ident: 2023011609414234200_B28
  article-title: When DNA polymerases multitask: functions beyond nucleotidyl transfer
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.815845
– volume: 94
  start-page: e01246-20
  year: 2020
  ident: 2023011609414234200_B23
  article-title: The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2
  publication-title: J. Virol.
  doi: 10.1128/JVI.01246-20
– volume: 30
  start-page: 1050
  year: 2022
  ident: 2023011609414234200_B22
  article-title: Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity
  publication-title: Structure
  doi: 10.1016/j.str.2022.04.014
– volume: 23
  start-page: 21
  year: 2022
  ident: 2023011609414234200_B11
  article-title: Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00432-z
– volume: 26
  start-page: 2040206618775243
  year: 2018
  ident: 2023011609414234200_B7
  article-title: Phosphoramidates and phosphonamidates (ProTides) with antiviral activity
  publication-title: Antivir. Chem. Chemother.
  doi: 10.1177/2040206618775243
– volume: 154
  start-page: 66
  year: 2018
  ident: 2023011609414234200_B4
  article-title: The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2018.04.004
– volume: 78
  start-page: 7350
  year: 1981
  ident: 2023011609414234200_B68
  article-title: A DNA fragment with an alpha-phosphorothioate nucleotide at one end is asymmetrically blocked from digestion by exonuclease III and can be replicated in vivo
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.78.12.7350
– volume: 35
  start-page: 3118
  year: 2007
  ident: 2023011609414234200_B69
  article-title: Nucleoside alpha-thiotriphosphates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothioate linkages
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm168
– volume: 1091
  start-page: 17
  year: 2014
  ident: 2023011609414234200_B41
  article-title: Stable expression clones and auto-induction for protein production in E. coli
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-691-7_2
– volume: 7
  start-page: 421
  year: 2020
  ident: 2023011609414234200_B76
  article-title: Viperin reveals its true function
  publication-title: Annu Rev Virol
  doi: 10.1146/annurev-virology-011720-095930
– volume: 558
  start-page: 610
  year: 2018
  ident: 2023011609414234200_B73
  article-title: A naturally occurring antiviral ribonucleotide encoded by the human genome
  publication-title: Nature
  doi: 10.1038/s41586-018-0238-4
– volume: 331
  start-page: 991
  year: 2003
  ident: 2023011609414234200_B16
  article-title: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00865-9
– volume: 19
  start-page: 1355
  year: 2013
  ident: 2023011609414234200_B34
  article-title: 2'-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa
  publication-title: RNA
  doi: 10.1261/rna.039917.113
– volume: 111
  start-page: E3900
  year: 2014
  ident: 2023011609414234200_B52
  article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1323705111
– volume: 182
  start-page: 1560
  year: 2020
  ident: 2023011609414234200_B57
  article-title: Structural basis for helicase-Polymerase coupling in the SARS-CoV-2 replication-Transcription complex
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.033
– volume: 49
  start-page: 315
  year: 2021
  ident: 2023011609414234200_B6
  article-title: Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs
  publication-title: Enzymes
  doi: 10.1016/bs.enz.2021.07.002
– volume: 64
  start-page: 15429
  year: 2021
  ident: 2023011609414234200_B36
  article-title: A chemical strategy for intracellular arming of an endogenous broad-Spectrum antiviral nucleotide
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c01481
– volume: 253
  start-page: 117592
  year: 2020
  ident: 2023011609414234200_B70
  article-title: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.117592
– volume: 21
  start-page: 2909
  year: 2021
  ident: 2023011609414234200_B80
  article-title: Advancement of prodrug approaches for nucleotide antiviral agents
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026621666210728094019
– volume: 383
  start-page: 1813
  year: 2020
  ident: 2023011609414234200_B1
  article-title: Remdesivir for the treatment of Covid-19 - Final report
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2007764
– volume: 27
  start-page: 2918
  year: 2022
  ident: 2023011609414234200_B26
  article-title: Opportunities and challenges in targeting the proofreading activity of SARS-CoV-2 polymerase complex
  publication-title: Molecules
  doi: 10.3390/molecules27092918
– volume: 119
  start-page: e2106379119
  year: 2022
  ident: 2023011609414234200_B49
  article-title: Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2106379119
– volume: 109
  start-page: 9372
  year: 2012
  ident: 2023011609414234200_B20
  article-title: RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1201130109
– volume: 36
  start-page: 109650
  year: 2021
  ident: 2023011609414234200_B75
  article-title: The nucleotide addition cycle of the SARS-CoV-2 polymerase
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109650
– volume: 350
  start-page: 214
  year: 2006
  ident: 2023011609414234200_B37
  article-title: Small ubiquitin-like modifying protein isopeptidase assay based on poliovirus RNA polymerase activity
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2005.11.001
– volume: 11
  start-page: 31373
  year: 2021
  ident: 2023011609414234200_B35
  article-title: An efficient synthesis of RNA containing GS-441524: the nucleoside precursor of remdesivir
  publication-title: RSC Adv.
  doi: 10.1039/D1RA06589K
– volume: 373
  start-page: 236
  year: 2021
  ident: 2023011609414234200_B44
  article-title: Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets
  publication-title: Science
  doi: 10.1126/science.abi5224
– volume: 112
  start-page: 9436
  year: 2015
  ident: 2023011609414234200_B19
  article-title: Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1508686112
– volume: 118
  start-page: e2106379119
  year: 2021
  ident: 2023011609414234200_B58
  article-title: Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2102516118
– volume: 277
  start-page: 363
  year: 1998
  ident: 2023011609414234200_B65
  article-title: Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1586
– volume: 517
  start-page: 157
  year: 2018
  ident: 2023011609414234200_B53
  article-title: An “old” protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses
  publication-title: Virology
  doi: 10.1016/j.virol.2017.12.024
– volume: 13
  start-page: e1006195
  year: 2017
  ident: 2023011609414234200_B56
  article-title: Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006195
– volume: 478
  start-page: 2445
  year: 2021
  ident: 2023011609414234200_B59
  article-title: Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20210198
– volume: 298
  start-page: 101518
  year: 2022
  ident: 2023011609414234200_B50
  article-title: Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.101518
– volume: 54
  start-page: 367
  year: 1985
  ident: 2023011609414234200_B66
  article-title: Nucleoside phosphorothioates
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.54.070185.002055
– volume: 28
  start-page: 740
  year: 2021
  ident: 2023011609414234200_B32
  article-title: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-021-00651-0
– volume: 12
  start-page: 279
  year: 2021
  ident: 2023011609414234200_B85
  article-title: Mechanism of SARS-CoV-2 polymerase stalling by remdesivir
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20542-0
– volume: 298
  start-page: 101529
  year: 2022
  ident: 2023011609414234200_B31
  article-title: Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.101529
– volume: 185
  start-page: 105894
  year: 2021
  ident: 2023011609414234200_B48
  article-title: Reconstitution and functional characterization of SARS-CoV-2 proofreading complex
  publication-title: Protein Expression Purif.
  doi: 10.1016/j.pep.2021.105894
– volume: 257
  start-page: 7684
  year: 1982
  ident: 2023011609414234200_B64
  article-title: A study of the mechanism of T4 DNA polymerase with diastereomeric phosphorothioate analogues of deoxyadenosine triphosphate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)34435-1
– volume: 584
  start-page: 154
  year: 2020
  ident: 2023011609414234200_B30
  article-title: Structure of replicating SARS-CoV-2 polymerase
  publication-title: Nature
  doi: 10.1038/s41586-020-2368-8
– volume: 40
  start-page: 9014
  year: 2001
  ident: 2023011609414234200_B63
  article-title: DNA polymerase beta: pre-steady-state kinetic analyses of dATP alpha S stereoselectivity and alteration of the stereoselectivity by various metal ions and by site-directed mutagenesis
  publication-title: Biochemistry
  doi: 10.1021/bi010646j
– volume: 386
  start-page: 509
  year: 2022
  ident: 2023011609414234200_B2
  article-title: Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2116044
– volume: 9
  start-page: e1003565
  year: 2013
  ident: 2023011609414234200_B25
  article-title: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003565
– volume: 79
  start-page: 710
  year: 2020
  ident: 2023011609414234200_B13
  article-title: Coronavirus RNA proofreading: molecular basis and therapeutic targeting
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.07.027
– volume: 1804
  start-page: 1049
  year: 2010
  ident: 2023011609414234200_B27
  article-title: DNA polymerase proofreading: multiple roles maintain genome stability
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2009.06.012
– volume: 50
  start-page: 5016
  year: 2011
  ident: 2023011609414234200_B42
  article-title: Human mitochondrial RNA polymerase: evaluation of the single-nucleotide-addition cycle on synthetic RNA/DNA scaffolds
  publication-title: Biochemistry
  doi: 10.1021/bi200350d
– volume: 25
  start-page: 69
  year: 2017
  ident: 2023011609414234200_B83
  article-title: Nucleoside diphosphate and triphosphate prodrugs - An unsolvable task
  publication-title: Antivir. Chem. Chemother.
  doi: 10.1177/2040206617738656
– volume: 49
  start-page: 39
  year: 2021
  ident: 2023011609414234200_B5
  article-title: Mechanisms of inhibition of viral RNA replication by nucleotide analogs
  publication-title: Enzymes
  doi: 10.1016/bs.enz.2021.07.001
– volume: 10
  start-page: 1813
  year: 2019
  ident: 2023011609414234200_B14
  article-title: The Curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01813
– volume: 24
  start-page: 374
  year: 2014
  ident: 2023011609414234200_B67
  article-title: Phosphorothioates, essential components of therapeutic oligonucleotides
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2014.0506
– volume: 7
  start-page: 792
  year: 2021
  ident: 2023011609414234200_B72
  article-title: Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with Remdesivir
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.0c01186
– volume: 373
  start-page: 1142
  year: 2021
  ident: 2023011609414234200_B29
  article-title: Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme
  publication-title: Science
  doi: 10.1126/science.abi9310
– volume: 12
  start-page: 9593
  year: 2022
  ident: 2023011609414234200_B74
  article-title: Characterization of SARS-CoV-2 replication complex elongation and proofreading activity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-13380-1
– volume: 10
  start-page: e70968
  year: 2021
  ident: 2023011609414234200_B8
  article-title: Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective
  publication-title: Elife
  doi: 10.7554/eLife.70968
– volume: 49
  start-page: 5382
  year: 2021
  ident: 2023011609414234200_B47
  article-title: Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab320
– volume: 41
  start-page: 207
  year: 2005
  ident: 2023011609414234200_B40
  article-title: Protein production by auto-induction in high density shaking cultures
  publication-title: Protein Expression Purif.
  doi: 10.1016/j.pep.2005.01.016
– volume: 289
  start-page: 25783
  year: 2014
  ident: 2023011609414234200_B21
  article-title: Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.577353
– volume: 40
  start-page: 649
  year: 2007
  ident: 2023011609414234200_B18
  article-title: Biochemical characterization of exoribonuclease encoded by SARS coronavirus
  publication-title: J. Biochem. Mol. Biol.
– volume: 4
  start-page: 208
  year: 2007
  ident: 2023011609414234200_B78
  article-title: Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins
  publication-title: Mol Pharm
  doi: 10.1021/mp060070y
– volume: 115
  start-page: E162
  year: 2018
  ident: 2023011609414234200_B46
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1718806115
– volume: 43
  start-page: 5126
  year: 2004
  ident: 2023011609414234200_B60
  article-title: Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+
  publication-title: Biochemistry
  doi: 10.1021/bi035212y
– volume: 50
  start-page: 1221
  year: 2022
  ident: 2023011609414234200_B77
  article-title: Chirality matters: stereo-defined phosphorothioate linkages at the termini of small interfering rnas improve pharmacology in vivo
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab544
– volume: 44
  start-page: 688
  year: 2021
  ident: 2023011609414234200_B71
  article-title: Asunaprevir, a potent Hepatitis C virus protease inhibitor, blocks SARS-CoV-2 propagation
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2021.0076
– volume: 285
  start-page: 40809
  year: 2010
  ident: 2023011609414234200_B79
  article-title: Histidine triad nucleotide-binding protein 1 (HINT-1) phosphoramidase transforms nucleoside 5'-O-phosphorothioates to nucleoside 5'-O-phosphates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.162065
– volume: 375
  start-page: 497
  year: 2022
  ident: 2023011609414234200_B9
  article-title: Lethal mutagenesis as an antiviral strategy
  publication-title: Science
  doi: 10.1126/science.abn0048
– volume: 184
  start-page: 184
  year: 2021
  ident: 2023011609414234200_B84
  article-title: Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.016
– volume: 82
  start-page: 585
  year: 2022
  ident: 2023011609414234200_B3
  article-title: Nirmatrelvir plus Ritonavir: first approval
  publication-title: Drugs
  doi: 10.1007/s40265-022-01692-5
– volume: 8
  start-page: 270
  year: 2011
  ident: 2023011609414234200_B12
  article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity
  publication-title: RNA Biol
  doi: 10.4161/rna.8.2.15013
– volume: 10
  start-page: 25
  year: 1991
  ident: 2023011609414234200_B17
  article-title: Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07917.x
– volume: 15
  start-page: 4145
  year: 1987
  ident: 2023011609414234200_B62
  article-title: Stereospecificity of nucleases towards phosphorothioate-substituted RNA: stereochemistry of transcription by T7 RNA polymerase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/15.10.4145
– volume: 21
  start-page: 1063
  year: 2017
  ident: 2023011609414234200_B10
  article-title: Signatures of nucleotide analog incorporation by an RNA-Dependent RNA polymerase revealed using high-Throughput magnetic tweezers
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.10.005
– volume: 1621
  start-page: 461051
  year: 2020
  ident: 2023011609414234200_B39
  article-title: Two chromatographic schemes for protein purification involving the biotin/avidin interaction under native conditions
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2020.461051
– volume: 288
  start-page: 5130
  year: 2021
  ident: 2023011609414234200_B51
  article-title: New targets for drug design: importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2
  publication-title: FEBS J.
  doi: 10.1111/febs.15815
– volume: 50
  start-page: 1484
  year: 2022
  ident: 2023011609414234200_B45
  article-title: Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1303
– reference: 35982684 - bioRxiv. 2022 Aug 11;:
SSID ssj0014154
Score 2.4813213
Snippet Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in...
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 315
SubjectTerms Antiviral Agents - pharmacology
COVID-19 Drug Treatment
Drug Design
Exoribonucleases - metabolism
Humans
Nucleic Acid Enzymes
Ribonucleotides - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
Viral Nonstructural Proteins - metabolism
Virus Replication - genetics
Title Interfering with nucleotide excision by the coronavirus 3′-to-5′ exoribonuclease
URI https://www.ncbi.nlm.nih.gov/pubmed/36546762
https://www.proquest.com/docview/2757055502
https://pubmed.ncbi.nlm.nih.gov/PMC9841423
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgHOCCxsZHGUxGYuxQhSVxUifHaWo1oW0g0Uq9RY7trFm3BKVJtfHX82zno12HNLhEke24ld_z8-99GqHPhISDUJLE4jTwLNiJvhUGZGBJaYuBqi_FY2XQP78YnE68b1N_2gVk6uySMv7Kfz-YV_I_VIU2oKvKkv0HyraTQgO8A33hCRSG56NorM15iS4maAyqmapOnJepkH15ay7P0fhypmLSCwDdy7SoFn1y4FKrzC1fRVDI27xI41x_2rhqrpqkXGhTBV15KpR7YcXypSMC0qycwWFbXhsEWs3lou39mZd5JeSlMbCe5zN2w0TbWaRLBrh0yQyKzebsqjNICK0FdOFLtSm2tk24KjLLqmWnEac6Jyus5a18oK2Wwb6zwWtGoBKT7Lkh6E0RrEwFoY8u54wr33N3pDVu_Ivv0WhydhaNh9PxU_TMBVVCyUJqD1tPEwAYc_Fx_a_q5AiY_whmP2rmXoctG7rI_ZDaFYwy3kYva-UCHxtOeYWeyGwH7R5nrMxv7vAXrMN9tR9lBz0_aa7620U_VhgJK0bCHSPhhpFwfIeBkfAKI2FyqNnoEN9jotdoMhqOT06t-qoNi5PAKy1H1UgSjmRMZR47iTsANdQOE0oBgQtKbRH61OZEChrC7nV9FgQOSQLuu3BKhZy8QVtZnsl3CFMGKJoR4gkZeIKEQQLHSEyYF3ggFHzeQ_1mJSNe16FX16FcRyYegkSw7lGz7j100I7-Zeqv_GXcp4YoESye8nqxTObVInKprypG-bbbQ28NkdqZiErlAzjQQ3SNfO0AVXx9vSdLZ7oIexh4Dqgi7x_xu3voRbc5PqCtsqjkR4CyZbyveXFfG4L-ABfopMs
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfering+with+nucleotide+excision+by+the+coronavirus+3%27-to-5%27+exoribonuclease&rft.jtitle=Nucleic+acids+research&rft.au=Chinthapatla%2C+Rukesh&rft.au=Sotoudegan%2C+Mohamad&rft.au=Srivastava%2C+Pankaj&rft.au=Anderson%2C+Thomas+K&rft.date=2023-01-11&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=51&rft.issue=1&rft.spage=315&rft_id=info:doi/10.1093%2Fnar%2Fgkac1177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon