Interfering with nucleotide excision by the coronavirus 3′-to-5′ exoribonuclease
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for cont...
Saved in:
Published in | Nucleic acids research Vol. 51; no. 1; pp. 315 - 336 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
11.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3′-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3′-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible. |
---|---|
AbstractList | Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3′-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3′-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible. Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible. |
Author | Harki, Daniel A Srivastava, Pankaj Kennelly, Samantha A Moorthy, Ramkumar Sotoudegan, Mohamad Kirchdoerfer, Robert N Feng, Joy Y Chinthapatla, Rukesh Arnold, Jamie J Passow, Kellan T Cameron, Craig E Moustafa, Ibrahim M Dulin, David Anderson, Thomas K |
Author_xml | – sequence: 1 givenname: Rukesh surname: Chinthapatla fullname: Chinthapatla, Rukesh – sequence: 2 givenname: Mohamad surname: Sotoudegan fullname: Sotoudegan, Mohamad – sequence: 3 givenname: Pankaj surname: Srivastava fullname: Srivastava, Pankaj – sequence: 4 givenname: Thomas K surname: Anderson fullname: Anderson, Thomas K – sequence: 5 givenname: Ibrahim M surname: Moustafa fullname: Moustafa, Ibrahim M – sequence: 6 givenname: Kellan T surname: Passow fullname: Passow, Kellan T – sequence: 7 givenname: Samantha A surname: Kennelly fullname: Kennelly, Samantha A – sequence: 8 givenname: Ramkumar surname: Moorthy fullname: Moorthy, Ramkumar – sequence: 9 givenname: David surname: Dulin fullname: Dulin, David – sequence: 10 givenname: Joy Y orcidid: 0000-0003-4837-1911 surname: Feng fullname: Feng, Joy Y – sequence: 11 givenname: Daniel A surname: Harki fullname: Harki, Daniel A – sequence: 12 givenname: Robert N surname: Kirchdoerfer fullname: Kirchdoerfer, Robert N – sequence: 13 givenname: Craig E orcidid: 0000-0002-7564-5642 surname: Cameron fullname: Cameron, Craig E – sequence: 14 givenname: Jamie J surname: Arnold fullname: Arnold, Jamie J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36546762$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctOHDEQRa0IFAaSXdZRL1mkwWW32-5NJITCQ0JiQ9aWx109Y-ixie3mseOb-CS-BPOYKImyKsk-995S3W2y4YNHQr4A3QPa8X1v4v7iylgAKT-QGfCW1U3Xsg0yo5yKGmijtsh2SpeUQgOi-Ui2eCuaVrZsRi5OfcY4YHR-Ud26vKz8ZEcM2fVY4Z11yQVfze-rvMTKhhi8uXFxShV_enisc6hFmQUM0c3Dq9Qk_EQ2BzMm_Pw-d8jPox8Xhyf12fnx6eHBWW25anINbdeqHtAYqQBgYGUlRbtByk5ALyXtOyGp5djLzs4ZE0Yp4IOygilVnvgO-f7mez3NV9hb9DmaUV9HtzLxXgfj9N8_3i31ItzoTjXQMF4Mdt8NYvg1Ycp65ZLFcTQew5Q0k2UBIQRlBf36Z9bvkPUpC8DeABtDShEHbV02uZyvRLtRA9UvfenSl173VUTf_hGtff-LPwOThpuG |
CitedBy_id | crossref_primary_10_1093_nar_gkad1194 crossref_primary_10_1016_j_compbiomed_2023_107899 crossref_primary_10_1016_j_antiviral_2024_106057 crossref_primary_10_1016_j_antiviral_2024_106034 crossref_primary_10_1128_jvi_01708_24 crossref_primary_10_1016_j_csbj_2023_09_001 crossref_primary_10_1021_acsinfecdis_4c00122 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_1080_15257770_2024_2321600 crossref_primary_10_1093_nar_gkae165 |
Cites_doi | 10.2144/99273bm11 10.1074/jbc.AC120.015720 10.1073/pnas.1921485117 10.1016/j.bbapap.2010.01.006 10.1073/pnas.0508200103 10.1007/978-1-4939-2272-7_12 10.1073/pnas.0403127101 10.1080/17460441.2021.1922385 10.1128/JVI.03259-15 10.3389/fmolb.2021.815845 10.1128/JVI.01246-20 10.1016/j.str.2022.04.014 10.1038/s41580-021-00432-z 10.1177/2040206618775243 10.1016/j.antiviral.2018.04.004 10.1073/pnas.78.12.7350 10.1093/nar/gkm168 10.1007/978-1-62703-691-7_2 10.1146/annurev-virology-011720-095930 10.1038/s41586-018-0238-4 10.1016/S0022-2836(03)00865-9 10.1261/rna.039917.113 10.1073/pnas.1323705111 10.1016/j.cell.2020.07.033 10.1016/bs.enz.2021.07.002 10.1021/acs.jmedchem.1c01481 10.1016/j.lfs.2020.117592 10.2174/1568026621666210728094019 10.1056/NEJMoa2007764 10.3390/molecules27092918 10.1073/pnas.2106379119 10.1073/pnas.1201130109 10.1016/j.celrep.2021.109650 10.1016/j.ab.2005.11.001 10.1039/D1RA06589K 10.1126/science.abi5224 10.1073/pnas.1508686112 10.1073/pnas.2102516118 10.1006/jmbi.1997.1586 10.1016/j.virol.2017.12.024 10.1371/journal.ppat.1006195 10.1042/BCJ20210198 10.1016/j.jbc.2021.101518 10.1146/annurev.bi.54.070185.002055 10.1038/s41594-021-00651-0 10.1038/s41467-020-20542-0 10.1016/j.jbc.2021.101529 10.1016/j.pep.2021.105894 10.1016/S0021-9258(18)34435-1 10.1038/s41586-020-2368-8 10.1021/bi010646j 10.1056/NEJMoa2116044 10.1371/journal.ppat.1003565 10.1016/j.molcel.2020.07.027 10.1016/j.bbapap.2009.06.012 10.1021/bi200350d 10.1177/2040206617738656 10.1016/bs.enz.2021.07.001 10.3389/fmicb.2019.01813 10.1089/nat.2014.0506 10.1021/acscentsci.0c01186 10.1126/science.abi9310 10.1038/s41598-022-13380-1 10.7554/eLife.70968 10.1093/nar/gkab320 10.1016/j.pep.2005.01.016 10.1074/jbc.M114.577353 10.1021/mp060070y 10.1073/pnas.1718806115 10.1021/bi035212y 10.1093/nar/gkab544 10.14348/molcells.2021.0076 10.1074/jbc.M110.162065 10.1126/science.abn0048 10.1016/j.cell.2020.11.016 10.1007/s40265-022-01692-5 10.4161/rna.8.2.15013 10.1002/j.1460-2075.1991.tb07917.x 10.1093/nar/15.10.4145 10.1016/j.celrep.2017.10.005 10.1016/j.chroma.2020.461051 10.1111/febs.15815 10.1093/nar/gkab1303 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkac1177 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 336 |
ExternalDocumentID | PMC9841423 36546762 10_1093_nar_gkac1177 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI158463 – fundername: NIAID NIH HHS grantid: R01 AI161841 – fundername: NCI NIH HHS grantid: P01 CA234228 – fundername: NIGMS NIH HHS grantid: R01 GM110129 – fundername: ; – fundername: ; grantid: DFG-DU-1872/4-1 – fundername: ; grantid: R01AI161841; P01CA234228; R01GM110129; R01AI158463 – fundername: ; grantid: 024.003.019 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAPPN ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M49 M~E NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c384t-16968d1eaa78111f2676809f77951d770d9570c3ed79cb225a8813f8c528879c3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:39:16 EDT 2025 Thu Jul 10 18:33:41 EDT 2025 Wed Feb 19 02:25:07 EST 2025 Tue Jul 01 02:59:19 EDT 2025 Thu Apr 24 22:51:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-16968d1eaa78111f2676809f77951d770d9570c3ed79cb225a8813f8c528879c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4837-1911 0000-0002-7564-5642 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkac1177 |
PMID | 36546762 |
PQID | 2757055502 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9841423 proquest_miscellaneous_2757055502 pubmed_primary_36546762 crossref_citationtrail_10_1093_nar_gkac1177 crossref_primary_10_1093_nar_gkac1177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-11 |
PublicationDateYYYYMMDD | 2023-01-11 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hillen (2023011609414234200_B30) 2020; 584 Liu (2023011609414234200_B63) 2001; 40 Deng (2023011609414234200_B53) 2018; 517 Slusarczyk (2023011609414234200_B7) 2018; 26 Eckstein (2023011609414234200_B67) 2014; 24 Robson (2023011609414234200_B13) 2020; 79 Minskaia (2023011609414234200_B15) 2006; 103 Putney (2023011609414234200_B68) 1981; 78 Meier (2023011609414234200_B83) 2017; 25 Denison (2023011609414234200_B12) 2011; 8 Subissi (2023011609414234200_B52) 2014; 111 Jahns (2023011609414234200_B77) 2022; 50 Kabinger (2023011609414234200_B32) 2021; 28 Bouvet (2023011609414234200_B21) 2014; 289 Arnold (2023011609414234200_B43) 1999; 27 Baddock (2023011609414234200_B45) 2022; 50 Raducanu (2023011609414234200_B39) 2020; 1621 Brautigam (2023011609414234200_B65) 1998; 277 Hackbart (2023011609414234200_B55) 2020; 117 Romaniuk (2023011609414234200_B64) 1982; 257 Seifert (2023011609414234200_B8) 2021; 10 Moeller (2023011609414234200_B49) 2022; 119 Liu (2023011609414234200_B29) 2021; 373 Ogando (2023011609414234200_B14) 2019; 10 Li (2023011609414234200_B80) 2021; 21 Studier (2023011609414234200_B40) 2005; 41 Arnold (2023011609414234200_B37) 2006; 350 Lin (2023011609414234200_B47) 2021; 49 Canal (2023011609414234200_B59) 2021; 478 Deval (2023011609414234200_B26) 2022; 27 Malone (2023011609414234200_B58) 2021; 118 Snijder (2023011609414234200_B16) 2003; 331 Kindler (2023011609414234200_B56) 2017; 13 Seley-Radtke (2023011609414234200_B4) 2018; 154 Riccio (2023011609414234200_B50) 2022; 298 Griffiths (2023011609414234200_B62) 1987; 15 Rivera-Serrano (2023011609414234200_B76) 2020; 7 Elfiky (2023011609414234200_B70) 2020; 253 Beigel (2023011609414234200_B1) 2020; 383 Yan (2023011609414234200_B84) 2021; 184 Serpi (2023011609414234200_B81) 2013; Chapter 15 Bera (2023011609414234200_B75) 2021; 36 Gizzi (2023011609414234200_B73) 2018; 558 Arnold (2023011609414234200_B60) 2004; 43 Ogando (2023011609414234200_B23) 2020; 94 Saramago (2023011609414234200_B51) 2021; 288 Reha-Krantz (2023011609414234200_B27) 2010; 1804 Czarna (2023011609414234200_B22) 2022; 30 Bouvet (2023011609414234200_B20) 2012; 109 Chen (2023011609414234200_B57) 2020; 182 Smidansky (2023011609414234200_B42) 2011; 50 Jayk Bernal (2023011609414234200_B2) 2022; 386 Ma (2023011609414234200_B48) 2021; 185 Ferron (2023011609414234200_B46) 2018; 115 Lamb (2023011609414234200_B3) 2022; 82 Smith (2023011609414234200_B25) 2013; 9 Tchesnokov (2023011609414234200_B33) 2020; 295 Johnson (2023011609414234200_B5) 2021; 49 Moorthy (2023011609414234200_B35) 2021; 11 Ma (2023011609414234200_B19) 2015; 112 Ivanov (2023011609414234200_B54) 2004; 101 Johnson (2023011609414234200_B61) 2010; 1804 Dulin (2023011609414234200_B10) 2017; 21 Beese (2023011609414234200_B17) 1991; 10 Serpi (2023011609414234200_B82) 2021; 16 Becares (2023011609414234200_B24) 2016; 90 Kokic (2023011609414234200_B85) 2021; 12 Maio (2023011609414234200_B44) 2021; 373 Chou (2023011609414234200_B78) 2007; 4 Swanstrom (2023011609414234200_B9) 2022; 375 Gordon (2023011609414234200_B31) 2022; 298 Maheden (2023011609414234200_B6) 2021; 49 Malone (2023011609414234200_B11) 2022; 23 Lim (2023011609414234200_B71) 2021; 44 Lo (2023011609414234200_B72) 2021; 7 Eckstein (2023011609414234200_B66) 1985; 54 Carvajal-Maldonado (2023011609414234200_B28) 2021; 8 Yang (2023011609414234200_B69) 2007; 35 Fairhead (2023011609414234200_B38) 2015; 1266 Chen (2023011609414234200_B18) 2007; 40 Passow (2023011609414234200_B36) 2021; 64 Studier (2023011609414234200_B41) 2014; 1091 Ozga (2023011609414234200_B79) 2010; 285 Das (2023011609414234200_B34) 2013; 19 Jones (2023011609414234200_B74) 2022; 12 35982684 - bioRxiv. 2022 Aug 11 |
References_xml | – volume: 27 start-page: 450 year: 1999 ident: 2023011609414234200_B43 article-title: Single-nucleotide resolution of RNA strands in the presence of their RNA complements publication-title: BioTechniques doi: 10.2144/99273bm11 – volume: 295 start-page: 16156 year: 2020 ident: 2023011609414234200_B33 article-title: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC120.015720 – volume: Chapter 15 start-page: Unit15 15 year: 2013 ident: 2023011609414234200_B81 article-title: Synthesis of phosphoramidate prodrugs: proTide approach publication-title: Curr. Protoc. Nucleic Acid Chem. – volume: 117 start-page: 8094 year: 2020 ident: 2023011609414234200_B55 article-title: Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1921485117 – volume: 1804 start-page: 1041 year: 2010 ident: 2023011609414234200_B61 article-title: The kinetic and chemical mechanism of high-fidelity DNA polymerases publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2010.01.006 – volume: 103 start-page: 5108 year: 2006 ident: 2023011609414234200_B15 article-title: Discovery of an RNA virus 3'→5' exoribonuclease that is critically involved in coronavirus RNA synthesis publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.0508200103 – volume: 1266 start-page: 171 year: 2015 ident: 2023011609414234200_B38 article-title: Site-specific biotinylation of purified proteins using BirA publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2272-7_12 – volume: 101 start-page: 12694 year: 2004 ident: 2023011609414234200_B54 article-title: Major genetic marker of nidoviruses encodes a replicative endoribonuclease publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.0403127101 – volume: 16 start-page: 1149 year: 2021 ident: 2023011609414234200_B82 article-title: An overview of ProTide technology and its implications to drug discovery publication-title: Expert Opin. Drug Discov. doi: 10.1080/17460441.2021.1922385 – volume: 90 start-page: 5399 year: 2016 ident: 2023011609414234200_B24 article-title: Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the Innate immune response publication-title: J. Virol. doi: 10.1128/JVI.03259-15 – volume: 8 start-page: 815845 year: 2021 ident: 2023011609414234200_B28 article-title: When DNA polymerases multitask: functions beyond nucleotidyl transfer publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.815845 – volume: 94 start-page: e01246-20 year: 2020 ident: 2023011609414234200_B23 article-title: The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2 publication-title: J. Virol. doi: 10.1128/JVI.01246-20 – volume: 30 start-page: 1050 year: 2022 ident: 2023011609414234200_B22 article-title: Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity publication-title: Structure doi: 10.1016/j.str.2022.04.014 – volume: 23 start-page: 21 year: 2022 ident: 2023011609414234200_B11 article-title: Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00432-z – volume: 26 start-page: 2040206618775243 year: 2018 ident: 2023011609414234200_B7 article-title: Phosphoramidates and phosphonamidates (ProTides) with antiviral activity publication-title: Antivir. Chem. Chemother. doi: 10.1177/2040206618775243 – volume: 154 start-page: 66 year: 2018 ident: 2023011609414234200_B4 article-title: The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2018.04.004 – volume: 78 start-page: 7350 year: 1981 ident: 2023011609414234200_B68 article-title: A DNA fragment with an alpha-phosphorothioate nucleotide at one end is asymmetrically blocked from digestion by exonuclease III and can be replicated in vivo publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.78.12.7350 – volume: 35 start-page: 3118 year: 2007 ident: 2023011609414234200_B69 article-title: Nucleoside alpha-thiotriphosphates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothioate linkages publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm168 – volume: 1091 start-page: 17 year: 2014 ident: 2023011609414234200_B41 article-title: Stable expression clones and auto-induction for protein production in E. coli publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-691-7_2 – volume: 7 start-page: 421 year: 2020 ident: 2023011609414234200_B76 article-title: Viperin reveals its true function publication-title: Annu Rev Virol doi: 10.1146/annurev-virology-011720-095930 – volume: 558 start-page: 610 year: 2018 ident: 2023011609414234200_B73 article-title: A naturally occurring antiviral ribonucleotide encoded by the human genome publication-title: Nature doi: 10.1038/s41586-018-0238-4 – volume: 331 start-page: 991 year: 2003 ident: 2023011609414234200_B16 article-title: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00865-9 – volume: 19 start-page: 1355 year: 2013 ident: 2023011609414234200_B34 article-title: 2'-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa publication-title: RNA doi: 10.1261/rna.039917.113 – volume: 111 start-page: E3900 year: 2014 ident: 2023011609414234200_B52 article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1323705111 – volume: 182 start-page: 1560 year: 2020 ident: 2023011609414234200_B57 article-title: Structural basis for helicase-Polymerase coupling in the SARS-CoV-2 replication-Transcription complex publication-title: Cell doi: 10.1016/j.cell.2020.07.033 – volume: 49 start-page: 315 year: 2021 ident: 2023011609414234200_B6 article-title: Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs publication-title: Enzymes doi: 10.1016/bs.enz.2021.07.002 – volume: 64 start-page: 15429 year: 2021 ident: 2023011609414234200_B36 article-title: A chemical strategy for intracellular arming of an endogenous broad-Spectrum antiviral nucleotide publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.1c01481 – volume: 253 start-page: 117592 year: 2020 ident: 2023011609414234200_B70 article-title: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117592 – volume: 21 start-page: 2909 year: 2021 ident: 2023011609414234200_B80 article-title: Advancement of prodrug approaches for nucleotide antiviral agents publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026621666210728094019 – volume: 383 start-page: 1813 year: 2020 ident: 2023011609414234200_B1 article-title: Remdesivir for the treatment of Covid-19 - Final report publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2007764 – volume: 27 start-page: 2918 year: 2022 ident: 2023011609414234200_B26 article-title: Opportunities and challenges in targeting the proofreading activity of SARS-CoV-2 polymerase complex publication-title: Molecules doi: 10.3390/molecules27092918 – volume: 119 start-page: e2106379119 year: 2022 ident: 2023011609414234200_B49 article-title: Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.2106379119 – volume: 109 start-page: 9372 year: 2012 ident: 2023011609414234200_B20 article-title: RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1201130109 – volume: 36 start-page: 109650 year: 2021 ident: 2023011609414234200_B75 article-title: The nucleotide addition cycle of the SARS-CoV-2 polymerase publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109650 – volume: 350 start-page: 214 year: 2006 ident: 2023011609414234200_B37 article-title: Small ubiquitin-like modifying protein isopeptidase assay based on poliovirus RNA polymerase activity publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.11.001 – volume: 11 start-page: 31373 year: 2021 ident: 2023011609414234200_B35 article-title: An efficient synthesis of RNA containing GS-441524: the nucleoside precursor of remdesivir publication-title: RSC Adv. doi: 10.1039/D1RA06589K – volume: 373 start-page: 236 year: 2021 ident: 2023011609414234200_B44 article-title: Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets publication-title: Science doi: 10.1126/science.abi5224 – volume: 112 start-page: 9436 year: 2015 ident: 2023011609414234200_B19 article-title: Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1508686112 – volume: 118 start-page: e2106379119 year: 2021 ident: 2023011609414234200_B58 article-title: Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.2102516118 – volume: 277 start-page: 363 year: 1998 ident: 2023011609414234200_B65 article-title: Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1586 – volume: 517 start-page: 157 year: 2018 ident: 2023011609414234200_B53 article-title: An “old” protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses publication-title: Virology doi: 10.1016/j.virol.2017.12.024 – volume: 13 start-page: e1006195 year: 2017 ident: 2023011609414234200_B56 article-title: Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006195 – volume: 478 start-page: 2445 year: 2021 ident: 2023011609414234200_B59 article-title: Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease publication-title: Biochem. J. doi: 10.1042/BCJ20210198 – volume: 298 start-page: 101518 year: 2022 ident: 2023011609414234200_B50 article-title: Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101518 – volume: 54 start-page: 367 year: 1985 ident: 2023011609414234200_B66 article-title: Nucleoside phosphorothioates publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.54.070185.002055 – volume: 28 start-page: 740 year: 2021 ident: 2023011609414234200_B32 article-title: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00651-0 – volume: 12 start-page: 279 year: 2021 ident: 2023011609414234200_B85 article-title: Mechanism of SARS-CoV-2 polymerase stalling by remdesivir publication-title: Nat. Commun. doi: 10.1038/s41467-020-20542-0 – volume: 298 start-page: 101529 year: 2022 ident: 2023011609414234200_B31 article-title: Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101529 – volume: 185 start-page: 105894 year: 2021 ident: 2023011609414234200_B48 article-title: Reconstitution and functional characterization of SARS-CoV-2 proofreading complex publication-title: Protein Expression Purif. doi: 10.1016/j.pep.2021.105894 – volume: 257 start-page: 7684 year: 1982 ident: 2023011609414234200_B64 article-title: A study of the mechanism of T4 DNA polymerase with diastereomeric phosphorothioate analogues of deoxyadenosine triphosphate publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)34435-1 – volume: 584 start-page: 154 year: 2020 ident: 2023011609414234200_B30 article-title: Structure of replicating SARS-CoV-2 polymerase publication-title: Nature doi: 10.1038/s41586-020-2368-8 – volume: 40 start-page: 9014 year: 2001 ident: 2023011609414234200_B63 article-title: DNA polymerase beta: pre-steady-state kinetic analyses of dATP alpha S stereoselectivity and alteration of the stereoselectivity by various metal ions and by site-directed mutagenesis publication-title: Biochemistry doi: 10.1021/bi010646j – volume: 386 start-page: 509 year: 2022 ident: 2023011609414234200_B2 article-title: Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2116044 – volume: 9 start-page: e1003565 year: 2013 ident: 2023011609414234200_B25 article-title: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003565 – volume: 79 start-page: 710 year: 2020 ident: 2023011609414234200_B13 article-title: Coronavirus RNA proofreading: molecular basis and therapeutic targeting publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.07.027 – volume: 1804 start-page: 1049 year: 2010 ident: 2023011609414234200_B27 article-title: DNA polymerase proofreading: multiple roles maintain genome stability publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2009.06.012 – volume: 50 start-page: 5016 year: 2011 ident: 2023011609414234200_B42 article-title: Human mitochondrial RNA polymerase: evaluation of the single-nucleotide-addition cycle on synthetic RNA/DNA scaffolds publication-title: Biochemistry doi: 10.1021/bi200350d – volume: 25 start-page: 69 year: 2017 ident: 2023011609414234200_B83 article-title: Nucleoside diphosphate and triphosphate prodrugs - An unsolvable task publication-title: Antivir. Chem. Chemother. doi: 10.1177/2040206617738656 – volume: 49 start-page: 39 year: 2021 ident: 2023011609414234200_B5 article-title: Mechanisms of inhibition of viral RNA replication by nucleotide analogs publication-title: Enzymes doi: 10.1016/bs.enz.2021.07.001 – volume: 10 start-page: 1813 year: 2019 ident: 2023011609414234200_B14 article-title: The Curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01813 – volume: 24 start-page: 374 year: 2014 ident: 2023011609414234200_B67 article-title: Phosphorothioates, essential components of therapeutic oligonucleotides publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2014.0506 – volume: 7 start-page: 792 year: 2021 ident: 2023011609414234200_B72 article-title: Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with Remdesivir publication-title: ACS Cent Sci doi: 10.1021/acscentsci.0c01186 – volume: 373 start-page: 1142 year: 2021 ident: 2023011609414234200_B29 article-title: Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme publication-title: Science doi: 10.1126/science.abi9310 – volume: 12 start-page: 9593 year: 2022 ident: 2023011609414234200_B74 article-title: Characterization of SARS-CoV-2 replication complex elongation and proofreading activity publication-title: Sci. Rep. doi: 10.1038/s41598-022-13380-1 – volume: 10 start-page: e70968 year: 2021 ident: 2023011609414234200_B8 article-title: Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective publication-title: Elife doi: 10.7554/eLife.70968 – volume: 49 start-page: 5382 year: 2021 ident: 2023011609414234200_B47 article-title: Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab320 – volume: 41 start-page: 207 year: 2005 ident: 2023011609414234200_B40 article-title: Protein production by auto-induction in high density shaking cultures publication-title: Protein Expression Purif. doi: 10.1016/j.pep.2005.01.016 – volume: 289 start-page: 25783 year: 2014 ident: 2023011609414234200_B21 article-title: Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.577353 – volume: 40 start-page: 649 year: 2007 ident: 2023011609414234200_B18 article-title: Biochemical characterization of exoribonuclease encoded by SARS coronavirus publication-title: J. Biochem. Mol. Biol. – volume: 4 start-page: 208 year: 2007 ident: 2023011609414234200_B78 article-title: Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins publication-title: Mol Pharm doi: 10.1021/mp060070y – volume: 115 start-page: E162 year: 2018 ident: 2023011609414234200_B46 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1718806115 – volume: 43 start-page: 5126 year: 2004 ident: 2023011609414234200_B60 article-title: Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+ publication-title: Biochemistry doi: 10.1021/bi035212y – volume: 50 start-page: 1221 year: 2022 ident: 2023011609414234200_B77 article-title: Chirality matters: stereo-defined phosphorothioate linkages at the termini of small interfering rnas improve pharmacology in vivo publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab544 – volume: 44 start-page: 688 year: 2021 ident: 2023011609414234200_B71 article-title: Asunaprevir, a potent Hepatitis C virus protease inhibitor, blocks SARS-CoV-2 propagation publication-title: Mol. Cells doi: 10.14348/molcells.2021.0076 – volume: 285 start-page: 40809 year: 2010 ident: 2023011609414234200_B79 article-title: Histidine triad nucleotide-binding protein 1 (HINT-1) phosphoramidase transforms nucleoside 5'-O-phosphorothioates to nucleoside 5'-O-phosphates publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.162065 – volume: 375 start-page: 497 year: 2022 ident: 2023011609414234200_B9 article-title: Lethal mutagenesis as an antiviral strategy publication-title: Science doi: 10.1126/science.abn0048 – volume: 184 start-page: 184 year: 2021 ident: 2023011609414234200_B84 article-title: Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis publication-title: Cell doi: 10.1016/j.cell.2020.11.016 – volume: 82 start-page: 585 year: 2022 ident: 2023011609414234200_B3 article-title: Nirmatrelvir plus Ritonavir: first approval publication-title: Drugs doi: 10.1007/s40265-022-01692-5 – volume: 8 start-page: 270 year: 2011 ident: 2023011609414234200_B12 article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity publication-title: RNA Biol doi: 10.4161/rna.8.2.15013 – volume: 10 start-page: 25 year: 1991 ident: 2023011609414234200_B17 article-title: Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07917.x – volume: 15 start-page: 4145 year: 1987 ident: 2023011609414234200_B62 article-title: Stereospecificity of nucleases towards phosphorothioate-substituted RNA: stereochemistry of transcription by T7 RNA polymerase publication-title: Nucleic Acids Res. doi: 10.1093/nar/15.10.4145 – volume: 21 start-page: 1063 year: 2017 ident: 2023011609414234200_B10 article-title: Signatures of nucleotide analog incorporation by an RNA-Dependent RNA polymerase revealed using high-Throughput magnetic tweezers publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.10.005 – volume: 1621 start-page: 461051 year: 2020 ident: 2023011609414234200_B39 article-title: Two chromatographic schemes for protein purification involving the biotin/avidin interaction under native conditions publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2020.461051 – volume: 288 start-page: 5130 year: 2021 ident: 2023011609414234200_B51 article-title: New targets for drug design: importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2 publication-title: FEBS J. doi: 10.1111/febs.15815 – volume: 50 start-page: 1484 year: 2022 ident: 2023011609414234200_B45 article-title: Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1303 – reference: 35982684 - bioRxiv. 2022 Aug 11;: |
SSID | ssj0014154 |
Score | 2.4813213 |
Snippet | Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in... Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 315 |
SubjectTerms | Antiviral Agents - pharmacology COVID-19 Drug Treatment Drug Design Exoribonucleases - metabolism Humans Nucleic Acid Enzymes Ribonucleotides - chemistry RNA, Viral - genetics RNA, Viral - metabolism SARS-CoV-2 - genetics SARS-CoV-2 - metabolism Viral Nonstructural Proteins - metabolism Virus Replication - genetics |
Title | Interfering with nucleotide excision by the coronavirus 3′-to-5′ exoribonuclease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36546762 https://www.proquest.com/docview/2757055502 https://pubmed.ncbi.nlm.nih.gov/PMC9841423 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgHOCCxsZHGUxGYuxQhSVxUifHaWo1oW0g0Uq9RY7trFm3BKVJtfHX82zno12HNLhEke24ld_z8-99GqHPhISDUJLE4jTwLNiJvhUGZGBJaYuBqi_FY2XQP78YnE68b1N_2gVk6uySMv7Kfz-YV_I_VIU2oKvKkv0HyraTQgO8A33hCRSG56NorM15iS4maAyqmapOnJepkH15ay7P0fhypmLSCwDdy7SoFn1y4FKrzC1fRVDI27xI41x_2rhqrpqkXGhTBV15KpR7YcXypSMC0qycwWFbXhsEWs3lou39mZd5JeSlMbCe5zN2w0TbWaRLBrh0yQyKzebsqjNICK0FdOFLtSm2tk24KjLLqmWnEac6Jyus5a18oK2Wwb6zwWtGoBKT7Lkh6E0RrEwFoY8u54wr33N3pDVu_Ivv0WhydhaNh9PxU_TMBVVCyUJqD1tPEwAYc_Fx_a_q5AiY_whmP2rmXoctG7rI_ZDaFYwy3kYva-UCHxtOeYWeyGwH7R5nrMxv7vAXrMN9tR9lBz0_aa7620U_VhgJK0bCHSPhhpFwfIeBkfAKI2FyqNnoEN9jotdoMhqOT06t-qoNi5PAKy1H1UgSjmRMZR47iTsANdQOE0oBgQtKbRH61OZEChrC7nV9FgQOSQLuu3BKhZy8QVtZnsl3CFMGKJoR4gkZeIKEQQLHSEyYF3ggFHzeQ_1mJSNe16FX16FcRyYegkSw7lGz7j100I7-Zeqv_GXcp4YoESye8nqxTObVInKprypG-bbbQ28NkdqZiErlAzjQQ3SNfO0AVXx9vSdLZ7oIexh4Dqgi7x_xu3voRbc5PqCtsqjkR4CyZbyveXFfG4L-ABfopMs |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfering+with+nucleotide+excision+by+the+coronavirus+3%27-to-5%27+exoribonuclease&rft.jtitle=Nucleic+acids+research&rft.au=Chinthapatla%2C+Rukesh&rft.au=Sotoudegan%2C+Mohamad&rft.au=Srivastava%2C+Pankaj&rft.au=Anderson%2C+Thomas+K&rft.date=2023-01-11&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=51&rft.issue=1&rft.spage=315&rft_id=info:doi/10.1093%2Fnar%2Fgkac1177&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |