Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung
The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo . We demonstrate the use of multiplexed Nanostrin...
Saved in:
Published in | Infection and immunity Vol. 84; no. 10; pp. 2995 - 3006 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-9567 1098-5522 1098-5522 |
DOI | 10.1128/IAI.00437-16 |
Cover
Loading…
Abstract | The discovery of therapies that modulate
Pseudomonas aeruginosa
virulence or that can eradicate chronic
P. aeruginosa
lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of
P. aeruginosa
behavior
in vivo
. We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of
P. aeruginosa
transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology
in vitro
and
in vivo
. The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of
P. aeruginosa
strains as well as RNA serial sputum samples from four
P. aeruginosa
-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of
P. aeruginosa
grown
in vitro
identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates.
P. aeruginosa
transcript profiles in RNA from CF sputum indicated alginate production
in vivo
, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory.
P. aeruginosa
gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown
P. aeruginosa
showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF
P. aeruginosa
lung infections. |
---|---|
AbstractList | The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections. The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo . We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo . The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa -colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo , and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections. The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections. |
Author | Dolben, Emily L. Hill, Jane E. Ashare, Alix Dorman, Dana B. Willger, Sven D. Bean, Heather Gifford, Alex H. Hampton, Thomas H. Hogan, Deborah A. Moulton, Lisa A. |
Author_xml | – sequence: 1 givenname: Alex H. surname: Gifford fullname: Gifford, Alex H. organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA – sequence: 2 givenname: Sven D. surname: Willger fullname: Willger, Sven D. organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA – sequence: 3 givenname: Emily L. surname: Dolben fullname: Dolben, Emily L. organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA – sequence: 4 givenname: Lisa A. surname: Moulton fullname: Moulton, Lisa A. organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA – sequence: 5 givenname: Dana B. surname: Dorman fullname: Dorman, Dana B. organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA – sequence: 6 givenname: Heather surname: Bean fullname: Bean, Heather organization: School of Life Sciences, Arizona State University, Tempe, Arizona, USA – sequence: 7 givenname: Jane E. surname: Hill fullname: Hill, Jane E. organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA – sequence: 8 givenname: Thomas H. surname: Hampton fullname: Hampton, Thomas H. organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA – sequence: 9 givenname: Alix surname: Ashare fullname: Ashare, Alix organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA – sequence: 10 givenname: Deborah A. surname: Hogan fullname: Hogan, Deborah A. organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27481238$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFv1DAQhS1URLeFG2fkIwdSbMdOnAvSatWWlbaih_ZsOc541yhrB9tB3Rs_HS8tFSBOo9F882b03hk68cEDQm8puaCUyY_r5fqCEF63FW1eoAUlnayEYOwELQihXdWJpj1FZyl9LS3nXL5Cp6zlkrJaLtCP-wQ4WKzxzTxmN43wgO-i9slEN2V8A3kXBmxDxEuvx0Ny6UjfJpiHsA9eJ6whzlvnQ9L4Gjzgy4cpQkoueHwbg3UjJOw8zjvAq0PKzuAr18dwVNrMfvsavbR6TPDmqZ6j-6vLu9XnavPler1abipTS54ryltrhq6xurcSbEPZYHoQummNFE3fctqzmltGJdBhsKYTsqtlC1poAGahPkefHnWnud_DYMDnqEc1RbfX8aCCdurviXc7tQ3flSC1JA0rAu-fBGL4NkPKau-SgXHUHsKcFJWMUSpIWxf03Z-3no_8tr0AHx4BU4xIEewzQok6pqpKqupXqoo2BWf_4MZlnYvF5VM3_n_pJwoOqFI |
CitedBy_id | crossref_primary_10_1099_mgen_0_000513 crossref_primary_10_1152_ajplung_00383_2017 crossref_primary_10_1371_journal_ppat_1008995 crossref_primary_10_1099_mgen_0_000320 crossref_primary_10_1128_mBio_00186_17 crossref_primary_10_3389_fimmu_2019_01670 crossref_primary_10_1080_17476348_2018_1483723 crossref_primary_10_1146_annurev_micro_032020_093845 crossref_primary_10_1073_pnas_1717525115 crossref_primary_10_1080_21505594_2021_1926408 crossref_primary_10_1007_s10096_018_3232_8 crossref_primary_10_1128_mSphere_00292_18 crossref_primary_10_1128_JB_00559_19 crossref_primary_10_1038_s41598_024_82500_w crossref_primary_10_1073_pnas_1917576117 crossref_primary_10_1016_j_tim_2018_07_002 crossref_primary_10_1038_s41589_022_01040_4 crossref_primary_10_1016_j_resmic_2021_103817 crossref_primary_10_1128_JB_00100_21 |
Cites_doi | 10.1128/IAI.72.1.133-144.2004 10.1093/nar/gkq869 10.1016/j.jpsychores.2010.06.005 10.1038/416740a 10.1128/IAI.00418-13 10.1183/09031936.00154006 10.1093/jac/dki146 10.1007/s10534-011-9464-z 10.1016/j.mib.2009.01.005 10.1164/rccm.201404-0681OC 10.1038/nbt1385 10.1073/pnas.0602138103 10.1186/2049-2618-1-27 10.1016/S0140-6736(86)90837-8 10.1186/1471-2180-13-232 10.1128/mr.60.3.539-574.1996 10.1128/jb.178.8.2186-2195.1996 10.1099/mic.0.066985-0 10.1038/srep10932 10.1128/JB.186.7.2115-2122.2004 10.1128/mBio.00557-13 10.1371/journal.pone.0060225 10.1056/NEJMoa1105185 10.1016/j.jcf.2008.09.006 10.1183/09031936.00137612 10.1378/chest.123.5.1495 10.1038/nrmicro2907 10.1016/j.jcf.2012.02.006 10.1172/JCI24684 10.1086/599360 10.1002/ppul.21335 10.1136/thx.2010.137281 10.1371/journal.pone.0037908 10.1128/AEM.65.3.1175-1179.1999 10.1097/01.ajp.0000210996.45459.76 10.1073/pnas.1316981110 10.1128/JB.187.6.2138-2147.2005 10.1128/mBio.00749-15 10.1164/rccm.201103-0374OC 10.1128/JB.00984-12 10.1056/NEJMc1510466 10.1128/JB.00182-15 10.1128/IAI.00338-07 10.1378/chest.08-1190 10.1378/chest.12-1404 10.1128/jb.179.10.3127-3132.1997 10.1128/IAI.01008-08 10.1007/s10880-009-9179-2 10.1378/chest.08-1421 10.1128/JB.01344-07 10.1128/iai.58.10.3363-3368.1990 10.1128/IAI.01807-06 10.1128/JCM.41.8.3526-3531.2003 10.1093/emboj/cdg290 10.1128/JB.01651-09 10.1002/ppul.21325 10.1128/JB.01050-12 10.1371/journal.pone.0082621 10.1093/annonc/mdt494 10.1164/rccm.200812-1943OC 10.1038/srep07649 10.1099/mic.0.048645-0 10.1183/09031936.00203013 10.1371/journal.pone.0045001 10.1093/cid/ciu385 10.1371/journal.ppat.1000712 10.1378/chest.128.4.2347 10.1165/rcmb.2012-0088OC 10.1038/35037627 10.1128/JB.185.4.1316-1325.2003 10.1128/AAC.48.7.2659-2664.2004 10.1073/pnas.0502663102 10.1128/jb.176.4.1128-1140.1994 10.1016/j.tim.2004.11.001 10.1099/13500872-142-8-2145 10.1128/IAI.05282-11 10.1016/j.jcf.2013.12.001 10.1002/ppul.21011 10.1001/jama.293.5.581 10.1128/JB.00636-06 10.1128/IAI.01373-07 10.1164/rccm.201410-1864OC 10.1074/jbc.M114.633495 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/IAI.00437-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | P. aeruginosa Transcript Profiles in Sputum |
EISSN | 1098-5522 |
EndPage | 3006 |
ExternalDocumentID | PMC5038062 27481238 10_1128_IAI_00437_16 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: KL2 TR001088 – fundername: NCATS NIH HHS grantid: UL1 TR001086 – fundername: NIGMS NIH HHS grantid: P30 GM106394 – fundername: NIEHS NIH HHS grantid: P42 ES007373 – fundername: NHLBI NIH HHS grantid: R01 HL122372 – fundername: NIAID NIH HHS grantid: R01 AI091702 – fundername: HHS | National Institutes of Health (NIH) grantid: KL2TR001088 – fundername: HHS | National Institutes of Health (NIH) grantid: P30GM106394 – fundername: Cystic Fibrosis Foundation (CF Foundation) grantid: STANTO07R0 – fundername: HHS | National Institutes of Health (NIH) grantid: AI091702 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 29I 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 85S AAGFI AAYXX ABOCM ACGFO ADBBV ADXHL AENEX AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ H~9 IH2 J5H KQ8 L7B MVM NEJ O9- OHT OK1 P2P RHI RNS RPM RSF SJN TR2 TWZ UPT VH1 W2D W8F WH7 WHG WOQ X7M Y6R ZGI ZXP ~KM CGR CUY CVF ECM EIF NPM PKN RHF UCJ VQA YIF 7X8 5PM |
ID | FETCH-LOGICAL-c384t-147fcd96fabf8ef612dcbe5a67c856b741b234f218e1ddfc9589387ea5aee2fe3 |
ISSN | 0019-9567 1098-5522 |
IngestDate | Thu Aug 21 14:33:01 EDT 2025 Fri Jul 11 11:42:43 EDT 2025 Wed Feb 19 02:42:16 EST 2025 Thu Apr 24 22:58:56 EDT 2025 Tue Jul 01 02:09:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-147fcd96fabf8ef612dcbe5a67c856b741b234f218e1ddfc9589387ea5aee2fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Gifford AH, Willger SD, Dolben EL, Moulton LA, Dorman DB, Bean H, Hill JE, Hampton TH, Ashare A, Hogan DA. 2016. Use of a multiplex transcript method for analysis of Pseudomonas aeruginosa gene expression profiles in the cystic fibrosis lung. Infect Immun 84:2995–3006. doi:10.1128/IAI.00437-16. A.H.G., S.D.W., E.L.D., and D.A.H. contributed equally to this work. |
OpenAccessLink | https://iai.asm.org/content/iai/84/10/2995.full.pdf |
PMID | 27481238 |
PQID | 1822115073 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5038062 proquest_miscellaneous_1822115073 pubmed_primary_27481238 crossref_primary_10_1128_IAI_00437_16 crossref_citationtrail_10_1128_IAI_00437_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Infection and immunity |
PublicationTitleAlternate | Infect Immun |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 Goslee SC (e_1_3_3_30_2) 2007 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 Mayer-Hamblett N (e_1_3_3_16_2) 2014; 190 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 Kulkarni MM (e_1_3_3_24_2) 2011; 25 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 25578031 - Sci Rep. 2015 Jan 12;5:7649 21472696 - Curr Protoc Mol Biol. 2011 Apr;Chapter 25:Unit25B.10 15028697 - J Bacteriol. 2004 Apr;186(7):2115-22 11048725 - Nature. 2000 Oct 12;407(6805):762-4 16687478 - Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92 21474537 - Microbiology. 2011 Jun;157(Pt 6):1726-39 18974024 - J Cyst Fibros. 2009 Jan;8(1):66-70 24138584 - BMC Microbiol. 2013 Oct 18;13:232 23670667 - Chest. 2013 Sep;144(3):981-9 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 21270069 - Thorax. 2011 Jul;66(7):579-84 8106324 - J Bacteriol. 1994 Feb;176(4):1128-40 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74 16952938 - J Bacteriol. 2006 Sep;188(18):6483-9 21643731 - Biometals. 2011 Dec;24(6):1059-67 19249239 - Curr Opin Microbiol. 2009 Apr;12(2):182-91 15215123 - Antimicrob Agents Chemother. 2004 Jul;48(7):2659-64 2401567 - Infect Immun. 1990 Oct;58(10):3363-8 23147702 - Nat Rev Microbiol. 2012 Dec;10(12):841-51 20929876 - Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600 16788339 - Clin J Pain. 2006 Jul-Aug;22(6):532-7 23963183 - MBio. 2013 Aug 20;4(4):null 18212077 - Infect Immun. 2008 Apr;76(4):1423-33 21930755 - Infect Immun. 2011 Dec;79(12):4802-18 17724070 - Infect Immun. 2007 Nov;75(11):5313-24 16440061 - J Clin Invest. 2006 Feb;116(2):436-46 12562802 - J Bacteriol. 2003 Feb;185(4):1316-25 12805211 - EMBO J. 2003 Jun 16;22(12 ):2959-69 22436723 - J Cyst Fibros. 2012 Jul;11(4):288-92 19447923 - Chest. 2009 Jun;135(6):1610-8 23690396 - Infect Immun. 2013 Aug;81(8):2697-704 25489881 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):309-15 15883175 - J Antimicrob Chemother. 2005 Jun;55(6):921-7 24369896 - J Cyst Fibros. 2014 May;13(3):289-95 24863401 - Clin Infect Dis. 2014 Sep 1;59(5):624-31 19103776 - Infect Immun. 2009 Mar;77(3):1103-11 20848580 - Pediatr Pulmonol. 2011 Jan;46(1):36-44 9150205 - J Bacteriol. 1997 May;179(10):3127-32 2868172 - Lancet. 1986 Feb 8;1(8476):307-10 22753054 - J Bacteriol. 2012 Sep;194(18):4857-66 23049765 - PLoS One. 2012;7(9):e45001 15687313 - JAMA. 2005 Feb 2;293(5):581-8 8636017 - J Bacteriol. 1996 Apr;178(8):2186-95 17502391 - Infect Immun. 2007 Aug;75(8):3902-12 24014664 - Microbiology. 2013 Nov;159(Pt 11):2354-63 21262419 - J Psychosom Res. 2011 Feb;70(2):161-7 25034564 - Eur Respir J. 2014 Oct;44(4):922-30 19459782 - J Infect Dis. 2009 Jul 1;200(1):118-30 22843844 - J Bacteriol. 2012 Oct;194(19):5315-24 22662248 - PLoS One. 2012;7(5):e37908 17504792 - Eur Respir J. 2007 Aug;30(2):286-92 15680764 - Trends Microbiol. 2005 Feb;13(2):58-63 24143808 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6 26047320 - Sci Rep. 2015 Jun 05;5:10932 10049879 - Appl Environ Microbiol. 1999 Mar;65(3):1175-9 24324811 - PLoS One. 2013 Dec 06;8(12):e82621 24451123 - Microbiome. 2013 Nov 01;1(1):27 24937177 - Am J Respir Crit Care Med. 2014 Aug 1;190(3):289-97 15743962 - J Bacteriol. 2005 Mar;187(6):2138-47 19423715 - Am J Respir Crit Care Med. 2009 Jul 15;180(2):138-45 16043713 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11082-7 25616666 - J Biol Chem. 2015 Mar 20;290(12):7756-66 19420195 - Chest. 2009 May;135(5):1223-32 26078448 - J Bacteriol. 2015 Sep;197(17):2810-20 11961556 - Nature. 2002 Apr 18;416(6882):740-3 23573242 - PLoS One. 2013;8(4):e60225 22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72 23314900 - Eur Respir J. 2013 Aug;42(2):371-9 26510034 - N Engl J Med. 2015 Oct 29;373(18):1783-4 14688090 - Infect Immun. 2004 Jan;72(1):133-44 21562128 - Am J Respir Crit Care Med. 2011 Aug 1;184(3):345-54 20157799 - J Clin Psychol Med Settings. 2010 Mar;17(1):49-55 26126853 - MBio. 2015 Jun 30;6(4):e00749 16236893 - Chest. 2005 Oct;128(4):2347-54 8760928 - Microbiology. 1996 Aug;142 ( Pt 8):2145-51 17890313 - J Bacteriol. 2007 Dec;189(23):8667-76 12740266 - Chest. 2003 May;123(5):1495-502 24347518 - Ann Oncol. 2014 Feb;25(2):339-45 19418571 - Pediatr Pulmonol. 2009 Jun;44(6):547-58 20935098 - J Bacteriol. 2010 Dec;192(23):6191-9 22865623 - Am J Respir Cell Mol Biol. 2012 Dec;47(6):738-45 20963784 - Pediatr Pulmonol. 2011 Feb;46(2):160-5 12904350 - J Clin Microbiol. 2003 Aug;41(8):3526-31 20072604 - PLoS Pathog. 2010 Jan 08;6(1):e1000712 |
References_xml | – ident: e_1_3_3_4_2 doi: 10.1128/IAI.72.1.133-144.2004 – ident: e_1_3_3_37_2 doi: 10.1093/nar/gkq869 – ident: e_1_3_3_80_2 doi: 10.1016/j.jpsychores.2010.06.005 – ident: e_1_3_3_67_2 doi: 10.1038/416740a – ident: e_1_3_3_20_2 doi: 10.1128/IAI.00418-13 – ident: e_1_3_3_56_2 doi: 10.1183/09031936.00154006 – ident: e_1_3_3_65_2 doi: 10.1093/jac/dki146 – ident: e_1_3_3_63_2 doi: 10.1007/s10534-011-9464-z – ident: e_1_3_3_49_2 doi: 10.1016/j.mib.2009.01.005 – volume: 190 start-page: 289 year: 2014 ident: e_1_3_3_16_2 article-title: Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201404-0681OC – ident: e_1_3_3_27_2 doi: 10.1038/nbt1385 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0602138103 – start-page: v022i07 volume-title: J Stat Soft year: 2007 ident: e_1_3_3_30_2 – volume: 25 start-page: Unit 25B.10 year: 2011 ident: e_1_3_3_24_2 article-title: Digital multiplexed gene expression analysis using the NanoString nCounter system publication-title: Curr Protoc Mol Biol – ident: e_1_3_3_69_2 doi: 10.1186/2049-2618-1-27 – ident: e_1_3_3_29_2 doi: 10.1016/S0140-6736(86)90837-8 – ident: e_1_3_3_46_2 doi: 10.1186/1471-2180-13-232 – ident: e_1_3_3_45_2 doi: 10.1128/mr.60.3.539-574.1996 – ident: e_1_3_3_47_2 doi: 10.1128/jb.178.8.2186-2195.1996 – ident: e_1_3_3_21_2 doi: 10.1099/mic.0.066985-0 – ident: e_1_3_3_11_2 doi: 10.1038/srep10932 – ident: e_1_3_3_41_2 doi: 10.1128/JB.186.7.2115-2122.2004 – ident: e_1_3_3_51_2 doi: 10.1128/mBio.00557-13 – ident: e_1_3_3_64_2 doi: 10.1371/journal.pone.0060225 – ident: e_1_3_3_75_2 doi: 10.1056/NEJMoa1105185 – ident: e_1_3_3_18_2 doi: 10.1016/j.jcf.2008.09.006 – ident: e_1_3_3_79_2 doi: 10.1183/09031936.00137612 – ident: e_1_3_3_87_2 doi: 10.1378/chest.123.5.1495 – ident: e_1_3_3_6_2 doi: 10.1038/nrmicro2907 – ident: e_1_3_3_86_2 doi: 10.1016/j.jcf.2012.02.006 – ident: e_1_3_3_32_2 doi: 10.1172/JCI24684 – ident: e_1_3_3_23_2 doi: 10.1086/599360 – ident: e_1_3_3_55_2 doi: 10.1002/ppul.21335 – ident: e_1_3_3_72_2 doi: 10.1136/thx.2010.137281 – ident: e_1_3_3_34_2 doi: 10.1371/journal.pone.0037908 – ident: e_1_3_3_36_2 doi: 10.1128/AEM.65.3.1175-1179.1999 – ident: e_1_3_3_81_2 doi: 10.1097/01.ajp.0000210996.45459.76 – ident: e_1_3_3_85_2 doi: 10.1073/pnas.1316981110 – ident: e_1_3_3_40_2 doi: 10.1128/JB.187.6.2138-2147.2005 – ident: e_1_3_3_14_2 doi: 10.1128/mBio.00749-15 – ident: e_1_3_3_22_2 doi: 10.1164/rccm.201103-0374OC – ident: e_1_3_3_42_2 doi: 10.1128/JB.00984-12 – ident: e_1_3_3_76_2 doi: 10.1056/NEJMc1510466 – ident: e_1_3_3_26_2 doi: 10.1128/JB.00182-15 – ident: e_1_3_3_43_2 doi: 10.1128/IAI.00338-07 – ident: e_1_3_3_73_2 doi: 10.1378/chest.08-1190 – ident: e_1_3_3_82_2 doi: 10.1378/chest.12-1404 – ident: e_1_3_3_50_2 doi: 10.1128/jb.179.10.3127-3132.1997 – ident: e_1_3_3_53_2 doi: 10.1128/IAI.01008-08 – ident: e_1_3_3_78_2 doi: 10.1007/s10880-009-9179-2 – ident: e_1_3_3_74_2 doi: 10.1378/chest.08-1421 – ident: e_1_3_3_33_2 doi: 10.1128/JB.01344-07 – ident: e_1_3_3_60_2 doi: 10.1128/iai.58.10.3363-3368.1990 – ident: e_1_3_3_44_2 doi: 10.1128/IAI.01807-06 – ident: e_1_3_3_38_2 doi: 10.1128/JCM.41.8.3526-3531.2003 – ident: e_1_3_3_54_2 doi: 10.1093/emboj/cdg290 – ident: e_1_3_3_8_2 doi: 10.1128/JB.01651-09 – ident: e_1_3_3_77_2 doi: 10.1002/ppul.21325 – ident: e_1_3_3_13_2 doi: 10.1128/JB.01050-12 – ident: e_1_3_3_61_2 doi: 10.1371/journal.pone.0082621 – ident: e_1_3_3_84_2 doi: 10.1093/annonc/mdt494 – ident: e_1_3_3_7_2 doi: 10.1164/rccm.200812-1943OC – ident: e_1_3_3_10_2 doi: 10.1038/srep07649 – ident: e_1_3_3_39_2 doi: 10.1099/mic.0.048645-0 – ident: e_1_3_3_71_2 doi: 10.1183/09031936.00203013 – ident: e_1_3_3_70_2 doi: 10.1371/journal.pone.0045001 – ident: e_1_3_3_15_2 doi: 10.1093/cid/ciu385 – ident: e_1_3_3_9_2 doi: 10.1371/journal.ppat.1000712 – ident: e_1_3_3_25_2 doi: 10.1378/chest.128.4.2347 – ident: e_1_3_3_62_2 doi: 10.1165/rcmb.2012-0088OC – ident: e_1_3_3_66_2 doi: 10.1038/35037627 – ident: e_1_3_3_3_2 doi: 10.1128/JB.185.4.1316-1325.2003 – ident: e_1_3_3_5_2 doi: 10.1128/AAC.48.7.2659-2664.2004 – ident: e_1_3_3_52_2 doi: 10.1073/pnas.0502663102 – ident: e_1_3_3_58_2 doi: 10.1128/jb.176.4.1128-1140.1994 – ident: e_1_3_3_2_2 doi: 10.1016/j.tim.2004.11.001 – ident: e_1_3_3_28_2 – ident: e_1_3_3_35_2 doi: 10.1099/13500872-142-8-2145 – ident: e_1_3_3_12_2 doi: 10.1128/IAI.05282-11 – ident: e_1_3_3_57_2 doi: 10.1016/j.jcf.2013.12.001 – ident: e_1_3_3_48_2 doi: 10.1002/ppul.21011 – ident: e_1_3_3_17_2 doi: 10.1001/jama.293.5.581 – ident: e_1_3_3_31_2 doi: 10.1128/JB.00636-06 – ident: e_1_3_3_68_2 doi: 10.1128/IAI.01373-07 – ident: e_1_3_3_83_2 doi: 10.1164/rccm.201410-1864OC – ident: e_1_3_3_59_2 doi: 10.1074/jbc.M114.633495 – reference: 21262419 - J Psychosom Res. 2011 Feb;70(2):161-7 – reference: 12805211 - EMBO J. 2003 Jun 16;22(12 ):2959-69 – reference: 26078448 - J Bacteriol. 2015 Sep;197(17):2810-20 – reference: 23147702 - Nat Rev Microbiol. 2012 Dec;10(12):841-51 – reference: 21270069 - Thorax. 2011 Jul;66(7):579-84 – reference: 19418571 - Pediatr Pulmonol. 2009 Jun;44(6):547-58 – reference: 15743962 - J Bacteriol. 2005 Mar;187(6):2138-47 – reference: 15883175 - J Antimicrob Chemother. 2005 Jun;55(6):921-7 – reference: 21474537 - Microbiology. 2011 Jun;157(Pt 6):1726-39 – reference: 24143808 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6 – reference: 25616666 - J Biol Chem. 2015 Mar 20;290(12):7756-66 – reference: 16952938 - J Bacteriol. 2006 Sep;188(18):6483-9 – reference: 12904350 - J Clin Microbiol. 2003 Aug;41(8):3526-31 – reference: 9150205 - J Bacteriol. 1997 May;179(10):3127-32 – reference: 22843844 - J Bacteriol. 2012 Oct;194(19):5315-24 – reference: 8760928 - Microbiology. 1996 Aug;142 ( Pt 8):2145-51 – reference: 20935098 - J Bacteriol. 2010 Dec;192(23):6191-9 – reference: 15680764 - Trends Microbiol. 2005 Feb;13(2):58-63 – reference: 17502391 - Infect Immun. 2007 Aug;75(8):3902-12 – reference: 21562128 - Am J Respir Crit Care Med. 2011 Aug 1;184(3):345-54 – reference: 15215123 - Antimicrob Agents Chemother. 2004 Jul;48(7):2659-64 – reference: 19103776 - Infect Immun. 2009 Mar;77(3):1103-11 – reference: 23049765 - PLoS One. 2012;7(9):e45001 – reference: 17504792 - Eur Respir J. 2007 Aug;30(2):286-92 – reference: 20929876 - Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600 – reference: 23573242 - PLoS One. 2013;8(4):e60225 – reference: 18212077 - Infect Immun. 2008 Apr;76(4):1423-33 – reference: 2868172 - Lancet. 1986 Feb 8;1(8476):307-10 – reference: 24863401 - Clin Infect Dis. 2014 Sep 1;59(5):624-31 – reference: 22753054 - J Bacteriol. 2012 Sep;194(18):4857-66 – reference: 15028697 - J Bacteriol. 2004 Apr;186(7):2115-22 – reference: 24324811 - PLoS One. 2013 Dec 06;8(12):e82621 – reference: 25034564 - Eur Respir J. 2014 Oct;44(4):922-30 – reference: 12562802 - J Bacteriol. 2003 Feb;185(4):1316-25 – reference: 16440061 - J Clin Invest. 2006 Feb;116(2):436-46 – reference: 24451123 - Microbiome. 2013 Nov 01;1(1):27 – reference: 24014664 - Microbiology. 2013 Nov;159(Pt 11):2354-63 – reference: 25489881 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):309-15 – reference: 26510034 - N Engl J Med. 2015 Oct 29;373(18):1783-4 – reference: 21930755 - Infect Immun. 2011 Dec;79(12):4802-18 – reference: 8636017 - J Bacteriol. 1996 Apr;178(8):2186-95 – reference: 22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72 – reference: 16043713 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11082-7 – reference: 24369896 - J Cyst Fibros. 2014 May;13(3):289-95 – reference: 25578031 - Sci Rep. 2015 Jan 12;5:7649 – reference: 23314900 - Eur Respir J. 2013 Aug;42(2):371-9 – reference: 23690396 - Infect Immun. 2013 Aug;81(8):2697-704 – reference: 20072604 - PLoS Pathog. 2010 Jan 08;6(1):e1000712 – reference: 8106324 - J Bacteriol. 1994 Feb;176(4):1128-40 – reference: 26126853 - MBio. 2015 Jun 30;6(4):e00749 – reference: 17724070 - Infect Immun. 2007 Nov;75(11):5313-24 – reference: 2401567 - Infect Immun. 1990 Oct;58(10):3363-8 – reference: 23670667 - Chest. 2013 Sep;144(3):981-9 – reference: 20963784 - Pediatr Pulmonol. 2011 Feb;46(2):160-5 – reference: 10049879 - Appl Environ Microbiol. 1999 Mar;65(3):1175-9 – reference: 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74 – reference: 18974024 - J Cyst Fibros. 2009 Jan;8(1):66-70 – reference: 19249239 - Curr Opin Microbiol. 2009 Apr;12(2):182-91 – reference: 22865623 - Am J Respir Cell Mol Biol. 2012 Dec;47(6):738-45 – reference: 19459782 - J Infect Dis. 2009 Jul 1;200(1):118-30 – reference: 19420195 - Chest. 2009 May;135(5):1223-32 – reference: 15687313 - JAMA. 2005 Feb 2;293(5):581-8 – reference: 26047320 - Sci Rep. 2015 Jun 05;5:10932 – reference: 20157799 - J Clin Psychol Med Settings. 2010 Mar;17(1):49-55 – reference: 19447923 - Chest. 2009 Jun;135(6):1610-8 – reference: 12740266 - Chest. 2003 May;123(5):1495-502 – reference: 20848580 - Pediatr Pulmonol. 2011 Jan;46(1):36-44 – reference: 16788339 - Clin J Pain. 2006 Jul-Aug;22(6):532-7 – reference: 24937177 - Am J Respir Crit Care Med. 2014 Aug 1;190(3):289-97 – reference: 16687478 - Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92 – reference: 11961556 - Nature. 2002 Apr 18;416(6882):740-3 – reference: 22662248 - PLoS One. 2012;7(5):e37908 – reference: 22436723 - J Cyst Fibros. 2012 Jul;11(4):288-92 – reference: 14688090 - Infect Immun. 2004 Jan;72(1):133-44 – reference: 19423715 - Am J Respir Crit Care Med. 2009 Jul 15;180(2):138-45 – reference: 21472696 - Curr Protoc Mol Biol. 2011 Apr;Chapter 25:Unit25B.10 – reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 – reference: 21643731 - Biometals. 2011 Dec;24(6):1059-67 – reference: 11048725 - Nature. 2000 Oct 12;407(6805):762-4 – reference: 24347518 - Ann Oncol. 2014 Feb;25(2):339-45 – reference: 24138584 - BMC Microbiol. 2013 Oct 18;13:232 – reference: 23963183 - MBio. 2013 Aug 20;4(4):null – reference: 17890313 - J Bacteriol. 2007 Dec;189(23):8667-76 – reference: 16236893 - Chest. 2005 Oct;128(4):2347-54 |
SSID | ssj0014448 |
Score | 2.3199043 |
Snippet | The discovery of therapies that modulate
Pseudomonas aeruginosa
virulence or that can eradicate chronic
P. aeruginosa
lung infections associated with cystic... The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2995 |
SubjectTerms | Adult Bacterial Infections Bacterial Proteins - genetics Bacterial Proteins - metabolism Cystic Fibrosis - complications Female Gene Expression Profiling - methods Humans Lung - metabolism Lung - microbiology Male Multiplex Polymerase Chain Reaction - methods Phenotype Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism Pseudomonas Infections - metabolism Reproducibility of Results Respiratory Tract Infections - metabolism RNA, Bacterial - analysis Young Adult |
Title | Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27481238 https://www.proquest.com/docview/1822115073 https://pubmed.ncbi.nlm.nih.gov/PMC5038062 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEIgXBONX-SUjwVOVkThO4j5WY9UG7QCplfoWObE9gqYErY3EeIE_nbMdJykr0uAlqlLXsXpfLnfOd98h9FpwHuUy9D02VpFH84B5kAYpL2OQ-gSM-8LXtcPz0_h4Sd-votVg8LPHWqo32UH-Y2ddyf9YFc6BXXWV7D9Ytp0UTsBnsC8cwcJwvJaNl3Yjno_mDS3wuxUrN55gNDfNoQ2PsC898mkta1HBGvl6xOVFfVaU1Zob_WktfGx5saWuINCaTWtHhDy81IrOoymk15WeaVY3z7yvjgtvWV2W3FyYspNNRxUtlGPR65KariRC7_ecNc2_wO92BOR31XnWbA6ZLZh2k3redcKeFbDwSX_jIohbCpzztVrKNIpsWfKB3HGucdC2h5wDot93t2PbofPqc4Do2oaTycmBEW_ygh1y26cf0-lyNksXR6vFDXSTQJ6hPfuHz91rKEqpraVsVuUqJwh72597O6a5kqj8ybftBTCLe-huk3ngiYXRfTSQ5T66ZXuRXu6j2_OGZfEA_QJc4Uphjltc4Q5X2OIKgz2xw5Ue3cMV7nCFNa5whyvscIWLEgOusMUVdrjCGlcP0XJ6tDg89ppOHV4eMrrxApqoXIxjxTPFpIKoWeSZjHic5CyKM4haMxJSBTe_DIRQ-TiCMJklkkdcSqJk-AjtlVUpnyAspGDKZ4mIiaBScU50RwFFKfxEsUgO0cj912neyNjrbirnqUlnCUvBMqmxTBrEQ_SmHf3Nyrf8ZdwrZ7YU_Kt-acZLWdXrFPJvYrKmcIgeWzO2M5GEQnwcsiFKtgzcDtDa7dvflMUXo-GuVZj8mDy9xnWfoTvd7fMc7W0uavkCIuFN9tKg9TfxLLmG |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+a+Multiplex+Transcript+Method+for+Analysis+of+Pseudomonas+aeruginosa+Gene+Expression+Profiles+in+the+Cystic+Fibrosis+Lung&rft.jtitle=Infection+and+immunity&rft.au=Gifford%2C+Alex+H&rft.au=Willger%2C+Sven+D&rft.au=Dolben%2C+Emily+L&rft.au=Moulton%2C+Lisa+A&rft.date=2016-10-01&rft.issn=1098-5522&rft.eissn=1098-5522&rft.volume=84&rft.issue=10&rft.spage=2995&rft_id=info:doi/10.1128%2FIAI.00437-16&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon |