Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung

The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo . We demonstrate the use of multiplexed Nanostrin...

Full description

Saved in:
Bibliographic Details
Published inInfection and immunity Vol. 84; no. 10; pp. 2995 - 3006
Main Authors Gifford, Alex H., Willger, Sven D., Dolben, Emily L., Moulton, Lisa A., Dorman, Dana B., Bean, Heather, Hill, Jane E., Hampton, Thomas H., Ashare, Alix, Hogan, Deborah A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2016
Subjects
Online AccessGet full text
ISSN0019-9567
1098-5522
1098-5522
DOI10.1128/IAI.00437-16

Cover

Loading…
Abstract The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo . We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo . The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa -colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo , and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.
AbstractList The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.
The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo . We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo . The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa -colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo , and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.
The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.
Author Dolben, Emily L.
Hill, Jane E.
Ashare, Alix
Dorman, Dana B.
Willger, Sven D.
Bean, Heather
Gifford, Alex H.
Hampton, Thomas H.
Hogan, Deborah A.
Moulton, Lisa A.
Author_xml – sequence: 1
  givenname: Alex H.
  surname: Gifford
  fullname: Gifford, Alex H.
  organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
– sequence: 2
  givenname: Sven D.
  surname: Willger
  fullname: Willger, Sven D.
  organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
– sequence: 3
  givenname: Emily L.
  surname: Dolben
  fullname: Dolben, Emily L.
  organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
– sequence: 4
  givenname: Lisa A.
  surname: Moulton
  fullname: Moulton, Lisa A.
  organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
– sequence: 5
  givenname: Dana B.
  surname: Dorman
  fullname: Dorman, Dana B.
  organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
– sequence: 6
  givenname: Heather
  surname: Bean
  fullname: Bean, Heather
  organization: School of Life Sciences, Arizona State University, Tempe, Arizona, USA
– sequence: 7
  givenname: Jane E.
  surname: Hill
  fullname: Hill, Jane E.
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
– sequence: 8
  givenname: Thomas H.
  surname: Hampton
  fullname: Hampton, Thomas H.
  organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
– sequence: 9
  givenname: Alix
  surname: Ashare
  fullname: Ashare, Alix
  organization: Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
– sequence: 10
  givenname: Deborah A.
  surname: Hogan
  fullname: Hogan, Deborah A.
  organization: Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27481238$$D View this record in MEDLINE/PubMed
BookMark eNptkUFv1DAQhS1URLeFG2fkIwdSbMdOnAvSatWWlbaih_ZsOc541yhrB9tB3Rs_HS8tFSBOo9F882b03hk68cEDQm8puaCUyY_r5fqCEF63FW1eoAUlnayEYOwELQihXdWJpj1FZyl9LS3nXL5Cp6zlkrJaLtCP-wQ4WKzxzTxmN43wgO-i9slEN2V8A3kXBmxDxEuvx0Ny6UjfJpiHsA9eJ6whzlvnQ9L4Gjzgy4cpQkoueHwbg3UjJOw8zjvAq0PKzuAr18dwVNrMfvsavbR6TPDmqZ6j-6vLu9XnavPler1abipTS54ryltrhq6xurcSbEPZYHoQummNFE3fctqzmltGJdBhsKYTsqtlC1poAGahPkefHnWnud_DYMDnqEc1RbfX8aCCdurviXc7tQ3flSC1JA0rAu-fBGL4NkPKau-SgXHUHsKcFJWMUSpIWxf03Z-3no_8tr0AHx4BU4xIEewzQok6pqpKqupXqoo2BWf_4MZlnYvF5VM3_n_pJwoOqFI
CitedBy_id crossref_primary_10_1099_mgen_0_000513
crossref_primary_10_1152_ajplung_00383_2017
crossref_primary_10_1371_journal_ppat_1008995
crossref_primary_10_1099_mgen_0_000320
crossref_primary_10_1128_mBio_00186_17
crossref_primary_10_3389_fimmu_2019_01670
crossref_primary_10_1080_17476348_2018_1483723
crossref_primary_10_1146_annurev_micro_032020_093845
crossref_primary_10_1073_pnas_1717525115
crossref_primary_10_1080_21505594_2021_1926408
crossref_primary_10_1007_s10096_018_3232_8
crossref_primary_10_1128_mSphere_00292_18
crossref_primary_10_1128_JB_00559_19
crossref_primary_10_1038_s41598_024_82500_w
crossref_primary_10_1073_pnas_1917576117
crossref_primary_10_1016_j_tim_2018_07_002
crossref_primary_10_1038_s41589_022_01040_4
crossref_primary_10_1016_j_resmic_2021_103817
crossref_primary_10_1128_JB_00100_21
Cites_doi 10.1128/IAI.72.1.133-144.2004
10.1093/nar/gkq869
10.1016/j.jpsychores.2010.06.005
10.1038/416740a
10.1128/IAI.00418-13
10.1183/09031936.00154006
10.1093/jac/dki146
10.1007/s10534-011-9464-z
10.1016/j.mib.2009.01.005
10.1164/rccm.201404-0681OC
10.1038/nbt1385
10.1073/pnas.0602138103
10.1186/2049-2618-1-27
10.1016/S0140-6736(86)90837-8
10.1186/1471-2180-13-232
10.1128/mr.60.3.539-574.1996
10.1128/jb.178.8.2186-2195.1996
10.1099/mic.0.066985-0
10.1038/srep10932
10.1128/JB.186.7.2115-2122.2004
10.1128/mBio.00557-13
10.1371/journal.pone.0060225
10.1056/NEJMoa1105185
10.1016/j.jcf.2008.09.006
10.1183/09031936.00137612
10.1378/chest.123.5.1495
10.1038/nrmicro2907
10.1016/j.jcf.2012.02.006
10.1172/JCI24684
10.1086/599360
10.1002/ppul.21335
10.1136/thx.2010.137281
10.1371/journal.pone.0037908
10.1128/AEM.65.3.1175-1179.1999
10.1097/01.ajp.0000210996.45459.76
10.1073/pnas.1316981110
10.1128/JB.187.6.2138-2147.2005
10.1128/mBio.00749-15
10.1164/rccm.201103-0374OC
10.1128/JB.00984-12
10.1056/NEJMc1510466
10.1128/JB.00182-15
10.1128/IAI.00338-07
10.1378/chest.08-1190
10.1378/chest.12-1404
10.1128/jb.179.10.3127-3132.1997
10.1128/IAI.01008-08
10.1007/s10880-009-9179-2
10.1378/chest.08-1421
10.1128/JB.01344-07
10.1128/iai.58.10.3363-3368.1990
10.1128/IAI.01807-06
10.1128/JCM.41.8.3526-3531.2003
10.1093/emboj/cdg290
10.1128/JB.01651-09
10.1002/ppul.21325
10.1128/JB.01050-12
10.1371/journal.pone.0082621
10.1093/annonc/mdt494
10.1164/rccm.200812-1943OC
10.1038/srep07649
10.1099/mic.0.048645-0
10.1183/09031936.00203013
10.1371/journal.pone.0045001
10.1093/cid/ciu385
10.1371/journal.ppat.1000712
10.1378/chest.128.4.2347
10.1165/rcmb.2012-0088OC
10.1038/35037627
10.1128/JB.185.4.1316-1325.2003
10.1128/AAC.48.7.2659-2664.2004
10.1073/pnas.0502663102
10.1128/jb.176.4.1128-1140.1994
10.1016/j.tim.2004.11.001
10.1099/13500872-142-8-2145
10.1128/IAI.05282-11
10.1016/j.jcf.2013.12.001
10.1002/ppul.21011
10.1001/jama.293.5.581
10.1128/JB.00636-06
10.1128/IAI.01373-07
10.1164/rccm.201410-1864OC
10.1074/jbc.M114.633495
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/IAI.00437-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate P. aeruginosa Transcript Profiles in Sputum
EISSN 1098-5522
EndPage 3006
ExternalDocumentID PMC5038062
27481238
10_1128_IAI_00437_16
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: KL2 TR001088
– fundername: NCATS NIH HHS
  grantid: UL1 TR001086
– fundername: NIGMS NIH HHS
  grantid: P30 GM106394
– fundername: NIEHS NIH HHS
  grantid: P42 ES007373
– fundername: NHLBI NIH HHS
  grantid: R01 HL122372
– fundername: NIAID NIH HHS
  grantid: R01 AI091702
– fundername: HHS | National Institutes of Health (NIH)
  grantid: KL2TR001088
– fundername: HHS | National Institutes of Health (NIH)
  grantid: P30GM106394
– fundername: Cystic Fibrosis Foundation (CF Foundation)
  grantid: STANTO07R0
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI091702
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
AAGFI
AAYXX
ABOCM
ACGFO
ADBBV
ADXHL
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UPT
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
ZGI
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
VQA
YIF
7X8
5PM
ID FETCH-LOGICAL-c384t-147fcd96fabf8ef612dcbe5a67c856b741b234f218e1ddfc9589387ea5aee2fe3
ISSN 0019-9567
1098-5522
IngestDate Thu Aug 21 14:33:01 EDT 2025
Fri Jul 11 11:42:43 EDT 2025
Wed Feb 19 02:42:16 EST 2025
Thu Apr 24 22:58:56 EDT 2025
Tue Jul 01 02:09:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-147fcd96fabf8ef612dcbe5a67c856b741b234f218e1ddfc9589387ea5aee2fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Gifford AH, Willger SD, Dolben EL, Moulton LA, Dorman DB, Bean H, Hill JE, Hampton TH, Ashare A, Hogan DA. 2016. Use of a multiplex transcript method for analysis of Pseudomonas aeruginosa gene expression profiles in the cystic fibrosis lung. Infect Immun 84:2995–3006. doi:10.1128/IAI.00437-16.
A.H.G., S.D.W., E.L.D., and D.A.H. contributed equally to this work.
OpenAccessLink https://iai.asm.org/content/iai/84/10/2995.full.pdf
PMID 27481238
PQID 1822115073
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5038062
proquest_miscellaneous_1822115073
pubmed_primary_27481238
crossref_primary_10_1128_IAI_00437_16
crossref_citationtrail_10_1128_IAI_00437_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
Goslee SC (e_1_3_3_30_2) 2007
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
Mayer-Hamblett N (e_1_3_3_16_2) 2014; 190
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_60_2
e_1_3_3_87_2
Kulkarni MM (e_1_3_3_24_2) 2011; 25
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
25578031 - Sci Rep. 2015 Jan 12;5:7649
21472696 - Curr Protoc Mol Biol. 2011 Apr;Chapter 25:Unit25B.10
15028697 - J Bacteriol. 2004 Apr;186(7):2115-22
11048725 - Nature. 2000 Oct 12;407(6805):762-4
16687478 - Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92
21474537 - Microbiology. 2011 Jun;157(Pt 6):1726-39
18974024 - J Cyst Fibros. 2009 Jan;8(1):66-70
24138584 - BMC Microbiol. 2013 Oct 18;13:232
23670667 - Chest. 2013 Sep;144(3):981-9
18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25
21270069 - Thorax. 2011 Jul;66(7):579-84
8106324 - J Bacteriol. 1994 Feb;176(4):1128-40
8840786 - Microbiol Rev. 1996 Sep;60(3):539-74
16952938 - J Bacteriol. 2006 Sep;188(18):6483-9
21643731 - Biometals. 2011 Dec;24(6):1059-67
19249239 - Curr Opin Microbiol. 2009 Apr;12(2):182-91
15215123 - Antimicrob Agents Chemother. 2004 Jul;48(7):2659-64
2401567 - Infect Immun. 1990 Oct;58(10):3363-8
23147702 - Nat Rev Microbiol. 2012 Dec;10(12):841-51
20929876 - Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600
16788339 - Clin J Pain. 2006 Jul-Aug;22(6):532-7
23963183 - MBio. 2013 Aug 20;4(4):null
18212077 - Infect Immun. 2008 Apr;76(4):1423-33
21930755 - Infect Immun. 2011 Dec;79(12):4802-18
17724070 - Infect Immun. 2007 Nov;75(11):5313-24
16440061 - J Clin Invest. 2006 Feb;116(2):436-46
12562802 - J Bacteriol. 2003 Feb;185(4):1316-25
12805211 - EMBO J. 2003 Jun 16;22(12 ):2959-69
22436723 - J Cyst Fibros. 2012 Jul;11(4):288-92
19447923 - Chest. 2009 Jun;135(6):1610-8
23690396 - Infect Immun. 2013 Aug;81(8):2697-704
25489881 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):309-15
15883175 - J Antimicrob Chemother. 2005 Jun;55(6):921-7
24369896 - J Cyst Fibros. 2014 May;13(3):289-95
24863401 - Clin Infect Dis. 2014 Sep 1;59(5):624-31
19103776 - Infect Immun. 2009 Mar;77(3):1103-11
20848580 - Pediatr Pulmonol. 2011 Jan;46(1):36-44
9150205 - J Bacteriol. 1997 May;179(10):3127-32
2868172 - Lancet. 1986 Feb 8;1(8476):307-10
22753054 - J Bacteriol. 2012 Sep;194(18):4857-66
23049765 - PLoS One. 2012;7(9):e45001
15687313 - JAMA. 2005 Feb 2;293(5):581-8
8636017 - J Bacteriol. 1996 Apr;178(8):2186-95
17502391 - Infect Immun. 2007 Aug;75(8):3902-12
24014664 - Microbiology. 2013 Nov;159(Pt 11):2354-63
21262419 - J Psychosom Res. 2011 Feb;70(2):161-7
25034564 - Eur Respir J. 2014 Oct;44(4):922-30
19459782 - J Infect Dis. 2009 Jul 1;200(1):118-30
22843844 - J Bacteriol. 2012 Oct;194(19):5315-24
22662248 - PLoS One. 2012;7(5):e37908
17504792 - Eur Respir J. 2007 Aug;30(2):286-92
15680764 - Trends Microbiol. 2005 Feb;13(2):58-63
24143808 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6
26047320 - Sci Rep. 2015 Jun 05;5:10932
10049879 - Appl Environ Microbiol. 1999 Mar;65(3):1175-9
24324811 - PLoS One. 2013 Dec 06;8(12):e82621
24451123 - Microbiome. 2013 Nov 01;1(1):27
24937177 - Am J Respir Crit Care Med. 2014 Aug 1;190(3):289-97
15743962 - J Bacteriol. 2005 Mar;187(6):2138-47
19423715 - Am J Respir Crit Care Med. 2009 Jul 15;180(2):138-45
16043713 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11082-7
25616666 - J Biol Chem. 2015 Mar 20;290(12):7756-66
19420195 - Chest. 2009 May;135(5):1223-32
26078448 - J Bacteriol. 2015 Sep;197(17):2810-20
11961556 - Nature. 2002 Apr 18;416(6882):740-3
23573242 - PLoS One. 2013;8(4):e60225
22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72
23314900 - Eur Respir J. 2013 Aug;42(2):371-9
26510034 - N Engl J Med. 2015 Oct 29;373(18):1783-4
14688090 - Infect Immun. 2004 Jan;72(1):133-44
21562128 - Am J Respir Crit Care Med. 2011 Aug 1;184(3):345-54
20157799 - J Clin Psychol Med Settings. 2010 Mar;17(1):49-55
26126853 - MBio. 2015 Jun 30;6(4):e00749
16236893 - Chest. 2005 Oct;128(4):2347-54
8760928 - Microbiology. 1996 Aug;142 ( Pt 8):2145-51
17890313 - J Bacteriol. 2007 Dec;189(23):8667-76
12740266 - Chest. 2003 May;123(5):1495-502
24347518 - Ann Oncol. 2014 Feb;25(2):339-45
19418571 - Pediatr Pulmonol. 2009 Jun;44(6):547-58
20935098 - J Bacteriol. 2010 Dec;192(23):6191-9
22865623 - Am J Respir Cell Mol Biol. 2012 Dec;47(6):738-45
20963784 - Pediatr Pulmonol. 2011 Feb;46(2):160-5
12904350 - J Clin Microbiol. 2003 Aug;41(8):3526-31
20072604 - PLoS Pathog. 2010 Jan 08;6(1):e1000712
References_xml – ident: e_1_3_3_4_2
  doi: 10.1128/IAI.72.1.133-144.2004
– ident: e_1_3_3_37_2
  doi: 10.1093/nar/gkq869
– ident: e_1_3_3_80_2
  doi: 10.1016/j.jpsychores.2010.06.005
– ident: e_1_3_3_67_2
  doi: 10.1038/416740a
– ident: e_1_3_3_20_2
  doi: 10.1128/IAI.00418-13
– ident: e_1_3_3_56_2
  doi: 10.1183/09031936.00154006
– ident: e_1_3_3_65_2
  doi: 10.1093/jac/dki146
– ident: e_1_3_3_63_2
  doi: 10.1007/s10534-011-9464-z
– ident: e_1_3_3_49_2
  doi: 10.1016/j.mib.2009.01.005
– volume: 190
  start-page: 289
  year: 2014
  ident: e_1_3_3_16_2
  article-title: Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201404-0681OC
– ident: e_1_3_3_27_2
  doi: 10.1038/nbt1385
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0602138103
– start-page: v022i07
  volume-title: J Stat Soft
  year: 2007
  ident: e_1_3_3_30_2
– volume: 25
  start-page: Unit 25B.10
  year: 2011
  ident: e_1_3_3_24_2
  article-title: Digital multiplexed gene expression analysis using the NanoString nCounter system
  publication-title: Curr Protoc Mol Biol
– ident: e_1_3_3_69_2
  doi: 10.1186/2049-2618-1-27
– ident: e_1_3_3_29_2
  doi: 10.1016/S0140-6736(86)90837-8
– ident: e_1_3_3_46_2
  doi: 10.1186/1471-2180-13-232
– ident: e_1_3_3_45_2
  doi: 10.1128/mr.60.3.539-574.1996
– ident: e_1_3_3_47_2
  doi: 10.1128/jb.178.8.2186-2195.1996
– ident: e_1_3_3_21_2
  doi: 10.1099/mic.0.066985-0
– ident: e_1_3_3_11_2
  doi: 10.1038/srep10932
– ident: e_1_3_3_41_2
  doi: 10.1128/JB.186.7.2115-2122.2004
– ident: e_1_3_3_51_2
  doi: 10.1128/mBio.00557-13
– ident: e_1_3_3_64_2
  doi: 10.1371/journal.pone.0060225
– ident: e_1_3_3_75_2
  doi: 10.1056/NEJMoa1105185
– ident: e_1_3_3_18_2
  doi: 10.1016/j.jcf.2008.09.006
– ident: e_1_3_3_79_2
  doi: 10.1183/09031936.00137612
– ident: e_1_3_3_87_2
  doi: 10.1378/chest.123.5.1495
– ident: e_1_3_3_6_2
  doi: 10.1038/nrmicro2907
– ident: e_1_3_3_86_2
  doi: 10.1016/j.jcf.2012.02.006
– ident: e_1_3_3_32_2
  doi: 10.1172/JCI24684
– ident: e_1_3_3_23_2
  doi: 10.1086/599360
– ident: e_1_3_3_55_2
  doi: 10.1002/ppul.21335
– ident: e_1_3_3_72_2
  doi: 10.1136/thx.2010.137281
– ident: e_1_3_3_34_2
  doi: 10.1371/journal.pone.0037908
– ident: e_1_3_3_36_2
  doi: 10.1128/AEM.65.3.1175-1179.1999
– ident: e_1_3_3_81_2
  doi: 10.1097/01.ajp.0000210996.45459.76
– ident: e_1_3_3_85_2
  doi: 10.1073/pnas.1316981110
– ident: e_1_3_3_40_2
  doi: 10.1128/JB.187.6.2138-2147.2005
– ident: e_1_3_3_14_2
  doi: 10.1128/mBio.00749-15
– ident: e_1_3_3_22_2
  doi: 10.1164/rccm.201103-0374OC
– ident: e_1_3_3_42_2
  doi: 10.1128/JB.00984-12
– ident: e_1_3_3_76_2
  doi: 10.1056/NEJMc1510466
– ident: e_1_3_3_26_2
  doi: 10.1128/JB.00182-15
– ident: e_1_3_3_43_2
  doi: 10.1128/IAI.00338-07
– ident: e_1_3_3_73_2
  doi: 10.1378/chest.08-1190
– ident: e_1_3_3_82_2
  doi: 10.1378/chest.12-1404
– ident: e_1_3_3_50_2
  doi: 10.1128/jb.179.10.3127-3132.1997
– ident: e_1_3_3_53_2
  doi: 10.1128/IAI.01008-08
– ident: e_1_3_3_78_2
  doi: 10.1007/s10880-009-9179-2
– ident: e_1_3_3_74_2
  doi: 10.1378/chest.08-1421
– ident: e_1_3_3_33_2
  doi: 10.1128/JB.01344-07
– ident: e_1_3_3_60_2
  doi: 10.1128/iai.58.10.3363-3368.1990
– ident: e_1_3_3_44_2
  doi: 10.1128/IAI.01807-06
– ident: e_1_3_3_38_2
  doi: 10.1128/JCM.41.8.3526-3531.2003
– ident: e_1_3_3_54_2
  doi: 10.1093/emboj/cdg290
– ident: e_1_3_3_8_2
  doi: 10.1128/JB.01651-09
– ident: e_1_3_3_77_2
  doi: 10.1002/ppul.21325
– ident: e_1_3_3_13_2
  doi: 10.1128/JB.01050-12
– ident: e_1_3_3_61_2
  doi: 10.1371/journal.pone.0082621
– ident: e_1_3_3_84_2
  doi: 10.1093/annonc/mdt494
– ident: e_1_3_3_7_2
  doi: 10.1164/rccm.200812-1943OC
– ident: e_1_3_3_10_2
  doi: 10.1038/srep07649
– ident: e_1_3_3_39_2
  doi: 10.1099/mic.0.048645-0
– ident: e_1_3_3_71_2
  doi: 10.1183/09031936.00203013
– ident: e_1_3_3_70_2
  doi: 10.1371/journal.pone.0045001
– ident: e_1_3_3_15_2
  doi: 10.1093/cid/ciu385
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.ppat.1000712
– ident: e_1_3_3_25_2
  doi: 10.1378/chest.128.4.2347
– ident: e_1_3_3_62_2
  doi: 10.1165/rcmb.2012-0088OC
– ident: e_1_3_3_66_2
  doi: 10.1038/35037627
– ident: e_1_3_3_3_2
  doi: 10.1128/JB.185.4.1316-1325.2003
– ident: e_1_3_3_5_2
  doi: 10.1128/AAC.48.7.2659-2664.2004
– ident: e_1_3_3_52_2
  doi: 10.1073/pnas.0502663102
– ident: e_1_3_3_58_2
  doi: 10.1128/jb.176.4.1128-1140.1994
– ident: e_1_3_3_2_2
  doi: 10.1016/j.tim.2004.11.001
– ident: e_1_3_3_28_2
– ident: e_1_3_3_35_2
  doi: 10.1099/13500872-142-8-2145
– ident: e_1_3_3_12_2
  doi: 10.1128/IAI.05282-11
– ident: e_1_3_3_57_2
  doi: 10.1016/j.jcf.2013.12.001
– ident: e_1_3_3_48_2
  doi: 10.1002/ppul.21011
– ident: e_1_3_3_17_2
  doi: 10.1001/jama.293.5.581
– ident: e_1_3_3_31_2
  doi: 10.1128/JB.00636-06
– ident: e_1_3_3_68_2
  doi: 10.1128/IAI.01373-07
– ident: e_1_3_3_83_2
  doi: 10.1164/rccm.201410-1864OC
– ident: e_1_3_3_59_2
  doi: 10.1074/jbc.M114.633495
– reference: 21262419 - J Psychosom Res. 2011 Feb;70(2):161-7
– reference: 12805211 - EMBO J. 2003 Jun 16;22(12 ):2959-69
– reference: 26078448 - J Bacteriol. 2015 Sep;197(17):2810-20
– reference: 23147702 - Nat Rev Microbiol. 2012 Dec;10(12):841-51
– reference: 21270069 - Thorax. 2011 Jul;66(7):579-84
– reference: 19418571 - Pediatr Pulmonol. 2009 Jun;44(6):547-58
– reference: 15743962 - J Bacteriol. 2005 Mar;187(6):2138-47
– reference: 15883175 - J Antimicrob Chemother. 2005 Jun;55(6):921-7
– reference: 21474537 - Microbiology. 2011 Jun;157(Pt 6):1726-39
– reference: 24143808 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6
– reference: 25616666 - J Biol Chem. 2015 Mar 20;290(12):7756-66
– reference: 16952938 - J Bacteriol. 2006 Sep;188(18):6483-9
– reference: 12904350 - J Clin Microbiol. 2003 Aug;41(8):3526-31
– reference: 9150205 - J Bacteriol. 1997 May;179(10):3127-32
– reference: 22843844 - J Bacteriol. 2012 Oct;194(19):5315-24
– reference: 8760928 - Microbiology. 1996 Aug;142 ( Pt 8):2145-51
– reference: 20935098 - J Bacteriol. 2010 Dec;192(23):6191-9
– reference: 15680764 - Trends Microbiol. 2005 Feb;13(2):58-63
– reference: 17502391 - Infect Immun. 2007 Aug;75(8):3902-12
– reference: 21562128 - Am J Respir Crit Care Med. 2011 Aug 1;184(3):345-54
– reference: 15215123 - Antimicrob Agents Chemother. 2004 Jul;48(7):2659-64
– reference: 19103776 - Infect Immun. 2009 Mar;77(3):1103-11
– reference: 23049765 - PLoS One. 2012;7(9):e45001
– reference: 17504792 - Eur Respir J. 2007 Aug;30(2):286-92
– reference: 20929876 - Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600
– reference: 23573242 - PLoS One. 2013;8(4):e60225
– reference: 18212077 - Infect Immun. 2008 Apr;76(4):1423-33
– reference: 2868172 - Lancet. 1986 Feb 8;1(8476):307-10
– reference: 24863401 - Clin Infect Dis. 2014 Sep 1;59(5):624-31
– reference: 22753054 - J Bacteriol. 2012 Sep;194(18):4857-66
– reference: 15028697 - J Bacteriol. 2004 Apr;186(7):2115-22
– reference: 24324811 - PLoS One. 2013 Dec 06;8(12):e82621
– reference: 25034564 - Eur Respir J. 2014 Oct;44(4):922-30
– reference: 12562802 - J Bacteriol. 2003 Feb;185(4):1316-25
– reference: 16440061 - J Clin Invest. 2006 Feb;116(2):436-46
– reference: 24451123 - Microbiome. 2013 Nov 01;1(1):27
– reference: 24014664 - Microbiology. 2013 Nov;159(Pt 11):2354-63
– reference: 25489881 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):309-15
– reference: 26510034 - N Engl J Med. 2015 Oct 29;373(18):1783-4
– reference: 21930755 - Infect Immun. 2011 Dec;79(12):4802-18
– reference: 8636017 - J Bacteriol. 1996 Apr;178(8):2186-95
– reference: 22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72
– reference: 16043713 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11082-7
– reference: 24369896 - J Cyst Fibros. 2014 May;13(3):289-95
– reference: 25578031 - Sci Rep. 2015 Jan 12;5:7649
– reference: 23314900 - Eur Respir J. 2013 Aug;42(2):371-9
– reference: 23690396 - Infect Immun. 2013 Aug;81(8):2697-704
– reference: 20072604 - PLoS Pathog. 2010 Jan 08;6(1):e1000712
– reference: 8106324 - J Bacteriol. 1994 Feb;176(4):1128-40
– reference: 26126853 - MBio. 2015 Jun 30;6(4):e00749
– reference: 17724070 - Infect Immun. 2007 Nov;75(11):5313-24
– reference: 2401567 - Infect Immun. 1990 Oct;58(10):3363-8
– reference: 23670667 - Chest. 2013 Sep;144(3):981-9
– reference: 20963784 - Pediatr Pulmonol. 2011 Feb;46(2):160-5
– reference: 10049879 - Appl Environ Microbiol. 1999 Mar;65(3):1175-9
– reference: 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74
– reference: 18974024 - J Cyst Fibros. 2009 Jan;8(1):66-70
– reference: 19249239 - Curr Opin Microbiol. 2009 Apr;12(2):182-91
– reference: 22865623 - Am J Respir Cell Mol Biol. 2012 Dec;47(6):738-45
– reference: 19459782 - J Infect Dis. 2009 Jul 1;200(1):118-30
– reference: 19420195 - Chest. 2009 May;135(5):1223-32
– reference: 15687313 - JAMA. 2005 Feb 2;293(5):581-8
– reference: 26047320 - Sci Rep. 2015 Jun 05;5:10932
– reference: 20157799 - J Clin Psychol Med Settings. 2010 Mar;17(1):49-55
– reference: 19447923 - Chest. 2009 Jun;135(6):1610-8
– reference: 12740266 - Chest. 2003 May;123(5):1495-502
– reference: 20848580 - Pediatr Pulmonol. 2011 Jan;46(1):36-44
– reference: 16788339 - Clin J Pain. 2006 Jul-Aug;22(6):532-7
– reference: 24937177 - Am J Respir Crit Care Med. 2014 Aug 1;190(3):289-97
– reference: 16687478 - Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92
– reference: 11961556 - Nature. 2002 Apr 18;416(6882):740-3
– reference: 22662248 - PLoS One. 2012;7(5):e37908
– reference: 22436723 - J Cyst Fibros. 2012 Jul;11(4):288-92
– reference: 14688090 - Infect Immun. 2004 Jan;72(1):133-44
– reference: 19423715 - Am J Respir Crit Care Med. 2009 Jul 15;180(2):138-45
– reference: 21472696 - Curr Protoc Mol Biol. 2011 Apr;Chapter 25:Unit25B.10
– reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25
– reference: 21643731 - Biometals. 2011 Dec;24(6):1059-67
– reference: 11048725 - Nature. 2000 Oct 12;407(6805):762-4
– reference: 24347518 - Ann Oncol. 2014 Feb;25(2):339-45
– reference: 24138584 - BMC Microbiol. 2013 Oct 18;13:232
– reference: 23963183 - MBio. 2013 Aug 20;4(4):null
– reference: 17890313 - J Bacteriol. 2007 Dec;189(23):8667-76
– reference: 16236893 - Chest. 2005 Oct;128(4):2347-54
SSID ssj0014448
Score 2.3199043
Snippet The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic...
The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2995
SubjectTerms Adult
Bacterial Infections
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cystic Fibrosis - complications
Female
Gene Expression Profiling - methods
Humans
Lung - metabolism
Lung - microbiology
Male
Multiplex Polymerase Chain Reaction - methods
Phenotype
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
Pseudomonas Infections - metabolism
Reproducibility of Results
Respiratory Tract Infections - metabolism
RNA, Bacterial - analysis
Young Adult
Title Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung
URI https://www.ncbi.nlm.nih.gov/pubmed/27481238
https://www.proquest.com/docview/1822115073
https://pubmed.ncbi.nlm.nih.gov/PMC5038062
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEIgXBONX-SUjwVOVkThO4j5WY9UG7QCplfoWObE9gqYErY3EeIE_nbMdJykr0uAlqlLXsXpfLnfOd98h9FpwHuUy9D02VpFH84B5kAYpL2OQ-gSM-8LXtcPz0_h4Sd-votVg8LPHWqo32UH-Y2ddyf9YFc6BXXWV7D9Ytp0UTsBnsC8cwcJwvJaNl3Yjno_mDS3wuxUrN55gNDfNoQ2PsC898mkta1HBGvl6xOVFfVaU1Zob_WktfGx5saWuINCaTWtHhDy81IrOoymk15WeaVY3z7yvjgtvWV2W3FyYspNNRxUtlGPR65KariRC7_ecNc2_wO92BOR31XnWbA6ZLZh2k3redcKeFbDwSX_jIohbCpzztVrKNIpsWfKB3HGucdC2h5wDot93t2PbofPqc4Do2oaTycmBEW_ygh1y26cf0-lyNksXR6vFDXSTQJ6hPfuHz91rKEqpraVsVuUqJwh72597O6a5kqj8ybftBTCLe-huk3ngiYXRfTSQ5T66ZXuRXu6j2_OGZfEA_QJc4Uphjltc4Q5X2OIKgz2xw5Ue3cMV7nCFNa5whyvscIWLEgOusMUVdrjCGlcP0XJ6tDg89ppOHV4eMrrxApqoXIxjxTPFpIKoWeSZjHic5CyKM4haMxJSBTe_DIRQ-TiCMJklkkdcSqJk-AjtlVUpnyAspGDKZ4mIiaBScU50RwFFKfxEsUgO0cj912neyNjrbirnqUlnCUvBMqmxTBrEQ_SmHf3Nyrf8ZdwrZ7YU_Kt-acZLWdXrFPJvYrKmcIgeWzO2M5GEQnwcsiFKtgzcDtDa7dvflMUXo-GuVZj8mDy9xnWfoTvd7fMc7W0uavkCIuFN9tKg9TfxLLmG
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+a+Multiplex+Transcript+Method+for+Analysis+of+Pseudomonas+aeruginosa+Gene+Expression+Profiles+in+the+Cystic+Fibrosis+Lung&rft.jtitle=Infection+and+immunity&rft.au=Gifford%2C+Alex+H&rft.au=Willger%2C+Sven+D&rft.au=Dolben%2C+Emily+L&rft.au=Moulton%2C+Lisa+A&rft.date=2016-10-01&rft.issn=1098-5522&rft.eissn=1098-5522&rft.volume=84&rft.issue=10&rft.spage=2995&rft_id=info:doi/10.1128%2FIAI.00437-16&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon