CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support

[Display omitted] •CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone is selective to produce CO, rather than CH4 and CH3OH.•Synergy at Pt–oxide interface promotes the CO2 conversion on Pt. In the current study...

Full description

Saved in:
Bibliographic Details
Published inJournal of catalysis Vol. 343; pp. 115 - 126
Main Authors Kattel, Shyam, Yan, Binhang, Chen, Jingguang G., Liu, Ping
Format Journal Article
LanguageEnglish
Published San Diego Elsevier Inc 01.11.2016
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone is selective to produce CO, rather than CH4 and CH3OH.•Synergy at Pt–oxide interface promotes the CO2 conversion on Pt. In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.
AbstractList Display Omitted * CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway. * The overall conversion is low due to weak Pt-CO2 interaction. * Pt alone is selective to produce CO, rather than CH4 and CH3OH. * Synergy at Pt-oxide interface promotes the CO2 conversion on Pt. In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water-gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further * CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of * CO hydrogenation to * HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C-O bond scission reactions of the * H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt-oxide interface, where the synergy between Pt and oxide plays an important role.
[Display omitted] •CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone is selective to produce CO, rather than CH4 and CH3OH.•Synergy at Pt–oxide interface promotes the CO2 conversion on Pt. In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.
In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.
In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.
Author Chen, Jingguang G.
Liu, Ping
Kattel, Shyam
Yan, Binhang
Author_xml – sequence: 1
  givenname: Shyam
  surname: Kattel
  fullname: Kattel, Shyam
  organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
– sequence: 2
  givenname: Binhang
  surname: Yan
  fullname: Yan, Binhang
  organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
– sequence: 3
  givenname: Jingguang G.
  surname: Chen
  fullname: Chen, Jingguang G.
  email: jgchen@columbia.edu
  organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
– sequence: 4
  givenname: Ping
  surname: Liu
  fullname: Liu, Ping
  email: pingliu3@bnl.gov
  organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
BackLink https://www.osti.gov/servlets/purl/1341672$$D View this record in Osti.gov
BookMark eNp9kU1vGyEQhlGVSHWS_oGeVu2lh-6GAfaDqpfI6kekSImU9EwxOySsbHABt_W_L2v3lEOkQTMSzwt65z0jJz54JOQt0AYodJdTMxmdG0ahbYA1FOQrsgAqac06KU7IglIGtWyhf03OUpooBWjbYUF-Lm9Z9bQfY3hEr7MLvip1lz-Wc3nvyqX24zw_lPlTdb3Zhpi1N1gFW6W9x_i4r1aY_yDOsgMd_roRq7TbzuwFObV6nfDN_35Ofnz98rD8Xt_cfrteXt3Uhg9C1mjQGtu3VlCzorYTvRyFFtSy1nKrRcel4B321I622NC8GynvAVc4SBx7xs_Ju-O7IWWnknEZzZMJ3qPJCriA7gB9OELbGH7tMGW1ccngeq09hl1SDDgMg-zlUND3z9Ap7KIvFhQMnDHooO8LNRwpE0NKEa0qHx_WmKN2awVUzfmoSc35qDkfBUyVfIqUPZNuo9vouH9Z9PkowrLK3w7j7BRLHKOLs9ExuJfk_wA95qk3
CitedBy_id crossref_primary_10_1016_j_jcat_2020_08_017
crossref_primary_10_1039_C9CY00684B
crossref_primary_10_1016_S1872_2067_21_63825_1
crossref_primary_10_1016_j_eti_2023_103217
crossref_primary_10_1016_j_ijhydene_2018_11_008
crossref_primary_10_1021_acscatal_1c02644
crossref_primary_10_1016_j_fuel_2023_128956
crossref_primary_10_1021_jacs_9b10873
crossref_primary_10_1016_j_fuel_2020_117092
crossref_primary_10_1021_acs_jpcc_1c00638
crossref_primary_10_1039_D0TA09607E
crossref_primary_10_3390_catal14070456
crossref_primary_10_1016_j_jcat_2017_01_013
crossref_primary_10_1039_D1NA00423A
crossref_primary_10_1002_chem_201903946
crossref_primary_10_1007_s43938_024_00048_7
crossref_primary_10_1016_j_apsusc_2024_159411
crossref_primary_10_1021_acs_jpcc_2c03216
crossref_primary_10_1039_D1SC03109K
crossref_primary_10_1016_j_apsusc_2019_03_187
crossref_primary_10_1021_acscatal_8b04720
crossref_primary_10_1007_s12274_023_5712_0
crossref_primary_10_1039_D2CS00214K
crossref_primary_10_1021_acsenergylett_0c02614
crossref_primary_10_1021_acsami_1c01916
crossref_primary_10_1039_D4CC04679J
crossref_primary_10_1002_cssc_202400993
crossref_primary_10_1002_adsu_202100439
crossref_primary_10_1016_j_mtener_2020_100585
crossref_primary_10_1039_D0CP01855D
crossref_primary_10_1002_wcms_1530
crossref_primary_10_1039_D3CY00026E
crossref_primary_10_1016_j_jcou_2017_05_005
crossref_primary_10_1021_acscatal_4c01249
crossref_primary_10_1016_j_rser_2018_09_003
crossref_primary_10_1039_D1CY00399B
crossref_primary_10_1007_s12209_020_00246_8
crossref_primary_10_1016_j_jpowsour_2024_235053
crossref_primary_10_1021_acs_jpcc_4c05941
crossref_primary_10_1039_D0CS01262A
crossref_primary_10_1021_acscatal_0c03665
crossref_primary_10_1016_j_apcatb_2022_122083
crossref_primary_10_1016_j_apenergy_2019_113623
crossref_primary_10_3390_catal12010066
crossref_primary_10_1016_j_cej_2024_148599
crossref_primary_10_1021_acssuschemeng_3c01893
crossref_primary_10_1016_j_apcatb_2019_03_003
crossref_primary_10_1016_j_jcou_2024_102784
crossref_primary_10_1021_acscatal_4c02341
crossref_primary_10_1016_j_apcatb_2018_06_074
crossref_primary_10_1016_j_apsusc_2023_157873
crossref_primary_10_1016_j_jcat_2021_07_020
crossref_primary_10_1016_j_apsusc_2019_144142
crossref_primary_10_3390_catal13020305
crossref_primary_10_3390_chemistry4040083
crossref_primary_10_1063_5_0049293
crossref_primary_10_1021_jacs_0c07153
crossref_primary_10_1016_j_mcat_2022_112745
crossref_primary_10_1016_j_apsusc_2020_148777
crossref_primary_10_1016_j_fuel_2023_127630
crossref_primary_10_1021_acscatal_9b04187
crossref_primary_10_1016_j_apsusc_2021_151326
crossref_primary_10_1007_s11244_020_01405_w
crossref_primary_10_1021_acscatal_0c01599
crossref_primary_10_1021_acsmaterialslett_1c00523
crossref_primary_10_1016_j_ccr_2018_02_008
crossref_primary_10_1016_j_apcatb_2022_121529
crossref_primary_10_1016_j_enconman_2019_112214
crossref_primary_10_1021_acssuschemeng_0c05565
crossref_primary_10_1016_j_apcatb_2021_120319
crossref_primary_10_1016_j_jechem_2024_08_069
crossref_primary_10_1039_D1NA00310K
crossref_primary_10_1039_D1GC02078A
crossref_primary_10_1002_ange_202318747
crossref_primary_10_1021_acsenergylett_8b00740
crossref_primary_10_1038_s41467_019_09918_z
crossref_primary_10_1016_j_cis_2020_102349
crossref_primary_10_1016_j_ica_2022_120856
crossref_primary_10_1016_j_jcou_2024_102845
crossref_primary_10_1021_acs_jpcc_0c09717
crossref_primary_10_1039_D0GC03506H
crossref_primary_10_1360_SSC_2024_0095
crossref_primary_10_1002_ange_202305661
crossref_primary_10_1016_j_arabjc_2024_105846
crossref_primary_10_1088_1361_6463_abe07f
crossref_primary_10_1016_j_jcou_2023_102567
crossref_primary_10_1039_D0SE00147C
crossref_primary_10_1021_acscatal_8b03319
crossref_primary_10_1021_acs_jpcc_1c05468
crossref_primary_10_1039_D2GC02900F
crossref_primary_10_1002_ente_202200817
crossref_primary_10_1016_j_jcat_2018_10_001
crossref_primary_10_1039_D4CP02389G
crossref_primary_10_1016_j_apcatb_2019_118474
crossref_primary_10_1016_j_jechem_2024_10_044
crossref_primary_10_1016_j_jcou_2019_05_031
crossref_primary_10_1016_j_apcata_2023_119434
crossref_primary_10_1021_acsami_9b05645
crossref_primary_10_1039_D1TA03480D
crossref_primary_10_1016_j_jcou_2022_102291
crossref_primary_10_1021_acscatal_4c02293
crossref_primary_10_1021_acs_jpcc_8b00061
crossref_primary_10_1039_D3TA06859E
crossref_primary_10_1002_cctc_202200665
crossref_primary_10_1021_acs_energyfuels_1c03008
crossref_primary_10_1016_j_compchemeng_2022_107852
crossref_primary_10_1016_j_jcat_2024_115822
crossref_primary_10_1039_C8RA05964K
crossref_primary_10_1016_j_mcat_2025_114890
crossref_primary_10_1073_pnas_1911159117
crossref_primary_10_3390_catal12121511
crossref_primary_10_1016_j_jechem_2022_04_024
crossref_primary_10_1002_ente_202000194
crossref_primary_10_1016_j_apcatb_2022_121748
crossref_primary_10_1021_jacs_8b03067
crossref_primary_10_1002_cphc_202300608
crossref_primary_10_1021_jacs_4c08517
crossref_primary_10_1016_j_cjche_2024_05_012
crossref_primary_10_1016_j_jcou_2024_102980
crossref_primary_10_1016_j_apcata_2021_118330
crossref_primary_10_1016_j_jcou_2023_102582
crossref_primary_10_1039_D2TA07613F
crossref_primary_10_1016_j_ijhydene_2021_02_085
crossref_primary_10_1016_j_apsusc_2021_152204
crossref_primary_10_1039_D1CY00382H
crossref_primary_10_1016_j_apcatb_2021_120101
crossref_primary_10_1021_acssuschemeng_1c05565
crossref_primary_10_1016_j_cattod_2020_05_018
crossref_primary_10_1021_jacs_7b05362
crossref_primary_10_1016_j_mcat_2021_111675
crossref_primary_10_1002_cplu_202300511
crossref_primary_10_1002_anie_202318747
crossref_primary_10_1002_cctc_201901879
crossref_primary_10_1007_s10562_019_02902_8
crossref_primary_10_1021_acs_jpcc_7b06166
crossref_primary_10_1007_s12274_022_4576_z
crossref_primary_10_1016_j_cej_2022_138967
crossref_primary_10_1021_acs_jpcc_8b05611
crossref_primary_10_1002_cphc_202400154
crossref_primary_10_1021_acscatal_2c01646
crossref_primary_10_1039_D3CP00831B
crossref_primary_10_1016_j_mcat_2024_114133
crossref_primary_10_1016_j_ijhydene_2019_02_153
crossref_primary_10_1002_er_7246
crossref_primary_10_1021_acsanm_4c03801
crossref_primary_10_1016_j_cogsc_2022_100720
crossref_primary_10_1039_D3NJ03516F
crossref_primary_10_1016_j_ijhydene_2019_04_051
crossref_primary_10_1002_ange_202015017
crossref_primary_10_1021_acscatal_3c05939
crossref_primary_10_1016_j_cej_2023_144459
crossref_primary_10_1016_j_joei_2022_02_008
crossref_primary_10_1021_acscatal_8b02277
crossref_primary_10_1039_C7QM00328E
crossref_primary_10_1039_D2CP01971J
crossref_primary_10_1021_acscatal_2c06255
crossref_primary_10_1021_acs_jpcc_1c08098
crossref_primary_10_1002_cctc_202101723
crossref_primary_10_1016_j_cattod_2019_11_005
crossref_primary_10_1016_j_jcou_2022_102128
crossref_primary_10_1016_j_jhazmat_2020_122392
crossref_primary_10_1016_j_jechem_2021_03_040
crossref_primary_10_1002_ghg_2207
crossref_primary_10_1021_acs_jpcc_1c04972
crossref_primary_10_1021_acs_iecr_7b01457
crossref_primary_10_1016_j_fuel_2024_133755
crossref_primary_10_1016_j_jcat_2020_03_028
crossref_primary_10_1038_s41929_018_0051_3
crossref_primary_10_1021_prechem_5c00010
crossref_primary_10_1088_1361_6463_ac006f
crossref_primary_10_1021_acs_jpcc_4c02275
crossref_primary_10_1016_j_jcou_2019_04_004
crossref_primary_10_1021_acscatal_5c00660
crossref_primary_10_1039_C8CP00818C
crossref_primary_10_1016_j_cej_2024_153206
crossref_primary_10_2139_ssrn_4052305
crossref_primary_10_1039_D0CS01003K
crossref_primary_10_1002_asia_202300971
crossref_primary_10_3390_catal10080944
crossref_primary_10_1002_anie_202305661
crossref_primary_10_1016_j_recm_2023_05_003
crossref_primary_10_1016_j_mcat_2022_112477
crossref_primary_10_1016_j_chempr_2024_02_017
crossref_primary_10_1016_j_apsusc_2019_144652
crossref_primary_10_1016_j_cej_2023_145644
crossref_primary_10_1039_D3CY01134H
crossref_primary_10_1021_acsaem_1c01025
crossref_primary_10_1016_j_ijhydene_2022_09_224
crossref_primary_10_1021_acsami_1c20056
crossref_primary_10_1007_s11244_017_0849_2
crossref_primary_10_1038_s41467_024_44840_z
crossref_primary_10_1002_aic_18016
crossref_primary_10_1007_s10934_020_00978_x
crossref_primary_10_1002_aenm_201801587
crossref_primary_10_1021_acs_chemmater_4c00429
crossref_primary_10_3389_fchem_2020_00709
crossref_primary_10_1021_acs_jpcc_1c05228
crossref_primary_10_1016_j_apcatb_2022_122124
crossref_primary_10_2139_ssrn_4174951
crossref_primary_10_1016_j_seppur_2022_122455
crossref_primary_10_3390_catal9030275
crossref_primary_10_1021_acscatal_7b02733
crossref_primary_10_1039_D3TA05938C
crossref_primary_10_1039_C9CP02970B
crossref_primary_10_1021_jacs_9b12980
crossref_primary_10_1016_j_jes_2023_05_010
crossref_primary_10_3390_ma15113775
crossref_primary_10_1016_j_seppur_2024_130834
crossref_primary_10_1002_adts_202200205
crossref_primary_10_1002_asia_202301007
crossref_primary_10_3390_catal10020212
crossref_primary_10_1016_j_mtener_2021_100781
crossref_primary_10_1016_j_jcou_2021_101881
crossref_primary_10_3390_catal13091231
crossref_primary_10_3390_catal10060675
crossref_primary_10_1002_aenm_201800800
crossref_primary_10_1016_j_jcou_2021_101502
crossref_primary_10_1002_cctc_201900039
crossref_primary_10_1002_cctc_202400451
crossref_primary_10_3390_atmos14081208
crossref_primary_10_1021_acsanm_4c00111
crossref_primary_10_1002_ghg_2257
crossref_primary_10_1016_j_cej_2023_146712
crossref_primary_10_1016_j_ijhydene_2019_12_099
crossref_primary_10_1039_C8CY00880A
crossref_primary_10_1021_acscatal_1c03772
crossref_primary_10_1002_smll_201604311
crossref_primary_10_1063_5_0132627
crossref_primary_10_1016_j_seppur_2024_130388
crossref_primary_10_1002_cjce_23655
crossref_primary_10_1021_acs_chemrev_9b00723
crossref_primary_10_1007_s11356_024_34751_3
crossref_primary_10_1016_j_jechem_2017_07_006
crossref_primary_10_1007_s10562_021_03591_y
crossref_primary_10_1063_5_0037886
crossref_primary_10_1016_j_jssc_2021_122113
crossref_primary_10_1038_s42004_023_01064_4
crossref_primary_10_1002_admi_202202516
crossref_primary_10_1016_j_ijhydene_2024_05_088
crossref_primary_10_1016_j_jclepro_2020_123999
crossref_primary_10_1002_anie_202015017
crossref_primary_10_1016_j_apcatb_2020_119695
crossref_primary_10_1021_acs_energyfuels_1c02440
crossref_primary_10_1016_j_jcat_2019_04_036
crossref_primary_10_1021_acscatal_8b02071
crossref_primary_10_20964_2019_12_28
crossref_primary_10_1016_j_jcat_2024_115303
crossref_primary_10_1021_acs_jpca_8b01917
crossref_primary_10_3390_nano13232996
crossref_primary_10_1016_j_jechem_2024_09_025
crossref_primary_10_1016_j_joei_2019_07_009
crossref_primary_10_1021_acsami_3c02829
crossref_primary_10_1080_00986445_2022_2135505
crossref_primary_10_1016_j_cjche_2020_05_009
crossref_primary_10_1002_cctc_202100292
crossref_primary_10_1016_j_cattod_2018_04_021
crossref_primary_10_3390_nano11123265
crossref_primary_10_1007_s11814_024_00349_1
crossref_primary_10_1002_cptc_202000018
crossref_primary_10_1016_j_jcat_2023_05_028
crossref_primary_10_1021_acs_jpcc_6b05126
crossref_primary_10_1021_acs_jpcc_9b01638
crossref_primary_10_1016_j_jechem_2020_08_045
crossref_primary_10_1016_j_enconman_2024_118070
crossref_primary_10_1016_j_surfin_2021_101244
crossref_primary_10_1039_C8CC03829E
crossref_primary_10_1016_j_mcat_2024_114661
crossref_primary_10_1016_j_catcom_2023_106709
crossref_primary_10_1016_j_cattod_2021_11_029
crossref_primary_10_1039_D0GC01597K
crossref_primary_10_1002_asia_202400208
crossref_primary_10_1016_j_heliyon_2024_e40078
crossref_primary_10_3390_catal11060738
crossref_primary_10_3390_su13126962
crossref_primary_10_1039_D1GC01761F
crossref_primary_10_1016_j_ccr_2022_214982
crossref_primary_10_3390_nano13030485
crossref_primary_10_3389_fmats_2019_00127
crossref_primary_10_1021_acscatal_9b05225
crossref_primary_10_1016_j_jpowsour_2024_235996
crossref_primary_10_1021_acs_jpcc_6b10261
crossref_primary_10_1002_adma_202108727
crossref_primary_10_3390_catal15040301
Cites_doi 10.1021/ja101108w
10.1021/jp047242w
10.1021/ja302070k
10.1016/j.cattod.2007.02.031
10.1126/science.1219831
10.1016/j.jcat.2011.06.024
10.1002/cctc.201500123
10.1021/cs200055d
10.1039/C2CY20703F
10.1039/c001514h
10.1021/acs.jpcc.5b01574
10.1039/C4CP05518G
10.1016/S1001-0742(08)60002-9
10.1016/j.jcat.2011.04.012
10.1016/j.jcat.2013.01.022
10.1021/nl502434m
10.1021/ef9501511
10.1002/anie.201208320
10.1103/PhysRevB.45.13244
10.1103/PhysRev.136.B864
10.1038/nchem.1873
10.1038/nmat2156
10.1021/ja110073u
10.1002/cite.201200179
10.1021/jp505347k
10.1016/j.apsusc.2004.03.225
10.1007/s10562-008-9592-4
10.1103/PhysRevB.59.1758
10.1016/j.apcata.2005.01.013
10.1039/c001484b
10.1039/C4CY01183J
10.1016/j.cattod.2006.10.003
10.1021/jp044064y
10.1016/S0927-7757(00)00556-2
10.1111/j.1151-2916.1993.tb03731.x
10.1063/1.1527894
10.1002/anie.201004287
10.1143/JJAP.46.4233
10.1016/j.jcou.2014.09.001
10.1016/S0926-860X(96)00267-0
10.1103/PhysRevB.54.11169
10.1016/j.jcat.2014.06.002
10.1021/jp061559+
10.1007/s11244-013-0148-5
10.1021/cs501610a
10.1016/j.fuproc.2012.04.003
10.1021/jp7099702
10.1021/jp206065y
10.1016/j.jcat.2009.01.017
10.1023/A:1023571819211
10.1063/1.1329672
10.1016/0039-6028(77)90163-7
10.1016/S0167-5729(02)00100-0
10.1103/PhysRevE.58.2598
10.1126/science.1253057
10.1021/jp104068k
10.1039/c3cp50645b
10.1002/cssc.201402645
10.1039/C5NR00092K
10.1021/j100398a043
10.1016/0920-5861(91)80077-M
10.1039/c3ee41272e
10.1103/PhysRev.140.A1133
10.1021/ja9067645
10.1021/j100204a046
10.1126/science.259.5093.343
10.1021/jp208448c
10.1021/ja402072r
10.1021/cr4002758
10.1016/0927-0256(96)00008-0
10.1021/ja903013x
10.1016/j.jcat.2012.10.028
10.1103/PhysRevB.50.17953
10.1039/c3ee00056g
10.1016/j.cattod.2006.02.029
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
– name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
DBID AAYXX
CITATION
7S9
L.6
OIOZB
OTOTI
DOI 10.1016/j.jcat.2015.12.019
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 126
ExternalDocumentID 1341672
4227665581
10_1016_j_jcat_2015_12_019
S0021951715004121
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
7S9
L.6
OIOZB
OTOTI
ID FETCH-LOGICAL-c3849-ecefcf75f40cb0f6479d4a40f25f3fa4639436e70fdf951a36d0371ebe89ed723
IEDL.DBID .~1
ISSN 0021-9517
IngestDate Mon Jun 16 03:26:49 EDT 2025
Fri Jul 11 13:08:36 EDT 2025
Mon Jul 14 08:15:28 EDT 2025
Tue Jul 01 03:14:01 EDT 2025
Thu Apr 24 23:06:12 EDT 2025
Fri Feb 23 02:26:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Activity
Selectivity
DFT
Kinetics
Platinum
CO2 activation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3849-ecefcf75f40cb0f6479d4a40f25f3fa4639436e70fdf951a36d0371ebe89ed723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
BNL--113400-2017-JA
SC0012704; AC02-05CH11231; AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1341672
PQID 1832216177
PQPubID 32080
PageCount 12
ParticipantIDs osti_scitechconnect_1341672
proquest_miscellaneous_2131889798
proquest_journals_1832216177
crossref_citationtrail_10_1016_j_jcat_2015_12_019
crossref_primary_10_1016_j_jcat_2015_12_019
elsevier_sciencedirect_doi_10_1016_j_jcat_2015_12_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
– name: United States
PublicationTitle Journal of catalysis
PublicationYear 2016
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Studt, Behrens, Kunkes, Thomas, Zander, Tarasov, Schumann, Frei, Varley, Abild-Pedersen, Norskov, Schlogl (b0015) 2015; 7
Song (b0070) 2006; 115
Phatak, Koryabkina, Rai, Ratts, Ruettinger, Farrauto, Blau, Delgass, Ribeiro (b0155) 2007; 123
Dorner, Hardy, Williams, Willauer (b0045) 2010; 3
Hirunsit, Soodsawang, Limtrakul (b0315) 2015; 119
Grabow, Gokhale, Evans, Dumesic, Mavrikakis (b0150) 2008; 112
Arasa, Gamallo, Sayos (b0295) 2005; 109
Choi, Liu (b0345) 2009; 131
Kondratenko, Mul, Baltrusaitis, Larrazabal, Perez-Ramirez (b0040) 2013; 6
Dhar, Cavallotti (b0220) 2014; 118
Nilekar, Alayoglu, Eichhorn, Mavrikakis (b0195) 2010; 132
Psofogiannakis, St-Amant, Ternan (b0175) 2006; 110
Senanayake, Rodriguez, Stacchiola (b0225) 2013; 56
Nie, Esopi, Janik, Asthagiri (b0090) 2013; 52
Yang, Mims, Disselkamp, Mei, Kwak, Szanyi, Peden, Campbell (b0100) 2008; 125
Yang, Evans, Rodriguez, White, Liu (b0110) 2010; 12
Henkelman, Uberuaga, Jonsson (b0285) 2000; 113
Hohenberg, Kohn (b0240) 1964; 136
Centi, Quadrelli, Perathoner (b0060) 2013; 6
Tang, Hong, Liu (b0305) 2009; 263
Bilal, Jackson (b0140) 2013; 3
Wallin, Grönbeck, Lloyd Spetz, Skoglundh (b0355) 2004; 235
Yang, Mims, Mei, Peden, Campbell (b0105) 2013; 298
Inui, Takeguchi (b0050) 1991; 10
Xu, Moulijn (b0075) 1996; 10
Kim, Park, Hong (b0120) 2013; 108
Kresse, Furthmuller (b0250) 1996; 6
Tang, Hong, Liu (b0380) 2009; 263
Goguet, Meunier, Tibiletti, Breen, Burch (b0210) 2004; 108
.
Allian, Takanabe, Fujdala, Hao, Truex, Cai, Buda, Neurock, Iglesia (b0200) 2011; 133
Lukkien, Segers, Hilbers, Gelten, Jansen (b0290) 1998; 58
Diebold (b0370) 2003; 48
Duan, Henkelman (b0300) 2015; 5
Studt, Sharafutdinov, Abild-Pedersen, Elkjaer, Hummelshoj, Dahl, Chorkendorff, Norskov (b0020) 2014; 6
Kresse, Furthmuller (b0255) 1996; 54
Perdew, Wang (b0270) 1992; 45
An, Zhang, Alayoglu, Musselwhite, Shin, Somorjai (b0145) 2014; 14
Bruix, Rodriguez, Ramírez, Senanayake, Evans, Park, Stacchiola, Liu, Hrbek, Illas (b0235) 2012; 134
Zhang, Wang, Liu, Ling (b0390) 2011; 115
Grabow, Mavrikakis (b0085) 2011; 1
Wang, Inada, Wu, Zhu, Choi, Liu, Zhou, Adzic (b0275) 2009; 131
Sasaki, Naohara, Cai, Choi, Liu, Vukmirovic, Wang, Adzic (b0280) 2010; 49
Zhao, Yang, Mims, Peden, Li, Mei (b0310) 2011; 281
Jacobs, Davis (b0330) 2005; 284
Zhong, Vohs, Bonnell (b0365) 1993; 76
Marwood, Doepper, Renken (b0375) 1997; 151
Yang, White, Liu (b0115) 2012; 116
Tang, Zou, Huang, Wang, Duan (b0385) 2015; 17
Li, Chan, Sun (b0065) 2015; 7
Graciani, Mudiyanselage, Xu, Baber, Evans, Senanayake, Stacchiola, Liu, Hrbek, Sanz, Rodriguez (b0005) 2014; 345
Flaherty, Yu, Pozun, Henkelman, Mullins (b0160) 2011; 282
Mccabe, Mccready (b0185) 1986; 90
Shi, O’Grady, Peterson, Hansen, Norskov (b0215) 2013; 15
Aresta, Dibenedetto, Angelini (b0055) 2014; 114
Blochl (b0260) 1994; 50
Chen, Vlachos (b0180) 2012; 51
Hartadi, Widmann, Behm (b0035) 2015; 8
Alayoglu, Nilekar, Mavrikakis, Eichhorn (b0190) 2008; 7
Salvador, Garcia Gonzalez, Munoz (b0360) 1992; 96
Kondo, Sasaki, Yamamoto (b0170) 2003; 118
Upadhye, Ro, Zeng, Kim, Tejedor, Anderson, Dumesic, Huber (b0125) 2015; 5
Porosoff, Chen (b0010) 2013; 301
Behrens, Studt, Kasatkin, Kuhl, Havecker, Abild-Pedersen, Zander, Girgsdies, Kurr, Kniep, Tovar, Fischer, Norskov, Schlogl (b0025) 2012; 336
Yang, Xu, Fan, Gupta, Slimane, Bland, Wright (b0030) 2008; 20
Hickman, Schmidt (b0165) 1993; 259
Iwasa, Takezawa (b0135) 2003; 22
Arboleda, Hideaki, Wilson, Hiroshi (b0325) 2007; 46
Ruiz, Cillero, Martinez, Morales, San Vicente, de Diego, Sanchez (b0230) 2014; 8
Meunier, Tibiletti, Goguet, Shekhtman, Hardacre, Burch (b0335) 2007; 126
Collins, Spicer (b0320) 1977; 69
Yang, Mims, Disselkamp, Kwak, Peden, Campbell (b0095) 2010; 114
Kresse, Joubert (b0265) 1999; 59
Zhuravlev (b0350) 2000; 173
Ye, Liu, Mei, Ge (b0080) 2014; 317
Suntivich, Xu, Carlton, Kim, Han, Lee, Bonnet, Marzari, Allard, Gasteiger, Hamad-Schifferli, Shao-Horn (b0205) 2013; 135
Kohn, Sham (b0245) 1965; 140
Kaiser, Unde, Kern, Jess (b0130) 2013; 85
Kaiser (10.1016/j.jcat.2015.12.019_b0130) 2013; 85
Kondo (10.1016/j.jcat.2015.12.019_b0170) 2003; 118
Hohenberg (10.1016/j.jcat.2015.12.019_b0240) 1964; 136
Kohn (10.1016/j.jcat.2015.12.019_b0245) 1965; 140
Arboleda (10.1016/j.jcat.2015.12.019_b0325) 2007; 46
Studt (10.1016/j.jcat.2015.12.019_b0015) 2015; 7
Iwasa (10.1016/j.jcat.2015.12.019_b0135) 2003; 22
Dorner (10.1016/j.jcat.2015.12.019_b0045) 2010; 3
Kresse (10.1016/j.jcat.2015.12.019_b0255) 1996; 54
Suntivich (10.1016/j.jcat.2015.12.019_b0205) 2013; 135
Collins (10.1016/j.jcat.2015.12.019_b0320) 1977; 69
Hickman (10.1016/j.jcat.2015.12.019_b0165) 1993; 259
Meunier (10.1016/j.jcat.2015.12.019_b0335) 2007; 126
Upadhye (10.1016/j.jcat.2015.12.019_b0125) 2015; 5
Kresse (10.1016/j.jcat.2015.12.019_b0265) 1999; 59
Ye (10.1016/j.jcat.2015.12.019_b0080) 2014; 317
Yang (10.1016/j.jcat.2015.12.019_b0095) 2010; 114
Li (10.1016/j.jcat.2015.12.019_b0065) 2015; 7
Aresta (10.1016/j.jcat.2015.12.019_b0055) 2014; 114
Perdew (10.1016/j.jcat.2015.12.019_b0270) 1992; 45
Arasa (10.1016/j.jcat.2015.12.019_b0295) 2005; 109
Zhong (10.1016/j.jcat.2015.12.019_b0365) 1993; 76
Behrens (10.1016/j.jcat.2015.12.019_b0025) 2012; 336
Diebold (10.1016/j.jcat.2015.12.019_b0370) 2003; 48
Blochl (10.1016/j.jcat.2015.12.019_b0260) 1994; 50
Allian (10.1016/j.jcat.2015.12.019_b0200) 2011; 133
Sasaki (10.1016/j.jcat.2015.12.019_b0280) 2010; 49
Salvador (10.1016/j.jcat.2015.12.019_b0360) 1992; 96
Flaherty (10.1016/j.jcat.2015.12.019_b0160) 2011; 282
Senanayake (10.1016/j.jcat.2015.12.019_b0225) 2013; 56
Centi (10.1016/j.jcat.2015.12.019_b0060) 2013; 6
Zhao (10.1016/j.jcat.2015.12.019_b0310) 2011; 281
Nie (10.1016/j.jcat.2015.12.019_b0090) 2013; 52
Ruiz (10.1016/j.jcat.2015.12.019_b0230) 2014; 8
10.1016/j.jcat.2015.12.019_b0340
Duan (10.1016/j.jcat.2015.12.019_b0300) 2015; 5
Mccabe (10.1016/j.jcat.2015.12.019_b0185) 1986; 90
Marwood (10.1016/j.jcat.2015.12.019_b0375) 1997; 151
Wang (10.1016/j.jcat.2015.12.019_b0275) 2009; 131
Yang (10.1016/j.jcat.2015.12.019_b0115) 2012; 116
Lukkien (10.1016/j.jcat.2015.12.019_b0290) 1998; 58
Zhuravlev (10.1016/j.jcat.2015.12.019_b0350) 2000; 173
Kondratenko (10.1016/j.jcat.2015.12.019_b0040) 2013; 6
Grabow (10.1016/j.jcat.2015.12.019_b0150) 2008; 112
Tang (10.1016/j.jcat.2015.12.019_b0305) 2009; 263
Yang (10.1016/j.jcat.2015.12.019_b0110) 2010; 12
Phatak (10.1016/j.jcat.2015.12.019_b0155) 2007; 123
An (10.1016/j.jcat.2015.12.019_b0145) 2014; 14
Studt (10.1016/j.jcat.2015.12.019_b0020) 2014; 6
Song (10.1016/j.jcat.2015.12.019_b0070) 2006; 115
Xu (10.1016/j.jcat.2015.12.019_b0075) 1996; 10
Chen (10.1016/j.jcat.2015.12.019_b0180) 2012; 51
Tang (10.1016/j.jcat.2015.12.019_b0385) 2015; 17
Shi (10.1016/j.jcat.2015.12.019_b0215) 2013; 15
Choi (10.1016/j.jcat.2015.12.019_b0345) 2009; 131
Grabow (10.1016/j.jcat.2015.12.019_b0085) 2011; 1
Hirunsit (10.1016/j.jcat.2015.12.019_b0315) 2015; 119
Zhang (10.1016/j.jcat.2015.12.019_b0390) 2011; 115
Porosoff (10.1016/j.jcat.2015.12.019_b0010) 2013; 301
Inui (10.1016/j.jcat.2015.12.019_b0050) 1991; 10
Yang (10.1016/j.jcat.2015.12.019_b0100) 2008; 125
Yang (10.1016/j.jcat.2015.12.019_b0105) 2013; 298
Wallin (10.1016/j.jcat.2015.12.019_b0355) 2004; 235
Nilekar (10.1016/j.jcat.2015.12.019_b0195) 2010; 132
Tang (10.1016/j.jcat.2015.12.019_b0380) 2009; 263
Hartadi (10.1016/j.jcat.2015.12.019_b0035) 2015; 8
Kresse (10.1016/j.jcat.2015.12.019_b0250) 1996; 6
Graciani (10.1016/j.jcat.2015.12.019_b0005) 2014; 345
Alayoglu (10.1016/j.jcat.2015.12.019_b0190) 2008; 7
Kim (10.1016/j.jcat.2015.12.019_b0120) 2013; 108
Henkelman (10.1016/j.jcat.2015.12.019_b0285) 2000; 113
Bilal (10.1016/j.jcat.2015.12.019_b0140) 2013; 3
Psofogiannakis (10.1016/j.jcat.2015.12.019_b0175) 2006; 110
Bruix (10.1016/j.jcat.2015.12.019_b0235) 2012; 134
Jacobs (10.1016/j.jcat.2015.12.019_b0330) 2005; 284
Yang (10.1016/j.jcat.2015.12.019_b0030) 2008; 20
Goguet (10.1016/j.jcat.2015.12.019_b0210) 2004; 108
Dhar (10.1016/j.jcat.2015.12.019_b0220) 2014; 118
References_xml – volume: 116
  start-page: 248
  year: 2012
  end-page: 256
  ident: b0115
  article-title: Theoretical study of methanol synthesis from co
  publication-title: J. Phys. Chem. C
– volume: 151
  start-page: 223
  year: 1997
  end-page: 246
  ident: b0375
  article-title: In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO
  publication-title: Appl. Catal. A
– volume: 17
  start-page: 7317
  year: 2015
  end-page: 7333
  ident: b0385
  article-title: Effect of the components’ interface on the synthesis of methanol over Cu/ZnO from CO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 7114
  year: 2013
  end-page: 7122
  ident: b0215
  article-title: Modeling CO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 336
  start-page: 893
  year: 2012
  end-page: 897
  ident: b0025
  article-title: The active site of methanol synthesis over Cu/ZnO/Al
  publication-title: Science
– volume: 123
  start-page: 224
  year: 2007
  end-page: 234
  ident: b0155
  article-title: Kinetics of the water–gas shift reaction on Pt catalysts supported on alumina and ceria
  publication-title: Catal. Today
– volume: 235
  start-page: 487
  year: 2004
  end-page: 500
  ident: b0355
  article-title: Vibrational study of ammonia adsorption on Pt/SiO
  publication-title: Appl. Surf. Sci.
– volume: 110
  start-page: 24593
  year: 2006
  end-page: 24605
  ident: b0175
  article-title: Methane oxidation mechanism on Pt(111): a cluster model DFT study
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 9909
  year: 2010
  end-page: 9917
  ident: b0110
  article-title: Fundamental studies of methanol synthesis from CO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 333
  year: 2008
  end-page: 338
  ident: b0190
  article-title: Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen
  publication-title: Nat. Mater.
– volume: 46
  start-page: 4233
  year: 2007
  ident: b0325
  article-title: Potential energy of H
  publication-title: Jpn. J. Appl. Phys.
– volume: 6
  start-page: 320
  year: 2014
  end-page: 324
  ident: b0020
  article-title: Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol
  publication-title: Nat. Chem.
– volume: 298
  start-page: 10
  year: 2013
  end-page: 17
  ident: b0105
  article-title: Mechanistic studies of methanol synthesis over Cu from CO/CO
  publication-title: J. Catal.
– volume: 3
  start-page: 754
  year: 2013
  end-page: 766
  ident: b0140
  article-title: Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation
  publication-title: Catal. Sci. Technol.
– volume: 132
  start-page: 7418
  year: 2010
  end-page: 7428
  ident: b0195
  article-title: Preferential CO oxidation in hydrogen: reactivity of core–shell nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 8238
  year: 2015
  end-page: 8249
  ident: b0315
  article-title: CO
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 2459
  year: 2013
  end-page: 2462
  ident: b0090
  article-title: Selectivity of CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 4498
  year: 2011
  end-page: 4517
  ident: b0200
  article-title: Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: b0260
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 126
  start-page: 143
  year: 2007
  end-page: 147
  ident: b0335
  article-title: On the complexity of the water–gas shift reaction mechanism over a Pt/CeO
  publication-title: Catal. Today
– volume: 115
  start-page: 2
  year: 2006
  end-page: 32
  ident: b0070
  article-title: Global challenges and strategies for control, conversion and utilization of CO
  publication-title: Catal. Today
– volume: 263
  start-page: 114
  year: 2009
  end-page: 122
  ident: b0380
  article-title: CO
  publication-title: J. Catal.
– volume: 112
  start-page: 4608
  year: 2008
  end-page: 4617
  ident: b0150
  article-title: Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling
  publication-title: J. Phys. Chem. C
– volume: 284
  start-page: 31
  year: 2005
  end-page: 38
  ident: b0330
  article-title: Reverse water–gas shift reaction: steady state isotope switching study of the reverse water–gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst
  publication-title: Appl. Catal. A
– volume: 85
  start-page: 489
  year: 2013
  end-page: 499
  ident: b0130
  article-title: Production of liquid hydrocarbons with CO
  publication-title: Chem.-Ing.-Tech.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 20
  ident: b0230
  article-title: Bench-scale study of electrochemically assisted catalytic CO
  publication-title: J. CO
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0250
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 282
  start-page: 278
  year: 2011
  end-page: 288
  ident: b0160
  article-title: Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation
  publication-title: J. Catal.
– volume: 345
  start-page: 546
  year: 2014
  end-page: 550
  ident: b0005
  article-title: Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO
  publication-title: Science
– volume: 7
  start-page: 1105
  year: 2015
  end-page: 1111
  ident: b0015
  article-title: The mechanism of CO and CO
  publication-title: Chemcatchem
– volume: 6
  start-page: 1711
  year: 2013
  end-page: 1731
  ident: b0060
  article-title: Catalysis for CO
  publication-title: Energy Environ. Sci.
– volume: 131
  start-page: 13054
  year: 2009
  end-page: 13061
  ident: b0345
  article-title: Mechanism of ethanol synthesis from syngas on Rh(111)
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: b0285
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
– volume: 20
  start-page: 14
  year: 2008
  end-page: 27
  ident: b0030
  article-title: Progress in carbon dioxide separation and capture: a review
  publication-title: J. Environ. Sci. – China
– volume: 135
  start-page: 7985
  year: 2013
  end-page: 7991
  ident: b0205
  article-title: Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 17298
  year: 2009
  end-page: 17302
  ident: b0275
  article-title: Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 14954
  year: 2005
  end-page: 14964
  ident: b0295
  article-title: Adsorption of atomic oxygen and nitrogen at beta-cristobalite(100): a density functional theory study
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 456
  year: 2015
  end-page: 465
  ident: b0035
  article-title: CO
  publication-title: Chemsuschem
– volume: 10
  start-page: 95
  year: 1991
  end-page: 106
  ident: b0050
  article-title: Effective conversion of carbon dioxide and hydrogen to hydrocarbons
  publication-title: Catal. Today
– volume: 263
  start-page: 114
  year: 2009
  end-page: 122
  ident: b0305
  article-title: CO
  publication-title: J. Catal.
– volume: 6
  start-page: 3112
  year: 2013
  end-page: 3135
  ident: b0040
  article-title: Status and perspectives of CO
  publication-title: Energy Environ. Sci.
– volume: 301
  start-page: 30
  year: 2013
  end-page: 37
  ident: b0010
  article-title: Trends in the catalytic reduction of CO
  publication-title: J. Catal.
– volume: 108
  start-page: 20240
  year: 2004
  end-page: 20246
  ident: b0210
  article-title: Spectrokinetic investigation of reverse water–gas-shift reaction intermediates over a Pt/CeO
  publication-title: J. Phys. Chem. B
– volume: 51
  start-page: 12244
  year: 2012
  end-page: 12252
  ident: b0180
  article-title: Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211)
  publication-title: Ind. Eng. Chem. Res.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0265
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 10349
  year: 1992
  end-page: 10353
  ident: b0360
  article-title: Catalytic role of lattice defects in the photoassisted oxidation of water at (001)
  publication-title: J. Phys. Chem.
– volume: 118
  start-page: 760
  year: 2003
  end-page: 767
  ident: b0170
  article-title: Molecular beam study of CH
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 1589
  year: 2015
  end-page: 1595
  ident: b0300
  article-title: CO oxidation at the Au/TiO
  publication-title: ACS Catal.
– volume: 134
  start-page: 8968
  year: 2012
  end-page: 8974
  ident: b0235
  article-title: A new type of strong metal–support interaction and the production of H
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 8676
  year: 2014
  end-page: 8688
  ident: b0220
  article-title: Investigation of the initial steps of the electrochemical reduction of CO
  publication-title: J. Phys. Chem. A
– volume: 3
  start-page: 884
  year: 2010
  end-page: 890
  ident: b0045
  article-title: Heterogeneous catalytic CO
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 1488
  year: 2013
  end-page: 1498
  ident: b0225
  article-title: Electronic metal–support interactions and the production of hydrogen through the water–gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts
  publication-title: Top. Catal.
– volume: 114
  start-page: 1709
  year: 2014
  end-page: 1742
  ident: b0055
  article-title: Catalysis for the valorization of exhaust carbon: from CO
  publication-title: Chem. Rev.
– volume: 114
  start-page: 17205
  year: 2010
  end-page: 17211
  ident: b0095
  article-title: (Non)formation of methanol by direct hydrogenation of formate on copper catalysts
  publication-title: J. Phys. Chem. C
– volume: 108
  start-page: 47
  year: 2013
  end-page: 54
  ident: b0120
  article-title: A study of the selectivity of the reverse water gas-shift reaction over pt/TiO
  publication-title: Fuel Process. Technol.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0255
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 136
  year: 1964
  ident: b0240
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev. B
– volume: 58
  start-page: 2598
  year: 1998
  end-page: 2610
  ident: b0290
  article-title: Efficient Monte Carlo methods for the simulation of catalytic surface reactions
  publication-title: Phys. Rev. E
– volume: 45
  start-page: 13244
  year: 1992
  end-page: 13249
  ident: b0270
  article-title: Accurate and simple analytic representation of the electron-gas correlation-energy
  publication-title: Phys. Rev. B
– volume: 140
  year: 1965
  ident: b0245
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
– volume: 76
  start-page: 1137
  year: 1993
  end-page: 1142
  ident: b0365
  article-title: Local structure of defects on hydrogen- and vacuum-reduced TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 317
  start-page: 44
  year: 2014
  end-page: 53
  ident: b0080
  article-title: Methanol synthesis from CO
  publication-title: J. Catal.
– volume: 5
  start-page: 2590
  year: 2015
  end-page: 2601
  ident: b0125
  article-title: Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts
  publication-title: Catal. Sci. Technol.
– volume: 14
  start-page: 4907
  year: 2014
  end-page: 4912
  ident: b0145
  article-title: High-temperature catalytic reforming of
  publication-title: Nano Lett.
– reference: .
– volume: 1
  start-page: 365
  year: 2011
  end-page: 384
  ident: b0085
  article-title: Mechanism of methanol synthesis on Cu through CO
  publication-title: ACS Catal.
– volume: 259
  start-page: 343
  year: 1993
  end-page: 346
  ident: b0165
  article-title: Production of syngas by direct catalytic-oxidation of methane
  publication-title: Science
– volume: 10
  start-page: 305
  year: 1996
  end-page: 325
  ident: b0075
  article-title: Mitigation of CO
  publication-title: Energy Fuels
– volume: 173
  start-page: 1
  year: 2000
  end-page: 38
  ident: b0350
  article-title: The surface chemistry of amorphous silica. Zhuravlev model
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
– volume: 48
  start-page: 53
  year: 2003
  end-page: 229
  ident: b0370
  article-title: The surface science of titanium dioxide
  publication-title: Surf. Sci. Rep.
– volume: 7
  start-page: 8663
  year: 2015
  end-page: 8683
  ident: b0065
  article-title: Heterogeneous catalytic conversion of CO
  publication-title: Nanoscale
– volume: 69
  start-page: 85
  year: 1977
  end-page: 113
  ident: b0320
  article-title: The adsorption of CO, O
  publication-title: Surf. Sci.
– volume: 125
  start-page: 201
  year: 2008
  end-page: 208
  ident: b0100
  article-title: Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO
  publication-title: Catal. Lett.
– volume: 90
  start-page: 1428
  year: 1986
  end-page: 1435
  ident: b0185
  article-title: Kinetics and reaction pathways of methanol oxidation on platinum
  publication-title: J. Phys. Chem. – Us
– volume: 49
  start-page: 8602
  year: 2010
  end-page: 8607
  ident: b0280
  article-title: Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes
  publication-title: Angew. Chem. Int. Ed.
– volume: 281
  start-page: 199
  year: 2011
  end-page: 211
  ident: b0310
  article-title: Insight into methanol synthesis from CO
  publication-title: J. Catal.
– volume: 115
  start-page: 19811
  year: 2011
  end-page: 19818
  ident: b0390
  article-title: Effect of surface hydroxyls on CO
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 215
  year: 2003
  end-page: 224
  ident: b0135
  article-title: New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol
  publication-title: Top. Catal.
– volume: 132
  start-page: 7418
  year: 2010
  ident: 10.1016/j.jcat.2015.12.019_b0195
  article-title: Preferential CO oxidation in hydrogen: reactivity of core–shell nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101108w
– volume: 108
  start-page: 20240
  year: 2004
  ident: 10.1016/j.jcat.2015.12.019_b0210
  article-title: Spectrokinetic investigation of reverse water–gas-shift reaction intermediates over a Pt/CeO2 catalyst
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047242w
– volume: 134
  start-page: 8968
  year: 2012
  ident: 10.1016/j.jcat.2015.12.019_b0235
  article-title: A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302070k
– volume: 123
  start-page: 224
  year: 2007
  ident: 10.1016/j.jcat.2015.12.019_b0155
  article-title: Kinetics of the water–gas shift reaction on Pt catalysts supported on alumina and ceria
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2007.02.031
– volume: 336
  start-page: 893
  year: 2012
  ident: 10.1016/j.jcat.2015.12.019_b0025
  article-title: The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 282
  start-page: 278
  year: 2011
  ident: 10.1016/j.jcat.2015.12.019_b0160
  article-title: Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.06.024
– volume: 7
  start-page: 1105
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0015
  article-title: The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts
  publication-title: Chemcatchem
  doi: 10.1002/cctc.201500123
– volume: 1
  start-page: 365
  year: 2011
  ident: 10.1016/j.jcat.2015.12.019_b0085
  article-title: Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation
  publication-title: ACS Catal.
  doi: 10.1021/cs200055d
– volume: 3
  start-page: 754
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0140
  article-title: Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C2CY20703F
– volume: 3
  start-page: 884
  year: 2010
  ident: 10.1016/j.jcat.2015.12.019_b0045
  article-title: Heterogeneous catalytic CO2 conversion to value-added hydrocarbons
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c001514h
– volume: 119
  start-page: 8238
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0315
  article-title: CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01574
– volume: 51
  start-page: 12244
  year: 2012
  ident: 10.1016/j.jcat.2015.12.019_b0180
  article-title: Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211)
  publication-title: Ind. Eng. Chem. Res.
– volume: 17
  start-page: 7317
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0385
  article-title: Effect of the components’ interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT+U calculations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05518G
– volume: 20
  start-page: 14
  year: 2008
  ident: 10.1016/j.jcat.2015.12.019_b0030
  article-title: Progress in carbon dioxide separation and capture: a review
  publication-title: J. Environ. Sci. – China
  doi: 10.1016/S1001-0742(08)60002-9
– volume: 281
  start-page: 199
  year: 2011
  ident: 10.1016/j.jcat.2015.12.019_b0310
  article-title: Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.04.012
– volume: 301
  start-page: 30
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0010
  article-title: Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.01.022
– volume: 14
  start-page: 4907
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0145
  article-title: High-temperature catalytic reforming of n-hexane over supported and core–shell Pt nanoparticle catalysts: role of oxide–metal interface and thermal stability
  publication-title: Nano Lett.
  doi: 10.1021/nl502434m
– volume: 10
  start-page: 305
  year: 1996
  ident: 10.1016/j.jcat.2015.12.019_b0075
  article-title: Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products
  publication-title: Energy Fuels
  doi: 10.1021/ef9501511
– volume: 52
  start-page: 2459
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0090
  article-title: Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201208320
– volume: 45
  start-page: 13244
  year: 1992
  ident: 10.1016/j.jcat.2015.12.019_b0270
  article-title: Accurate and simple analytic representation of the electron-gas correlation-energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 136
  year: 1964
  ident: 10.1016/j.jcat.2015.12.019_b0240
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRev.136.B864
– volume: 6
  start-page: 320
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0020
  article-title: Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1873
– volume: 7
  start-page: 333
  year: 2008
  ident: 10.1016/j.jcat.2015.12.019_b0190
  article-title: Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2156
– volume: 133
  start-page: 4498
  year: 2011
  ident: 10.1016/j.jcat.2015.12.019_b0200
  article-title: Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110073u
– volume: 85
  start-page: 489
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0130
  article-title: Production of liquid hydrocarbons with CO2 as carbon source based on reverse water–gas shift and Fischer–Tropsch synthesis
  publication-title: Chem.-Ing.-Tech.
  doi: 10.1002/cite.201200179
– volume: 118
  start-page: 8676
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0220
  article-title: Investigation of the initial steps of the electrochemical reduction of CO2 on Pt electrodes
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp505347k
– volume: 235
  start-page: 487
  year: 2004
  ident: 10.1016/j.jcat.2015.12.019_b0355
  article-title: Vibrational study of ammonia adsorption on Pt/SiO2
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.03.225
– volume: 125
  start-page: 201
  year: 2008
  ident: 10.1016/j.jcat.2015.12.019_b0100
  article-title: Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO2 catalyst
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-008-9592-4
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.jcat.2015.12.019_b0265
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 284
  start-page: 31
  year: 2005
  ident: 10.1016/j.jcat.2015.12.019_b0330
  article-title: Reverse water–gas shift reaction: steady state isotope switching study of the reverse water–gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.01.013
– volume: 12
  start-page: 9909
  year: 2010
  ident: 10.1016/j.jcat.2015.12.019_b0110
  article-title: Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000(1)over-bar)
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c001484b
– ident: 10.1016/j.jcat.2015.12.019_b0340
– volume: 5
  start-page: 2590
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0125
  article-title: Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY01183J
– volume: 126
  start-page: 143
  year: 2007
  ident: 10.1016/j.jcat.2015.12.019_b0335
  article-title: On the complexity of the water–gas shift reaction mechanism over a Pt/CeO2 catalyst: effect of the temperature on the reactivity of formate surface species studied by operando DRIFT during isotopic transient at chemical steady-state
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2006.10.003
– volume: 109
  start-page: 14954
  year: 2005
  ident: 10.1016/j.jcat.2015.12.019_b0295
  article-title: Adsorption of atomic oxygen and nitrogen at beta-cristobalite(100): a density functional theory study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp044064y
– volume: 173
  start-page: 1
  year: 2000
  ident: 10.1016/j.jcat.2015.12.019_b0350
  article-title: The surface chemistry of amorphous silica. Zhuravlev model
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(00)00556-2
– volume: 76
  start-page: 1137
  year: 1993
  ident: 10.1016/j.jcat.2015.12.019_b0365
  article-title: Local structure of defects on hydrogen- and vacuum-reduced TiO2 surfaces
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb03731.x
– volume: 118
  start-page: 760
  year: 2003
  ident: 10.1016/j.jcat.2015.12.019_b0170
  article-title: Molecular beam study of CH4 oxidation on a Pt(111)-(2×2)-O surface
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1527894
– volume: 49
  start-page: 8602
  year: 2010
  ident: 10.1016/j.jcat.2015.12.019_b0280
  article-title: Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201004287
– volume: 46
  start-page: 4233
  year: 2007
  ident: 10.1016/j.jcat.2015.12.019_b0325
  article-title: Potential energy of H2 dissociation and adsorption on Pt(111) surface: first-principles calculation
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.4233
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0230
  article-title: Bench-scale study of electrochemically assisted catalytic CO2 hydrogenation to hydrocarbon fuels on Pt, Ni and Pd films deposited on YSZ
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2014.09.001
– volume: 151
  start-page: 223
  year: 1997
  ident: 10.1016/j.jcat.2015.12.019_b0375
  article-title: In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(96)00267-0
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcat.2015.12.019_b0255
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 317
  start-page: 44
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0080
  article-title: Methanol synthesis from CO2 hydrogenation over a Pd-4/In2O3 model catalyst: a combined DFT and kinetic study
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.06.002
– volume: 110
  start-page: 24593
  year: 2006
  ident: 10.1016/j.jcat.2015.12.019_b0175
  article-title: Methane oxidation mechanism on Pt(111): a cluster model DFT study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061559+
– volume: 56
  start-page: 1488
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0225
  article-title: Electronic metal–support interactions and the production of hydrogen through the water–gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts
  publication-title: Top. Catal.
  doi: 10.1007/s11244-013-0148-5
– volume: 5
  start-page: 1589
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0300
  article-title: CO oxidation at the Au/TiO2 boundary: the role of the Au/Ti-5c site
  publication-title: ACS Catal.
  doi: 10.1021/cs501610a
– volume: 108
  start-page: 47
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0120
  article-title: A study of the selectivity of the reverse water gas-shift reaction over pt/TiO2 catalysts
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2012.04.003
– volume: 112
  start-page: 4608
  year: 2008
  ident: 10.1016/j.jcat.2015.12.019_b0150
  article-title: Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7099702
– volume: 115
  start-page: 19811
  year: 2011
  ident: 10.1016/j.jcat.2015.12.019_b0390
  article-title: Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp206065y
– volume: 263
  start-page: 114
  year: 2009
  ident: 10.1016/j.jcat.2015.12.019_b0380
  article-title: CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.01.017
– volume: 22
  start-page: 215
  year: 2003
  ident: 10.1016/j.jcat.2015.12.019_b0135
  article-title: New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol
  publication-title: Top. Catal.
  doi: 10.1023/A:1023571819211
– volume: 113
  start-page: 9901
  year: 2000
  ident: 10.1016/j.jcat.2015.12.019_b0285
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 69
  start-page: 85
  year: 1977
  ident: 10.1016/j.jcat.2015.12.019_b0320
  article-title: The adsorption of CO, O2, and H2 on Pt: I. Thermal desorption spectroscopy studies
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(77)90163-7
– volume: 48
  start-page: 53
  year: 2003
  ident: 10.1016/j.jcat.2015.12.019_b0370
  article-title: The surface science of titanium dioxide
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(02)00100-0
– volume: 58
  start-page: 2598
  year: 1998
  ident: 10.1016/j.jcat.2015.12.019_b0290
  article-title: Efficient Monte Carlo methods for the simulation of catalytic surface reactions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.2598
– volume: 345
  start-page: 546
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0005
  article-title: Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2
  publication-title: Science
  doi: 10.1126/science.1253057
– volume: 263
  start-page: 114
  year: 2009
  ident: 10.1016/j.jcat.2015.12.019_b0305
  article-title: CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.01.017
– volume: 114
  start-page: 17205
  year: 2010
  ident: 10.1016/j.jcat.2015.12.019_b0095
  article-title: (Non)formation of methanol by direct hydrogenation of formate on copper catalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp104068k
– volume: 15
  start-page: 7114
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0215
  article-title: Modeling CO2 reduction on Pt(111)
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50645b
– volume: 8
  start-page: 456
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0035
  article-title: CO2 hydrogenation to methanol on supported au catalysts under moderate reaction conditions: support and particle size effects
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201402645
– volume: 7
  start-page: 8663
  year: 2015
  ident: 10.1016/j.jcat.2015.12.019_b0065
  article-title: Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review
  publication-title: Nanoscale
  doi: 10.1039/C5NR00092K
– volume: 90
  start-page: 1428
  year: 1986
  ident: 10.1016/j.jcat.2015.12.019_b0185
  article-title: Kinetics and reaction pathways of methanol oxidation on platinum
  publication-title: J. Phys. Chem. – Us
  doi: 10.1021/j100398a043
– volume: 10
  start-page: 95
  year: 1991
  ident: 10.1016/j.jcat.2015.12.019_b0050
  article-title: Effective conversion of carbon dioxide and hydrogen to hydrocarbons
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(91)80077-M
– volume: 6
  start-page: 3112
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0040
  article-title: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41272e
– volume: 140
  year: 1965
  ident: 10.1016/j.jcat.2015.12.019_b0245
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 131
  start-page: 17298
  year: 2009
  ident: 10.1016/j.jcat.2015.12.019_b0275
  article-title: Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9067645
– volume: 96
  start-page: 10349
  year: 1992
  ident: 10.1016/j.jcat.2015.12.019_b0360
  article-title: Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100204a046
– volume: 259
  start-page: 343
  year: 1993
  ident: 10.1016/j.jcat.2015.12.019_b0165
  article-title: Production of syngas by direct catalytic-oxidation of methane
  publication-title: Science
  doi: 10.1126/science.259.5093.343
– volume: 116
  start-page: 248
  year: 2012
  ident: 10.1016/j.jcat.2015.12.019_b0115
  article-title: Theoretical study of methanol synthesis from co2 hydrogenation on metal-doped Cu(111) surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp208448c
– volume: 135
  start-page: 7985
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0205
  article-title: Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402072r
– volume: 114
  start-page: 1709
  year: 2014
  ident: 10.1016/j.jcat.2015.12.019_b0055
  article-title: Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2
  publication-title: Chem. Rev.
  doi: 10.1021/cr4002758
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.jcat.2015.12.019_b0250
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 131
  start-page: 13054
  year: 2009
  ident: 10.1016/j.jcat.2015.12.019_b0345
  article-title: Mechanism of ethanol synthesis from syngas on Rh(111)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903013x
– volume: 298
  start-page: 10
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0105
  article-title: Mechanistic studies of methanol synthesis over Cu from CO/CO2/H-2/H2O mixtures: the source of C in methanol and the role of water
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.10.028
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jcat.2015.12.019_b0260
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 6
  start-page: 1711
  year: 2013
  ident: 10.1016/j.jcat.2015.12.019_b0060
  article-title: Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00056g
– volume: 115
  start-page: 2
  year: 2006
  ident: 10.1016/j.jcat.2015.12.019_b0070
  article-title: Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2006.02.029
SSID ssj0011558
Score 2.6281419
Snippet [Display omitted] •CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone...
Display Omitted * CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway. * The overall conversion is low due to weak Pt-CO2 interaction. * Pt...
In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the...
In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Activity
Carbon dioxide
carbon monoxide
catalysts
chemical bonding
cleavage (chemistry)
CO2 activation
Density
density functional theory
DFT
energy
hydrogen
hydrogenation
Kinetics
methane
methanol
nanoparticles
Nitric oxide
Platinum
Selectivity
silica
titanium dioxide
Title CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support
URI https://dx.doi.org/10.1016/j.jcat.2015.12.019
https://www.proquest.com/docview/1832216177
https://www.proquest.com/docview/2131889798
https://www.osti.gov/servlets/purl/1341672
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LatwwcAibQ9tDSNOWbl6o0Fvrrh-yZecWloZNS9NCE8hNlfWgGxp7ye5Ccsm3Z0aWl4aEHAI22NYMFjPSzEiaB8BH4-i4hfNIUQwaVTmKSlcmkavKutDC1KkvNvHjpJic8W_n-fkajPtYGHKrDLK_k-leWocvo0DN0Ww6pRhfnG15ItCkoaRRPoKdCxrlX25Xbh5o8OSdNCZXBIQOgTOdj9cF7e6hCsz9liBl23lcOQ1anG8PpLVXQUebsBFsR3bYde81rNlmC16M-5JtW_Dqv-yCb-DP-GfK_t6YqxYHiWcAw-vX4jPeo99TbFSNoedTfD5gx5feFEcCsNax-Y0PCmTBjwvBPHR7PTWWzZczgn0LZ0dfT8eTKBRUiHRW8iqy2jrtRO54rOvYFVxUhiseuzR3mVMcrRWeFVbEzjiklcoKQxn9kM9lZY1Is3cwaNrGvgemkhptI67rWuECr7AKLbPYZtxkcarxJ0NIekpKHbKNU9GLf7J3K7uQRH1J1JdJKpH6Q_i0wpl1uTaehM57Bsl7I0aiMngSb4e4STiUJleTPxEiUWK7QqRD2O2ZLMNsnksv9mghKIbwYdWMvKXDFdXYdjmXaYLSsaxEVW4_s2M78BLfii7QcRcGi6ul3UOLZ1Hv-yG9D-uHx98nJ3dPlPz7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N3cPgAbEBomwMI_EGUfPhxAlvU7WpZVtBopP2Zhx_iE6QVGsrsf-eO8epmEB7QEqkKPYp0Z19d7bvfgfwzjg6buE8UpSDRlWOotKVSeSqsi60MHXqi01czorJFf90nV_vwLjPhaGwyqD7O53utXV4MwrcHC0XC8rxxdmWJwJdGgKNwiXQLqFT5QPYPZmeT2bbwwQ0mZ1CpmgEJAi5M12Y1w1t8KEVzP2uIAHu_Ns-DVqccn8pbG-Fzp7Ck-A-spPuD_dhxzYHsDfuq7YdwOM_AAafwbfx55R9vzO3LY4TLwOG15f1B7xHXxfYqBpDz3N8_simP703jjxgrWOrO58XyEIoF3bzvdtfC2PZarOkvs_h6ux0Pp5EoaZCpLOSV5HV1mkncsdjXceu4KIyXPHYpbnLnOLosPCssCJ2xiGvVFYYAvVDUZeVNSLNXsCgaRv7EphKanSPuK5rhWu8wip0zmKbcZPFqcaPDCHpOSl1ABynuhc_ZB9ZdiOJ-5K4L5NUIveH8H5Ls-zgNh7snfcCkvcGjUR78CDdIUmTaAgpV1NIERIRtl0h0iEc9UKWYUKvpNd8tBYUQ3i7bUbZ0vmKamy7Wck0QQVZVqIqX_3nj72Bvcn88kJeTGfnh_AIW4ou7_EIBuvbjX2NDtC6Pg4D_Df8uf-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+hydrogenation+on+Pt%2C+Pt%2FSiO2+and+Pt%2FTiO2%3A+Importance+of+synergy+between+Pt+and+oxide+support&rft.jtitle=Journal+of+catalysis&rft.au=Kattel%2C+Shyam&rft.au=Yan%2C+Binhang&rft.au=Chen%2C+Jingguang+G&rft.au=Liu%2C+Ping&rft.date=2016-11-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=343&rft.spage=115&rft_id=info:doi/10.1016%2Fj.jcat.2015.12.019&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4227665581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon