CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support
[Display omitted] •CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone is selective to produce CO, rather than CH4 and CH3OH.•Synergy at Pt–oxide interface promotes the CO2 conversion on Pt. In the current study...
Saved in:
Published in | Journal of catalysis Vol. 343; pp. 115 - 126 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
San Diego
Elsevier Inc
01.11.2016
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone is selective to produce CO, rather than CH4 and CH3OH.•Synergy at Pt–oxide interface promotes the CO2 conversion on Pt.
In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role. |
---|---|
AbstractList | Display Omitted * CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway. * The overall conversion is low due to weak Pt-CO2 interaction. * Pt alone is selective to produce CO, rather than CH4 and CH3OH. * Synergy at Pt-oxide interface promotes the CO2 conversion on Pt. In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water-gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further * CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of * CO hydrogenation to * HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C-O bond scission reactions of the * H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt-oxide interface, where the synergy between Pt and oxide plays an important role. [Display omitted] •CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone is selective to produce CO, rather than CH4 and CH3OH.•Synergy at Pt–oxide interface promotes the CO2 conversion on Pt. In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role. In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role. In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO2 binding on the catalyst. Once CO2 is stabilized, the hydrogenation of CO2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH4 is less significant and no CH3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH4 and CH3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H2COH species. Using SiO2 and TiO2 as the support, Pt NP is able to promote the overall CO2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. The enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role. |
Author | Chen, Jingguang G. Liu, Ping Kattel, Shyam Yan, Binhang |
Author_xml | – sequence: 1 givenname: Shyam surname: Kattel fullname: Kattel, Shyam organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States – sequence: 2 givenname: Binhang surname: Yan fullname: Yan, Binhang organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States – sequence: 3 givenname: Jingguang G. surname: Chen fullname: Chen, Jingguang G. email: jgchen@columbia.edu organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States – sequence: 4 givenname: Ping surname: Liu fullname: Liu, Ping email: pingliu3@bnl.gov organization: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States |
BackLink | https://www.osti.gov/servlets/purl/1341672$$D View this record in Osti.gov |
BookMark | eNp9kU1vGyEQhlGVSHWS_oGeVu2lh-6GAfaDqpfI6kekSImU9EwxOySsbHABt_W_L2v3lEOkQTMSzwt65z0jJz54JOQt0AYodJdTMxmdG0ahbYA1FOQrsgAqac06KU7IglIGtWyhf03OUpooBWjbYUF-Lm9Z9bQfY3hEr7MLvip1lz-Wc3nvyqX24zw_lPlTdb3Zhpi1N1gFW6W9x_i4r1aY_yDOsgMd_roRq7TbzuwFObV6nfDN_35Ofnz98rD8Xt_cfrteXt3Uhg9C1mjQGtu3VlCzorYTvRyFFtSy1nKrRcel4B321I622NC8GynvAVc4SBx7xs_Ju-O7IWWnknEZzZMJ3qPJCriA7gB9OELbGH7tMGW1ccngeq09hl1SDDgMg-zlUND3z9Ap7KIvFhQMnDHooO8LNRwpE0NKEa0qHx_WmKN2awVUzfmoSc35qDkfBUyVfIqUPZNuo9vouH9Z9PkowrLK3w7j7BRLHKOLs9ExuJfk_wA95qk3 |
CitedBy_id | crossref_primary_10_1016_j_jcat_2020_08_017 crossref_primary_10_1039_C9CY00684B crossref_primary_10_1016_S1872_2067_21_63825_1 crossref_primary_10_1016_j_eti_2023_103217 crossref_primary_10_1016_j_ijhydene_2018_11_008 crossref_primary_10_1021_acscatal_1c02644 crossref_primary_10_1016_j_fuel_2023_128956 crossref_primary_10_1021_jacs_9b10873 crossref_primary_10_1016_j_fuel_2020_117092 crossref_primary_10_1021_acs_jpcc_1c00638 crossref_primary_10_1039_D0TA09607E crossref_primary_10_3390_catal14070456 crossref_primary_10_1016_j_jcat_2017_01_013 crossref_primary_10_1039_D1NA00423A crossref_primary_10_1002_chem_201903946 crossref_primary_10_1007_s43938_024_00048_7 crossref_primary_10_1016_j_apsusc_2024_159411 crossref_primary_10_1021_acs_jpcc_2c03216 crossref_primary_10_1039_D1SC03109K crossref_primary_10_1016_j_apsusc_2019_03_187 crossref_primary_10_1021_acscatal_8b04720 crossref_primary_10_1007_s12274_023_5712_0 crossref_primary_10_1039_D2CS00214K crossref_primary_10_1021_acsenergylett_0c02614 crossref_primary_10_1021_acsami_1c01916 crossref_primary_10_1039_D4CC04679J crossref_primary_10_1002_cssc_202400993 crossref_primary_10_1002_adsu_202100439 crossref_primary_10_1016_j_mtener_2020_100585 crossref_primary_10_1039_D0CP01855D crossref_primary_10_1002_wcms_1530 crossref_primary_10_1039_D3CY00026E crossref_primary_10_1016_j_jcou_2017_05_005 crossref_primary_10_1021_acscatal_4c01249 crossref_primary_10_1016_j_rser_2018_09_003 crossref_primary_10_1039_D1CY00399B crossref_primary_10_1007_s12209_020_00246_8 crossref_primary_10_1016_j_jpowsour_2024_235053 crossref_primary_10_1021_acs_jpcc_4c05941 crossref_primary_10_1039_D0CS01262A crossref_primary_10_1021_acscatal_0c03665 crossref_primary_10_1016_j_apcatb_2022_122083 crossref_primary_10_1016_j_apenergy_2019_113623 crossref_primary_10_3390_catal12010066 crossref_primary_10_1016_j_cej_2024_148599 crossref_primary_10_1021_acssuschemeng_3c01893 crossref_primary_10_1016_j_apcatb_2019_03_003 crossref_primary_10_1016_j_jcou_2024_102784 crossref_primary_10_1021_acscatal_4c02341 crossref_primary_10_1016_j_apcatb_2018_06_074 crossref_primary_10_1016_j_apsusc_2023_157873 crossref_primary_10_1016_j_jcat_2021_07_020 crossref_primary_10_1016_j_apsusc_2019_144142 crossref_primary_10_3390_catal13020305 crossref_primary_10_3390_chemistry4040083 crossref_primary_10_1063_5_0049293 crossref_primary_10_1021_jacs_0c07153 crossref_primary_10_1016_j_mcat_2022_112745 crossref_primary_10_1016_j_apsusc_2020_148777 crossref_primary_10_1016_j_fuel_2023_127630 crossref_primary_10_1021_acscatal_9b04187 crossref_primary_10_1016_j_apsusc_2021_151326 crossref_primary_10_1007_s11244_020_01405_w crossref_primary_10_1021_acscatal_0c01599 crossref_primary_10_1021_acsmaterialslett_1c00523 crossref_primary_10_1016_j_ccr_2018_02_008 crossref_primary_10_1016_j_apcatb_2022_121529 crossref_primary_10_1016_j_enconman_2019_112214 crossref_primary_10_1021_acssuschemeng_0c05565 crossref_primary_10_1016_j_apcatb_2021_120319 crossref_primary_10_1016_j_jechem_2024_08_069 crossref_primary_10_1039_D1NA00310K crossref_primary_10_1039_D1GC02078A crossref_primary_10_1002_ange_202318747 crossref_primary_10_1021_acsenergylett_8b00740 crossref_primary_10_1038_s41467_019_09918_z crossref_primary_10_1016_j_cis_2020_102349 crossref_primary_10_1016_j_ica_2022_120856 crossref_primary_10_1016_j_jcou_2024_102845 crossref_primary_10_1021_acs_jpcc_0c09717 crossref_primary_10_1039_D0GC03506H crossref_primary_10_1360_SSC_2024_0095 crossref_primary_10_1002_ange_202305661 crossref_primary_10_1016_j_arabjc_2024_105846 crossref_primary_10_1088_1361_6463_abe07f crossref_primary_10_1016_j_jcou_2023_102567 crossref_primary_10_1039_D0SE00147C crossref_primary_10_1021_acscatal_8b03319 crossref_primary_10_1021_acs_jpcc_1c05468 crossref_primary_10_1039_D2GC02900F crossref_primary_10_1002_ente_202200817 crossref_primary_10_1016_j_jcat_2018_10_001 crossref_primary_10_1039_D4CP02389G crossref_primary_10_1016_j_apcatb_2019_118474 crossref_primary_10_1016_j_jechem_2024_10_044 crossref_primary_10_1016_j_jcou_2019_05_031 crossref_primary_10_1016_j_apcata_2023_119434 crossref_primary_10_1021_acsami_9b05645 crossref_primary_10_1039_D1TA03480D crossref_primary_10_1016_j_jcou_2022_102291 crossref_primary_10_1021_acscatal_4c02293 crossref_primary_10_1021_acs_jpcc_8b00061 crossref_primary_10_1039_D3TA06859E crossref_primary_10_1002_cctc_202200665 crossref_primary_10_1021_acs_energyfuels_1c03008 crossref_primary_10_1016_j_compchemeng_2022_107852 crossref_primary_10_1016_j_jcat_2024_115822 crossref_primary_10_1039_C8RA05964K crossref_primary_10_1016_j_mcat_2025_114890 crossref_primary_10_1073_pnas_1911159117 crossref_primary_10_3390_catal12121511 crossref_primary_10_1016_j_jechem_2022_04_024 crossref_primary_10_1002_ente_202000194 crossref_primary_10_1016_j_apcatb_2022_121748 crossref_primary_10_1021_jacs_8b03067 crossref_primary_10_1002_cphc_202300608 crossref_primary_10_1021_jacs_4c08517 crossref_primary_10_1016_j_cjche_2024_05_012 crossref_primary_10_1016_j_jcou_2024_102980 crossref_primary_10_1016_j_apcata_2021_118330 crossref_primary_10_1016_j_jcou_2023_102582 crossref_primary_10_1039_D2TA07613F crossref_primary_10_1016_j_ijhydene_2021_02_085 crossref_primary_10_1016_j_apsusc_2021_152204 crossref_primary_10_1039_D1CY00382H crossref_primary_10_1016_j_apcatb_2021_120101 crossref_primary_10_1021_acssuschemeng_1c05565 crossref_primary_10_1016_j_cattod_2020_05_018 crossref_primary_10_1021_jacs_7b05362 crossref_primary_10_1016_j_mcat_2021_111675 crossref_primary_10_1002_cplu_202300511 crossref_primary_10_1002_anie_202318747 crossref_primary_10_1002_cctc_201901879 crossref_primary_10_1007_s10562_019_02902_8 crossref_primary_10_1021_acs_jpcc_7b06166 crossref_primary_10_1007_s12274_022_4576_z crossref_primary_10_1016_j_cej_2022_138967 crossref_primary_10_1021_acs_jpcc_8b05611 crossref_primary_10_1002_cphc_202400154 crossref_primary_10_1021_acscatal_2c01646 crossref_primary_10_1039_D3CP00831B crossref_primary_10_1016_j_mcat_2024_114133 crossref_primary_10_1016_j_ijhydene_2019_02_153 crossref_primary_10_1002_er_7246 crossref_primary_10_1021_acsanm_4c03801 crossref_primary_10_1016_j_cogsc_2022_100720 crossref_primary_10_1039_D3NJ03516F crossref_primary_10_1016_j_ijhydene_2019_04_051 crossref_primary_10_1002_ange_202015017 crossref_primary_10_1021_acscatal_3c05939 crossref_primary_10_1016_j_cej_2023_144459 crossref_primary_10_1016_j_joei_2022_02_008 crossref_primary_10_1021_acscatal_8b02277 crossref_primary_10_1039_C7QM00328E crossref_primary_10_1039_D2CP01971J crossref_primary_10_1021_acscatal_2c06255 crossref_primary_10_1021_acs_jpcc_1c08098 crossref_primary_10_1002_cctc_202101723 crossref_primary_10_1016_j_cattod_2019_11_005 crossref_primary_10_1016_j_jcou_2022_102128 crossref_primary_10_1016_j_jhazmat_2020_122392 crossref_primary_10_1016_j_jechem_2021_03_040 crossref_primary_10_1002_ghg_2207 crossref_primary_10_1021_acs_jpcc_1c04972 crossref_primary_10_1021_acs_iecr_7b01457 crossref_primary_10_1016_j_fuel_2024_133755 crossref_primary_10_1016_j_jcat_2020_03_028 crossref_primary_10_1038_s41929_018_0051_3 crossref_primary_10_1021_prechem_5c00010 crossref_primary_10_1088_1361_6463_ac006f crossref_primary_10_1021_acs_jpcc_4c02275 crossref_primary_10_1016_j_jcou_2019_04_004 crossref_primary_10_1021_acscatal_5c00660 crossref_primary_10_1039_C8CP00818C crossref_primary_10_1016_j_cej_2024_153206 crossref_primary_10_2139_ssrn_4052305 crossref_primary_10_1039_D0CS01003K crossref_primary_10_1002_asia_202300971 crossref_primary_10_3390_catal10080944 crossref_primary_10_1002_anie_202305661 crossref_primary_10_1016_j_recm_2023_05_003 crossref_primary_10_1016_j_mcat_2022_112477 crossref_primary_10_1016_j_chempr_2024_02_017 crossref_primary_10_1016_j_apsusc_2019_144652 crossref_primary_10_1016_j_cej_2023_145644 crossref_primary_10_1039_D3CY01134H crossref_primary_10_1021_acsaem_1c01025 crossref_primary_10_1016_j_ijhydene_2022_09_224 crossref_primary_10_1021_acsami_1c20056 crossref_primary_10_1007_s11244_017_0849_2 crossref_primary_10_1038_s41467_024_44840_z crossref_primary_10_1002_aic_18016 crossref_primary_10_1007_s10934_020_00978_x crossref_primary_10_1002_aenm_201801587 crossref_primary_10_1021_acs_chemmater_4c00429 crossref_primary_10_3389_fchem_2020_00709 crossref_primary_10_1021_acs_jpcc_1c05228 crossref_primary_10_1016_j_apcatb_2022_122124 crossref_primary_10_2139_ssrn_4174951 crossref_primary_10_1016_j_seppur_2022_122455 crossref_primary_10_3390_catal9030275 crossref_primary_10_1021_acscatal_7b02733 crossref_primary_10_1039_D3TA05938C crossref_primary_10_1039_C9CP02970B crossref_primary_10_1021_jacs_9b12980 crossref_primary_10_1016_j_jes_2023_05_010 crossref_primary_10_3390_ma15113775 crossref_primary_10_1016_j_seppur_2024_130834 crossref_primary_10_1002_adts_202200205 crossref_primary_10_1002_asia_202301007 crossref_primary_10_3390_catal10020212 crossref_primary_10_1016_j_mtener_2021_100781 crossref_primary_10_1016_j_jcou_2021_101881 crossref_primary_10_3390_catal13091231 crossref_primary_10_3390_catal10060675 crossref_primary_10_1002_aenm_201800800 crossref_primary_10_1016_j_jcou_2021_101502 crossref_primary_10_1002_cctc_201900039 crossref_primary_10_1002_cctc_202400451 crossref_primary_10_3390_atmos14081208 crossref_primary_10_1021_acsanm_4c00111 crossref_primary_10_1002_ghg_2257 crossref_primary_10_1016_j_cej_2023_146712 crossref_primary_10_1016_j_ijhydene_2019_12_099 crossref_primary_10_1039_C8CY00880A crossref_primary_10_1021_acscatal_1c03772 crossref_primary_10_1002_smll_201604311 crossref_primary_10_1063_5_0132627 crossref_primary_10_1016_j_seppur_2024_130388 crossref_primary_10_1002_cjce_23655 crossref_primary_10_1021_acs_chemrev_9b00723 crossref_primary_10_1007_s11356_024_34751_3 crossref_primary_10_1016_j_jechem_2017_07_006 crossref_primary_10_1007_s10562_021_03591_y crossref_primary_10_1063_5_0037886 crossref_primary_10_1016_j_jssc_2021_122113 crossref_primary_10_1038_s42004_023_01064_4 crossref_primary_10_1002_admi_202202516 crossref_primary_10_1016_j_ijhydene_2024_05_088 crossref_primary_10_1016_j_jclepro_2020_123999 crossref_primary_10_1002_anie_202015017 crossref_primary_10_1016_j_apcatb_2020_119695 crossref_primary_10_1021_acs_energyfuels_1c02440 crossref_primary_10_1016_j_jcat_2019_04_036 crossref_primary_10_1021_acscatal_8b02071 crossref_primary_10_20964_2019_12_28 crossref_primary_10_1016_j_jcat_2024_115303 crossref_primary_10_1021_acs_jpca_8b01917 crossref_primary_10_3390_nano13232996 crossref_primary_10_1016_j_jechem_2024_09_025 crossref_primary_10_1016_j_joei_2019_07_009 crossref_primary_10_1021_acsami_3c02829 crossref_primary_10_1080_00986445_2022_2135505 crossref_primary_10_1016_j_cjche_2020_05_009 crossref_primary_10_1002_cctc_202100292 crossref_primary_10_1016_j_cattod_2018_04_021 crossref_primary_10_3390_nano11123265 crossref_primary_10_1007_s11814_024_00349_1 crossref_primary_10_1002_cptc_202000018 crossref_primary_10_1016_j_jcat_2023_05_028 crossref_primary_10_1021_acs_jpcc_6b05126 crossref_primary_10_1021_acs_jpcc_9b01638 crossref_primary_10_1016_j_jechem_2020_08_045 crossref_primary_10_1016_j_enconman_2024_118070 crossref_primary_10_1016_j_surfin_2021_101244 crossref_primary_10_1039_C8CC03829E crossref_primary_10_1016_j_mcat_2024_114661 crossref_primary_10_1016_j_catcom_2023_106709 crossref_primary_10_1016_j_cattod_2021_11_029 crossref_primary_10_1039_D0GC01597K crossref_primary_10_1002_asia_202400208 crossref_primary_10_1016_j_heliyon_2024_e40078 crossref_primary_10_3390_catal11060738 crossref_primary_10_3390_su13126962 crossref_primary_10_1039_D1GC01761F crossref_primary_10_1016_j_ccr_2022_214982 crossref_primary_10_3390_nano13030485 crossref_primary_10_3389_fmats_2019_00127 crossref_primary_10_1021_acscatal_9b05225 crossref_primary_10_1016_j_jpowsour_2024_235996 crossref_primary_10_1021_acs_jpcc_6b10261 crossref_primary_10_1002_adma_202108727 crossref_primary_10_3390_catal15040301 |
Cites_doi | 10.1021/ja101108w 10.1021/jp047242w 10.1021/ja302070k 10.1016/j.cattod.2007.02.031 10.1126/science.1219831 10.1016/j.jcat.2011.06.024 10.1002/cctc.201500123 10.1021/cs200055d 10.1039/C2CY20703F 10.1039/c001514h 10.1021/acs.jpcc.5b01574 10.1039/C4CP05518G 10.1016/S1001-0742(08)60002-9 10.1016/j.jcat.2011.04.012 10.1016/j.jcat.2013.01.022 10.1021/nl502434m 10.1021/ef9501511 10.1002/anie.201208320 10.1103/PhysRevB.45.13244 10.1103/PhysRev.136.B864 10.1038/nchem.1873 10.1038/nmat2156 10.1021/ja110073u 10.1002/cite.201200179 10.1021/jp505347k 10.1016/j.apsusc.2004.03.225 10.1007/s10562-008-9592-4 10.1103/PhysRevB.59.1758 10.1016/j.apcata.2005.01.013 10.1039/c001484b 10.1039/C4CY01183J 10.1016/j.cattod.2006.10.003 10.1021/jp044064y 10.1016/S0927-7757(00)00556-2 10.1111/j.1151-2916.1993.tb03731.x 10.1063/1.1527894 10.1002/anie.201004287 10.1143/JJAP.46.4233 10.1016/j.jcou.2014.09.001 10.1016/S0926-860X(96)00267-0 10.1103/PhysRevB.54.11169 10.1016/j.jcat.2014.06.002 10.1021/jp061559+ 10.1007/s11244-013-0148-5 10.1021/cs501610a 10.1016/j.fuproc.2012.04.003 10.1021/jp7099702 10.1021/jp206065y 10.1016/j.jcat.2009.01.017 10.1023/A:1023571819211 10.1063/1.1329672 10.1016/0039-6028(77)90163-7 10.1016/S0167-5729(02)00100-0 10.1103/PhysRevE.58.2598 10.1126/science.1253057 10.1021/jp104068k 10.1039/c3cp50645b 10.1002/cssc.201402645 10.1039/C5NR00092K 10.1021/j100398a043 10.1016/0920-5861(91)80077-M 10.1039/c3ee41272e 10.1103/PhysRev.140.A1133 10.1021/ja9067645 10.1021/j100204a046 10.1126/science.259.5093.343 10.1021/jp208448c 10.1021/ja402072r 10.1021/cr4002758 10.1016/0927-0256(96)00008-0 10.1021/ja903013x 10.1016/j.jcat.2012.10.028 10.1103/PhysRevB.50.17953 10.1039/c3ee00056g 10.1016/j.cattod.2006.02.029 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. |
Copyright_xml | – notice: 2016 Elsevier Inc. |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) Brookhaven National Lab. (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) |
DBID | AAYXX CITATION 7S9 L.6 OIOZB OTOTI |
DOI | 10.1016/j.jcat.2015.12.019 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 126 |
ExternalDocumentID | 1341672 4227665581 10_1016_j_jcat_2015_12_019 S0021951715004121 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS 7S9 L.6 OIOZB OTOTI |
ID | FETCH-LOGICAL-c3849-ecefcf75f40cb0f6479d4a40f25f3fa4639436e70fdf951a36d0371ebe89ed723 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Mon Jun 16 03:26:49 EDT 2025 Fri Jul 11 13:08:36 EDT 2025 Mon Jul 14 08:15:28 EDT 2025 Tue Jul 01 03:14:01 EDT 2025 Thu Apr 24 23:06:12 EDT 2025 Fri Feb 23 02:26:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Activity Selectivity DFT Kinetics Platinum CO2 activation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3849-ecefcf75f40cb0f6479d4a40f25f3fa4639436e70fdf951a36d0371ebe89ed723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) BNL--113400-2017-JA SC0012704; AC02-05CH11231; AC05-00OR22725 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1341672 |
PQID | 1832216177 |
PQPubID | 32080 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1341672 proquest_miscellaneous_2131889798 proquest_journals_1832216177 crossref_citationtrail_10_1016_j_jcat_2015_12_019 crossref_primary_10_1016_j_jcat_2015_12_019 elsevier_sciencedirect_doi_10_1016_j_jcat_2015_12_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | San Diego |
PublicationPlace_xml | – name: San Diego – name: United States |
PublicationTitle | Journal of catalysis |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
References | Studt, Behrens, Kunkes, Thomas, Zander, Tarasov, Schumann, Frei, Varley, Abild-Pedersen, Norskov, Schlogl (b0015) 2015; 7 Song (b0070) 2006; 115 Phatak, Koryabkina, Rai, Ratts, Ruettinger, Farrauto, Blau, Delgass, Ribeiro (b0155) 2007; 123 Dorner, Hardy, Williams, Willauer (b0045) 2010; 3 Hirunsit, Soodsawang, Limtrakul (b0315) 2015; 119 Grabow, Gokhale, Evans, Dumesic, Mavrikakis (b0150) 2008; 112 Arasa, Gamallo, Sayos (b0295) 2005; 109 Choi, Liu (b0345) 2009; 131 Kondratenko, Mul, Baltrusaitis, Larrazabal, Perez-Ramirez (b0040) 2013; 6 Dhar, Cavallotti (b0220) 2014; 118 Nilekar, Alayoglu, Eichhorn, Mavrikakis (b0195) 2010; 132 Psofogiannakis, St-Amant, Ternan (b0175) 2006; 110 Senanayake, Rodriguez, Stacchiola (b0225) 2013; 56 Nie, Esopi, Janik, Asthagiri (b0090) 2013; 52 Yang, Mims, Disselkamp, Mei, Kwak, Szanyi, Peden, Campbell (b0100) 2008; 125 Yang, Evans, Rodriguez, White, Liu (b0110) 2010; 12 Henkelman, Uberuaga, Jonsson (b0285) 2000; 113 Hohenberg, Kohn (b0240) 1964; 136 Centi, Quadrelli, Perathoner (b0060) 2013; 6 Tang, Hong, Liu (b0305) 2009; 263 Bilal, Jackson (b0140) 2013; 3 Wallin, Grönbeck, Lloyd Spetz, Skoglundh (b0355) 2004; 235 Yang, Mims, Mei, Peden, Campbell (b0105) 2013; 298 Inui, Takeguchi (b0050) 1991; 10 Xu, Moulijn (b0075) 1996; 10 Kim, Park, Hong (b0120) 2013; 108 Kresse, Furthmuller (b0250) 1996; 6 Tang, Hong, Liu (b0380) 2009; 263 Goguet, Meunier, Tibiletti, Breen, Burch (b0210) 2004; 108 . Allian, Takanabe, Fujdala, Hao, Truex, Cai, Buda, Neurock, Iglesia (b0200) 2011; 133 Lukkien, Segers, Hilbers, Gelten, Jansen (b0290) 1998; 58 Diebold (b0370) 2003; 48 Duan, Henkelman (b0300) 2015; 5 Studt, Sharafutdinov, Abild-Pedersen, Elkjaer, Hummelshoj, Dahl, Chorkendorff, Norskov (b0020) 2014; 6 Kresse, Furthmuller (b0255) 1996; 54 Perdew, Wang (b0270) 1992; 45 An, Zhang, Alayoglu, Musselwhite, Shin, Somorjai (b0145) 2014; 14 Bruix, Rodriguez, Ramírez, Senanayake, Evans, Park, Stacchiola, Liu, Hrbek, Illas (b0235) 2012; 134 Zhang, Wang, Liu, Ling (b0390) 2011; 115 Grabow, Mavrikakis (b0085) 2011; 1 Wang, Inada, Wu, Zhu, Choi, Liu, Zhou, Adzic (b0275) 2009; 131 Sasaki, Naohara, Cai, Choi, Liu, Vukmirovic, Wang, Adzic (b0280) 2010; 49 Zhao, Yang, Mims, Peden, Li, Mei (b0310) 2011; 281 Jacobs, Davis (b0330) 2005; 284 Zhong, Vohs, Bonnell (b0365) 1993; 76 Marwood, Doepper, Renken (b0375) 1997; 151 Yang, White, Liu (b0115) 2012; 116 Tang, Zou, Huang, Wang, Duan (b0385) 2015; 17 Li, Chan, Sun (b0065) 2015; 7 Graciani, Mudiyanselage, Xu, Baber, Evans, Senanayake, Stacchiola, Liu, Hrbek, Sanz, Rodriguez (b0005) 2014; 345 Flaherty, Yu, Pozun, Henkelman, Mullins (b0160) 2011; 282 Mccabe, Mccready (b0185) 1986; 90 Shi, O’Grady, Peterson, Hansen, Norskov (b0215) 2013; 15 Aresta, Dibenedetto, Angelini (b0055) 2014; 114 Blochl (b0260) 1994; 50 Chen, Vlachos (b0180) 2012; 51 Hartadi, Widmann, Behm (b0035) 2015; 8 Alayoglu, Nilekar, Mavrikakis, Eichhorn (b0190) 2008; 7 Salvador, Garcia Gonzalez, Munoz (b0360) 1992; 96 Kondo, Sasaki, Yamamoto (b0170) 2003; 118 Upadhye, Ro, Zeng, Kim, Tejedor, Anderson, Dumesic, Huber (b0125) 2015; 5 Porosoff, Chen (b0010) 2013; 301 Behrens, Studt, Kasatkin, Kuhl, Havecker, Abild-Pedersen, Zander, Girgsdies, Kurr, Kniep, Tovar, Fischer, Norskov, Schlogl (b0025) 2012; 336 Yang, Xu, Fan, Gupta, Slimane, Bland, Wright (b0030) 2008; 20 Hickman, Schmidt (b0165) 1993; 259 Iwasa, Takezawa (b0135) 2003; 22 Arboleda, Hideaki, Wilson, Hiroshi (b0325) 2007; 46 Ruiz, Cillero, Martinez, Morales, San Vicente, de Diego, Sanchez (b0230) 2014; 8 Meunier, Tibiletti, Goguet, Shekhtman, Hardacre, Burch (b0335) 2007; 126 Collins, Spicer (b0320) 1977; 69 Yang, Mims, Disselkamp, Kwak, Peden, Campbell (b0095) 2010; 114 Kresse, Joubert (b0265) 1999; 59 Zhuravlev (b0350) 2000; 173 Ye, Liu, Mei, Ge (b0080) 2014; 317 Suntivich, Xu, Carlton, Kim, Han, Lee, Bonnet, Marzari, Allard, Gasteiger, Hamad-Schifferli, Shao-Horn (b0205) 2013; 135 Kohn, Sham (b0245) 1965; 140 Kaiser, Unde, Kern, Jess (b0130) 2013; 85 Kaiser (10.1016/j.jcat.2015.12.019_b0130) 2013; 85 Kondo (10.1016/j.jcat.2015.12.019_b0170) 2003; 118 Hohenberg (10.1016/j.jcat.2015.12.019_b0240) 1964; 136 Kohn (10.1016/j.jcat.2015.12.019_b0245) 1965; 140 Arboleda (10.1016/j.jcat.2015.12.019_b0325) 2007; 46 Studt (10.1016/j.jcat.2015.12.019_b0015) 2015; 7 Iwasa (10.1016/j.jcat.2015.12.019_b0135) 2003; 22 Dorner (10.1016/j.jcat.2015.12.019_b0045) 2010; 3 Kresse (10.1016/j.jcat.2015.12.019_b0255) 1996; 54 Suntivich (10.1016/j.jcat.2015.12.019_b0205) 2013; 135 Collins (10.1016/j.jcat.2015.12.019_b0320) 1977; 69 Hickman (10.1016/j.jcat.2015.12.019_b0165) 1993; 259 Meunier (10.1016/j.jcat.2015.12.019_b0335) 2007; 126 Upadhye (10.1016/j.jcat.2015.12.019_b0125) 2015; 5 Kresse (10.1016/j.jcat.2015.12.019_b0265) 1999; 59 Ye (10.1016/j.jcat.2015.12.019_b0080) 2014; 317 Yang (10.1016/j.jcat.2015.12.019_b0095) 2010; 114 Li (10.1016/j.jcat.2015.12.019_b0065) 2015; 7 Aresta (10.1016/j.jcat.2015.12.019_b0055) 2014; 114 Perdew (10.1016/j.jcat.2015.12.019_b0270) 1992; 45 Arasa (10.1016/j.jcat.2015.12.019_b0295) 2005; 109 Zhong (10.1016/j.jcat.2015.12.019_b0365) 1993; 76 Behrens (10.1016/j.jcat.2015.12.019_b0025) 2012; 336 Diebold (10.1016/j.jcat.2015.12.019_b0370) 2003; 48 Blochl (10.1016/j.jcat.2015.12.019_b0260) 1994; 50 Allian (10.1016/j.jcat.2015.12.019_b0200) 2011; 133 Sasaki (10.1016/j.jcat.2015.12.019_b0280) 2010; 49 Salvador (10.1016/j.jcat.2015.12.019_b0360) 1992; 96 Flaherty (10.1016/j.jcat.2015.12.019_b0160) 2011; 282 Senanayake (10.1016/j.jcat.2015.12.019_b0225) 2013; 56 Centi (10.1016/j.jcat.2015.12.019_b0060) 2013; 6 Zhao (10.1016/j.jcat.2015.12.019_b0310) 2011; 281 Nie (10.1016/j.jcat.2015.12.019_b0090) 2013; 52 Ruiz (10.1016/j.jcat.2015.12.019_b0230) 2014; 8 10.1016/j.jcat.2015.12.019_b0340 Duan (10.1016/j.jcat.2015.12.019_b0300) 2015; 5 Mccabe (10.1016/j.jcat.2015.12.019_b0185) 1986; 90 Marwood (10.1016/j.jcat.2015.12.019_b0375) 1997; 151 Wang (10.1016/j.jcat.2015.12.019_b0275) 2009; 131 Yang (10.1016/j.jcat.2015.12.019_b0115) 2012; 116 Lukkien (10.1016/j.jcat.2015.12.019_b0290) 1998; 58 Zhuravlev (10.1016/j.jcat.2015.12.019_b0350) 2000; 173 Kondratenko (10.1016/j.jcat.2015.12.019_b0040) 2013; 6 Grabow (10.1016/j.jcat.2015.12.019_b0150) 2008; 112 Tang (10.1016/j.jcat.2015.12.019_b0305) 2009; 263 Yang (10.1016/j.jcat.2015.12.019_b0110) 2010; 12 Phatak (10.1016/j.jcat.2015.12.019_b0155) 2007; 123 An (10.1016/j.jcat.2015.12.019_b0145) 2014; 14 Studt (10.1016/j.jcat.2015.12.019_b0020) 2014; 6 Song (10.1016/j.jcat.2015.12.019_b0070) 2006; 115 Xu (10.1016/j.jcat.2015.12.019_b0075) 1996; 10 Chen (10.1016/j.jcat.2015.12.019_b0180) 2012; 51 Tang (10.1016/j.jcat.2015.12.019_b0385) 2015; 17 Shi (10.1016/j.jcat.2015.12.019_b0215) 2013; 15 Choi (10.1016/j.jcat.2015.12.019_b0345) 2009; 131 Grabow (10.1016/j.jcat.2015.12.019_b0085) 2011; 1 Hirunsit (10.1016/j.jcat.2015.12.019_b0315) 2015; 119 Zhang (10.1016/j.jcat.2015.12.019_b0390) 2011; 115 Porosoff (10.1016/j.jcat.2015.12.019_b0010) 2013; 301 Inui (10.1016/j.jcat.2015.12.019_b0050) 1991; 10 Yang (10.1016/j.jcat.2015.12.019_b0100) 2008; 125 Yang (10.1016/j.jcat.2015.12.019_b0105) 2013; 298 Wallin (10.1016/j.jcat.2015.12.019_b0355) 2004; 235 Nilekar (10.1016/j.jcat.2015.12.019_b0195) 2010; 132 Tang (10.1016/j.jcat.2015.12.019_b0380) 2009; 263 Hartadi (10.1016/j.jcat.2015.12.019_b0035) 2015; 8 Kresse (10.1016/j.jcat.2015.12.019_b0250) 1996; 6 Graciani (10.1016/j.jcat.2015.12.019_b0005) 2014; 345 Alayoglu (10.1016/j.jcat.2015.12.019_b0190) 2008; 7 Kim (10.1016/j.jcat.2015.12.019_b0120) 2013; 108 Henkelman (10.1016/j.jcat.2015.12.019_b0285) 2000; 113 Bilal (10.1016/j.jcat.2015.12.019_b0140) 2013; 3 Psofogiannakis (10.1016/j.jcat.2015.12.019_b0175) 2006; 110 Bruix (10.1016/j.jcat.2015.12.019_b0235) 2012; 134 Jacobs (10.1016/j.jcat.2015.12.019_b0330) 2005; 284 Yang (10.1016/j.jcat.2015.12.019_b0030) 2008; 20 Goguet (10.1016/j.jcat.2015.12.019_b0210) 2004; 108 Dhar (10.1016/j.jcat.2015.12.019_b0220) 2014; 118 |
References_xml | – volume: 116 start-page: 248 year: 2012 end-page: 256 ident: b0115 article-title: Theoretical study of methanol synthesis from co publication-title: J. Phys. Chem. C – volume: 151 start-page: 223 year: 1997 end-page: 246 ident: b0375 article-title: In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO publication-title: Appl. Catal. A – volume: 17 start-page: 7317 year: 2015 end-page: 7333 ident: b0385 article-title: Effect of the components’ interface on the synthesis of methanol over Cu/ZnO from CO publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 7114 year: 2013 end-page: 7122 ident: b0215 article-title: Modeling CO publication-title: Phys. Chem. Chem. Phys. – volume: 336 start-page: 893 year: 2012 end-page: 897 ident: b0025 article-title: The active site of methanol synthesis over Cu/ZnO/Al publication-title: Science – volume: 123 start-page: 224 year: 2007 end-page: 234 ident: b0155 article-title: Kinetics of the water–gas shift reaction on Pt catalysts supported on alumina and ceria publication-title: Catal. Today – volume: 235 start-page: 487 year: 2004 end-page: 500 ident: b0355 article-title: Vibrational study of ammonia adsorption on Pt/SiO publication-title: Appl. Surf. Sci. – volume: 110 start-page: 24593 year: 2006 end-page: 24605 ident: b0175 article-title: Methane oxidation mechanism on Pt(111): a cluster model DFT study publication-title: J. Phys. Chem. B – volume: 12 start-page: 9909 year: 2010 end-page: 9917 ident: b0110 article-title: Fundamental studies of methanol synthesis from CO publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 333 year: 2008 end-page: 338 ident: b0190 article-title: Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen publication-title: Nat. Mater. – volume: 46 start-page: 4233 year: 2007 ident: b0325 article-title: Potential energy of H publication-title: Jpn. J. Appl. Phys. – volume: 6 start-page: 320 year: 2014 end-page: 324 ident: b0020 article-title: Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol publication-title: Nat. Chem. – volume: 298 start-page: 10 year: 2013 end-page: 17 ident: b0105 article-title: Mechanistic studies of methanol synthesis over Cu from CO/CO publication-title: J. Catal. – volume: 3 start-page: 754 year: 2013 end-page: 766 ident: b0140 article-title: Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation publication-title: Catal. Sci. Technol. – volume: 132 start-page: 7418 year: 2010 end-page: 7428 ident: b0195 article-title: Preferential CO oxidation in hydrogen: reactivity of core–shell nanoparticles publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 8238 year: 2015 end-page: 8249 ident: b0315 article-title: CO publication-title: J. Phys. Chem. C – volume: 52 start-page: 2459 year: 2013 end-page: 2462 ident: b0090 article-title: Selectivity of CO publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 4498 year: 2011 end-page: 4517 ident: b0200 article-title: Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: b0260 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 126 start-page: 143 year: 2007 end-page: 147 ident: b0335 article-title: On the complexity of the water–gas shift reaction mechanism over a Pt/CeO publication-title: Catal. Today – volume: 115 start-page: 2 year: 2006 end-page: 32 ident: b0070 article-title: Global challenges and strategies for control, conversion and utilization of CO publication-title: Catal. Today – volume: 263 start-page: 114 year: 2009 end-page: 122 ident: b0380 article-title: CO publication-title: J. Catal. – volume: 112 start-page: 4608 year: 2008 end-page: 4617 ident: b0150 article-title: Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling publication-title: J. Phys. Chem. C – volume: 284 start-page: 31 year: 2005 end-page: 38 ident: b0330 article-title: Reverse water–gas shift reaction: steady state isotope switching study of the reverse water–gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst publication-title: Appl. Catal. A – volume: 85 start-page: 489 year: 2013 end-page: 499 ident: b0130 article-title: Production of liquid hydrocarbons with CO publication-title: Chem.-Ing.-Tech. – volume: 8 start-page: 1 year: 2014 end-page: 20 ident: b0230 article-title: Bench-scale study of electrochemically assisted catalytic CO publication-title: J. CO – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: b0250 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 282 start-page: 278 year: 2011 end-page: 288 ident: b0160 article-title: Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation publication-title: J. Catal. – volume: 345 start-page: 546 year: 2014 end-page: 550 ident: b0005 article-title: Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO publication-title: Science – volume: 7 start-page: 1105 year: 2015 end-page: 1111 ident: b0015 article-title: The mechanism of CO and CO publication-title: Chemcatchem – volume: 6 start-page: 1711 year: 2013 end-page: 1731 ident: b0060 article-title: Catalysis for CO publication-title: Energy Environ. Sci. – volume: 131 start-page: 13054 year: 2009 end-page: 13061 ident: b0345 article-title: Mechanism of ethanol synthesis from syngas on Rh(111) publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: b0285 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. – volume: 20 start-page: 14 year: 2008 end-page: 27 ident: b0030 article-title: Progress in carbon dioxide separation and capture: a review publication-title: J. Environ. Sci. – China – volume: 135 start-page: 7985 year: 2013 end-page: 7991 ident: b0205 article-title: Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 17298 year: 2009 end-page: 17302 ident: b0275 article-title: Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 14954 year: 2005 end-page: 14964 ident: b0295 article-title: Adsorption of atomic oxygen and nitrogen at beta-cristobalite(100): a density functional theory study publication-title: J. Phys. Chem. B – volume: 8 start-page: 456 year: 2015 end-page: 465 ident: b0035 article-title: CO publication-title: Chemsuschem – volume: 10 start-page: 95 year: 1991 end-page: 106 ident: b0050 article-title: Effective conversion of carbon dioxide and hydrogen to hydrocarbons publication-title: Catal. Today – volume: 263 start-page: 114 year: 2009 end-page: 122 ident: b0305 article-title: CO publication-title: J. Catal. – volume: 6 start-page: 3112 year: 2013 end-page: 3135 ident: b0040 article-title: Status and perspectives of CO publication-title: Energy Environ. Sci. – volume: 301 start-page: 30 year: 2013 end-page: 37 ident: b0010 article-title: Trends in the catalytic reduction of CO publication-title: J. Catal. – volume: 108 start-page: 20240 year: 2004 end-page: 20246 ident: b0210 article-title: Spectrokinetic investigation of reverse water–gas-shift reaction intermediates over a Pt/CeO publication-title: J. Phys. Chem. B – volume: 51 start-page: 12244 year: 2012 end-page: 12252 ident: b0180 article-title: Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211) publication-title: Ind. Eng. Chem. Res. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0265 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 96 start-page: 10349 year: 1992 end-page: 10353 ident: b0360 article-title: Catalytic role of lattice defects in the photoassisted oxidation of water at (001) publication-title: J. Phys. Chem. – volume: 118 start-page: 760 year: 2003 end-page: 767 ident: b0170 article-title: Molecular beam study of CH publication-title: J. Chem. Phys. – volume: 5 start-page: 1589 year: 2015 end-page: 1595 ident: b0300 article-title: CO oxidation at the Au/TiO publication-title: ACS Catal. – volume: 134 start-page: 8968 year: 2012 end-page: 8974 ident: b0235 article-title: A new type of strong metal–support interaction and the production of H publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 8676 year: 2014 end-page: 8688 ident: b0220 article-title: Investigation of the initial steps of the electrochemical reduction of CO publication-title: J. Phys. Chem. A – volume: 3 start-page: 884 year: 2010 end-page: 890 ident: b0045 article-title: Heterogeneous catalytic CO publication-title: Energy Environ. Sci. – volume: 56 start-page: 1488 year: 2013 end-page: 1498 ident: b0225 article-title: Electronic metal–support interactions and the production of hydrogen through the water–gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts publication-title: Top. Catal. – volume: 114 start-page: 1709 year: 2014 end-page: 1742 ident: b0055 article-title: Catalysis for the valorization of exhaust carbon: from CO publication-title: Chem. Rev. – volume: 114 start-page: 17205 year: 2010 end-page: 17211 ident: b0095 article-title: (Non)formation of methanol by direct hydrogenation of formate on copper catalysts publication-title: J. Phys. Chem. C – volume: 108 start-page: 47 year: 2013 end-page: 54 ident: b0120 article-title: A study of the selectivity of the reverse water gas-shift reaction over pt/TiO publication-title: Fuel Process. Technol. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: b0255 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 136 year: 1964 ident: b0240 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. B – volume: 58 start-page: 2598 year: 1998 end-page: 2610 ident: b0290 article-title: Efficient Monte Carlo methods for the simulation of catalytic surface reactions publication-title: Phys. Rev. E – volume: 45 start-page: 13244 year: 1992 end-page: 13249 ident: b0270 article-title: Accurate and simple analytic representation of the electron-gas correlation-energy publication-title: Phys. Rev. B – volume: 140 year: 1965 ident: b0245 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. – volume: 76 start-page: 1137 year: 1993 end-page: 1142 ident: b0365 article-title: Local structure of defects on hydrogen- and vacuum-reduced TiO publication-title: J. Am. Ceram. Soc. – volume: 317 start-page: 44 year: 2014 end-page: 53 ident: b0080 article-title: Methanol synthesis from CO publication-title: J. Catal. – volume: 5 start-page: 2590 year: 2015 end-page: 2601 ident: b0125 article-title: Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts publication-title: Catal. Sci. Technol. – volume: 14 start-page: 4907 year: 2014 end-page: 4912 ident: b0145 article-title: High-temperature catalytic reforming of publication-title: Nano Lett. – reference: . – volume: 1 start-page: 365 year: 2011 end-page: 384 ident: b0085 article-title: Mechanism of methanol synthesis on Cu through CO publication-title: ACS Catal. – volume: 259 start-page: 343 year: 1993 end-page: 346 ident: b0165 article-title: Production of syngas by direct catalytic-oxidation of methane publication-title: Science – volume: 10 start-page: 305 year: 1996 end-page: 325 ident: b0075 article-title: Mitigation of CO publication-title: Energy Fuels – volume: 173 start-page: 1 year: 2000 end-page: 38 ident: b0350 article-title: The surface chemistry of amorphous silica. Zhuravlev model publication-title: Colloids Surf. A: Physicochem. Eng. Aspects – volume: 48 start-page: 53 year: 2003 end-page: 229 ident: b0370 article-title: The surface science of titanium dioxide publication-title: Surf. Sci. Rep. – volume: 7 start-page: 8663 year: 2015 end-page: 8683 ident: b0065 article-title: Heterogeneous catalytic conversion of CO publication-title: Nanoscale – volume: 69 start-page: 85 year: 1977 end-page: 113 ident: b0320 article-title: The adsorption of CO, O publication-title: Surf. Sci. – volume: 125 start-page: 201 year: 2008 end-page: 208 ident: b0100 article-title: Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO publication-title: Catal. Lett. – volume: 90 start-page: 1428 year: 1986 end-page: 1435 ident: b0185 article-title: Kinetics and reaction pathways of methanol oxidation on platinum publication-title: J. Phys. Chem. – Us – volume: 49 start-page: 8602 year: 2010 end-page: 8607 ident: b0280 article-title: Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes publication-title: Angew. Chem. Int. Ed. – volume: 281 start-page: 199 year: 2011 end-page: 211 ident: b0310 article-title: Insight into methanol synthesis from CO publication-title: J. Catal. – volume: 115 start-page: 19811 year: 2011 end-page: 19818 ident: b0390 article-title: Effect of surface hydroxyls on CO publication-title: J. Phys. Chem. C – volume: 22 start-page: 215 year: 2003 end-page: 224 ident: b0135 article-title: New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol publication-title: Top. Catal. – volume: 132 start-page: 7418 year: 2010 ident: 10.1016/j.jcat.2015.12.019_b0195 article-title: Preferential CO oxidation in hydrogen: reactivity of core–shell nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101108w – volume: 108 start-page: 20240 year: 2004 ident: 10.1016/j.jcat.2015.12.019_b0210 article-title: Spectrokinetic investigation of reverse water–gas-shift reaction intermediates over a Pt/CeO2 catalyst publication-title: J. Phys. Chem. B doi: 10.1021/jp047242w – volume: 134 start-page: 8968 year: 2012 ident: 10.1016/j.jcat.2015.12.019_b0235 article-title: A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302070k – volume: 123 start-page: 224 year: 2007 ident: 10.1016/j.jcat.2015.12.019_b0155 article-title: Kinetics of the water–gas shift reaction on Pt catalysts supported on alumina and ceria publication-title: Catal. Today doi: 10.1016/j.cattod.2007.02.031 – volume: 336 start-page: 893 year: 2012 ident: 10.1016/j.jcat.2015.12.019_b0025 article-title: The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts publication-title: Science doi: 10.1126/science.1219831 – volume: 282 start-page: 278 year: 2011 ident: 10.1016/j.jcat.2015.12.019_b0160 article-title: Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation publication-title: J. Catal. doi: 10.1016/j.jcat.2011.06.024 – volume: 7 start-page: 1105 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0015 article-title: The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts publication-title: Chemcatchem doi: 10.1002/cctc.201500123 – volume: 1 start-page: 365 year: 2011 ident: 10.1016/j.jcat.2015.12.019_b0085 article-title: Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation publication-title: ACS Catal. doi: 10.1021/cs200055d – volume: 3 start-page: 754 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0140 article-title: Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation publication-title: Catal. Sci. Technol. doi: 10.1039/C2CY20703F – volume: 3 start-page: 884 year: 2010 ident: 10.1016/j.jcat.2015.12.019_b0045 article-title: Heterogeneous catalytic CO2 conversion to value-added hydrocarbons publication-title: Energy Environ. Sci. doi: 10.1039/c001514h – volume: 119 start-page: 8238 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0315 article-title: CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01574 – volume: 51 start-page: 12244 year: 2012 ident: 10.1016/j.jcat.2015.12.019_b0180 article-title: Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211) publication-title: Ind. Eng. Chem. Res. – volume: 17 start-page: 7317 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0385 article-title: Effect of the components’ interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT+U calculations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05518G – volume: 20 start-page: 14 year: 2008 ident: 10.1016/j.jcat.2015.12.019_b0030 article-title: Progress in carbon dioxide separation and capture: a review publication-title: J. Environ. Sci. – China doi: 10.1016/S1001-0742(08)60002-9 – volume: 281 start-page: 199 year: 2011 ident: 10.1016/j.jcat.2015.12.019_b0310 article-title: Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O publication-title: J. Catal. doi: 10.1016/j.jcat.2011.04.012 – volume: 301 start-page: 30 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0010 article-title: Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2013.01.022 – volume: 14 start-page: 4907 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0145 article-title: High-temperature catalytic reforming of n-hexane over supported and core–shell Pt nanoparticle catalysts: role of oxide–metal interface and thermal stability publication-title: Nano Lett. doi: 10.1021/nl502434m – volume: 10 start-page: 305 year: 1996 ident: 10.1016/j.jcat.2015.12.019_b0075 article-title: Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products publication-title: Energy Fuels doi: 10.1021/ef9501511 – volume: 52 start-page: 2459 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0090 article-title: Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201208320 – volume: 45 start-page: 13244 year: 1992 ident: 10.1016/j.jcat.2015.12.019_b0270 article-title: Accurate and simple analytic representation of the electron-gas correlation-energy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 136 year: 1964 ident: 10.1016/j.jcat.2015.12.019_b0240 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B864 – volume: 6 start-page: 320 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0020 article-title: Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol publication-title: Nat. Chem. doi: 10.1038/nchem.1873 – volume: 7 start-page: 333 year: 2008 ident: 10.1016/j.jcat.2015.12.019_b0190 article-title: Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen publication-title: Nat. Mater. doi: 10.1038/nmat2156 – volume: 133 start-page: 4498 year: 2011 ident: 10.1016/j.jcat.2015.12.019_b0200 article-title: Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110073u – volume: 85 start-page: 489 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0130 article-title: Production of liquid hydrocarbons with CO2 as carbon source based on reverse water–gas shift and Fischer–Tropsch synthesis publication-title: Chem.-Ing.-Tech. doi: 10.1002/cite.201200179 – volume: 118 start-page: 8676 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0220 article-title: Investigation of the initial steps of the electrochemical reduction of CO2 on Pt electrodes publication-title: J. Phys. Chem. A doi: 10.1021/jp505347k – volume: 235 start-page: 487 year: 2004 ident: 10.1016/j.jcat.2015.12.019_b0355 article-title: Vibrational study of ammonia adsorption on Pt/SiO2 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.03.225 – volume: 125 start-page: 201 year: 2008 ident: 10.1016/j.jcat.2015.12.019_b0100 article-title: Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO2 catalyst publication-title: Catal. Lett. doi: 10.1007/s10562-008-9592-4 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.jcat.2015.12.019_b0265 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 284 start-page: 31 year: 2005 ident: 10.1016/j.jcat.2015.12.019_b0330 article-title: Reverse water–gas shift reaction: steady state isotope switching study of the reverse water–gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.01.013 – volume: 12 start-page: 9909 year: 2010 ident: 10.1016/j.jcat.2015.12.019_b0110 article-title: Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000(1)over-bar) publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c001484b – ident: 10.1016/j.jcat.2015.12.019_b0340 – volume: 5 start-page: 2590 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0125 article-title: Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY01183J – volume: 126 start-page: 143 year: 2007 ident: 10.1016/j.jcat.2015.12.019_b0335 article-title: On the complexity of the water–gas shift reaction mechanism over a Pt/CeO2 catalyst: effect of the temperature on the reactivity of formate surface species studied by operando DRIFT during isotopic transient at chemical steady-state publication-title: Catal. Today doi: 10.1016/j.cattod.2006.10.003 – volume: 109 start-page: 14954 year: 2005 ident: 10.1016/j.jcat.2015.12.019_b0295 article-title: Adsorption of atomic oxygen and nitrogen at beta-cristobalite(100): a density functional theory study publication-title: J. Phys. Chem. B doi: 10.1021/jp044064y – volume: 173 start-page: 1 year: 2000 ident: 10.1016/j.jcat.2015.12.019_b0350 article-title: The surface chemistry of amorphous silica. Zhuravlev model publication-title: Colloids Surf. A: Physicochem. Eng. Aspects doi: 10.1016/S0927-7757(00)00556-2 – volume: 76 start-page: 1137 year: 1993 ident: 10.1016/j.jcat.2015.12.019_b0365 article-title: Local structure of defects on hydrogen- and vacuum-reduced TiO2 surfaces publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1993.tb03731.x – volume: 118 start-page: 760 year: 2003 ident: 10.1016/j.jcat.2015.12.019_b0170 article-title: Molecular beam study of CH4 oxidation on a Pt(111)-(2×2)-O surface publication-title: J. Chem. Phys. doi: 10.1063/1.1527894 – volume: 49 start-page: 8602 year: 2010 ident: 10.1016/j.jcat.2015.12.019_b0280 article-title: Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201004287 – volume: 46 start-page: 4233 year: 2007 ident: 10.1016/j.jcat.2015.12.019_b0325 article-title: Potential energy of H2 dissociation and adsorption on Pt(111) surface: first-principles calculation publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.4233 – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0230 article-title: Bench-scale study of electrochemically assisted catalytic CO2 hydrogenation to hydrocarbon fuels on Pt, Ni and Pd films deposited on YSZ publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2014.09.001 – volume: 151 start-page: 223 year: 1997 ident: 10.1016/j.jcat.2015.12.019_b0375 article-title: In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(96)00267-0 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcat.2015.12.019_b0255 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 317 start-page: 44 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0080 article-title: Methanol synthesis from CO2 hydrogenation over a Pd-4/In2O3 model catalyst: a combined DFT and kinetic study publication-title: J. Catal. doi: 10.1016/j.jcat.2014.06.002 – volume: 110 start-page: 24593 year: 2006 ident: 10.1016/j.jcat.2015.12.019_b0175 article-title: Methane oxidation mechanism on Pt(111): a cluster model DFT study publication-title: J. Phys. Chem. B doi: 10.1021/jp061559+ – volume: 56 start-page: 1488 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0225 article-title: Electronic metal–support interactions and the production of hydrogen through the water–gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts publication-title: Top. Catal. doi: 10.1007/s11244-013-0148-5 – volume: 5 start-page: 1589 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0300 article-title: CO oxidation at the Au/TiO2 boundary: the role of the Au/Ti-5c site publication-title: ACS Catal. doi: 10.1021/cs501610a – volume: 108 start-page: 47 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0120 article-title: A study of the selectivity of the reverse water gas-shift reaction over pt/TiO2 catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2012.04.003 – volume: 112 start-page: 4608 year: 2008 ident: 10.1016/j.jcat.2015.12.019_b0150 article-title: Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling publication-title: J. Phys. Chem. C doi: 10.1021/jp7099702 – volume: 115 start-page: 19811 year: 2011 ident: 10.1016/j.jcat.2015.12.019_b0390 article-title: Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study publication-title: J. Phys. Chem. C doi: 10.1021/jp206065y – volume: 263 start-page: 114 year: 2009 ident: 10.1016/j.jcat.2015.12.019_b0380 article-title: CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo publication-title: J. Catal. doi: 10.1016/j.jcat.2009.01.017 – volume: 22 start-page: 215 year: 2003 ident: 10.1016/j.jcat.2015.12.019_b0135 article-title: New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol publication-title: Top. Catal. doi: 10.1023/A:1023571819211 – volume: 113 start-page: 9901 year: 2000 ident: 10.1016/j.jcat.2015.12.019_b0285 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 69 start-page: 85 year: 1977 ident: 10.1016/j.jcat.2015.12.019_b0320 article-title: The adsorption of CO, O2, and H2 on Pt: I. Thermal desorption spectroscopy studies publication-title: Surf. Sci. doi: 10.1016/0039-6028(77)90163-7 – volume: 48 start-page: 53 year: 2003 ident: 10.1016/j.jcat.2015.12.019_b0370 article-title: The surface science of titanium dioxide publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(02)00100-0 – volume: 58 start-page: 2598 year: 1998 ident: 10.1016/j.jcat.2015.12.019_b0290 article-title: Efficient Monte Carlo methods for the simulation of catalytic surface reactions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.2598 – volume: 345 start-page: 546 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0005 article-title: Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2 publication-title: Science doi: 10.1126/science.1253057 – volume: 263 start-page: 114 year: 2009 ident: 10.1016/j.jcat.2015.12.019_b0305 article-title: CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo publication-title: J. Catal. doi: 10.1016/j.jcat.2009.01.017 – volume: 114 start-page: 17205 year: 2010 ident: 10.1016/j.jcat.2015.12.019_b0095 article-title: (Non)formation of methanol by direct hydrogenation of formate on copper catalysts publication-title: J. Phys. Chem. C doi: 10.1021/jp104068k – volume: 15 start-page: 7114 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0215 article-title: Modeling CO2 reduction on Pt(111) publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50645b – volume: 8 start-page: 456 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0035 article-title: CO2 hydrogenation to methanol on supported au catalysts under moderate reaction conditions: support and particle size effects publication-title: Chemsuschem doi: 10.1002/cssc.201402645 – volume: 7 start-page: 8663 year: 2015 ident: 10.1016/j.jcat.2015.12.019_b0065 article-title: Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review publication-title: Nanoscale doi: 10.1039/C5NR00092K – volume: 90 start-page: 1428 year: 1986 ident: 10.1016/j.jcat.2015.12.019_b0185 article-title: Kinetics and reaction pathways of methanol oxidation on platinum publication-title: J. Phys. Chem. – Us doi: 10.1021/j100398a043 – volume: 10 start-page: 95 year: 1991 ident: 10.1016/j.jcat.2015.12.019_b0050 article-title: Effective conversion of carbon dioxide and hydrogen to hydrocarbons publication-title: Catal. Today doi: 10.1016/0920-5861(91)80077-M – volume: 6 start-page: 3112 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0040 article-title: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41272e – volume: 140 year: 1965 ident: 10.1016/j.jcat.2015.12.019_b0245 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 131 start-page: 17298 year: 2009 ident: 10.1016/j.jcat.2015.12.019_b0275 article-title: Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9067645 – volume: 96 start-page: 10349 year: 1992 ident: 10.1016/j.jcat.2015.12.019_b0360 article-title: Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile publication-title: J. Phys. Chem. doi: 10.1021/j100204a046 – volume: 259 start-page: 343 year: 1993 ident: 10.1016/j.jcat.2015.12.019_b0165 article-title: Production of syngas by direct catalytic-oxidation of methane publication-title: Science doi: 10.1126/science.259.5093.343 – volume: 116 start-page: 248 year: 2012 ident: 10.1016/j.jcat.2015.12.019_b0115 article-title: Theoretical study of methanol synthesis from co2 hydrogenation on metal-doped Cu(111) surfaces publication-title: J. Phys. Chem. C doi: 10.1021/jp208448c – volume: 135 start-page: 7985 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0205 article-title: Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402072r – volume: 114 start-page: 1709 year: 2014 ident: 10.1016/j.jcat.2015.12.019_b0055 article-title: Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 publication-title: Chem. Rev. doi: 10.1021/cr4002758 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.jcat.2015.12.019_b0250 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 131 start-page: 13054 year: 2009 ident: 10.1016/j.jcat.2015.12.019_b0345 article-title: Mechanism of ethanol synthesis from syngas on Rh(111) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903013x – volume: 298 start-page: 10 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0105 article-title: Mechanistic studies of methanol synthesis over Cu from CO/CO2/H-2/H2O mixtures: the source of C in methanol and the role of water publication-title: J. Catal. doi: 10.1016/j.jcat.2012.10.028 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.jcat.2015.12.019_b0260 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 6 start-page: 1711 year: 2013 ident: 10.1016/j.jcat.2015.12.019_b0060 article-title: Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00056g – volume: 115 start-page: 2 year: 2006 ident: 10.1016/j.jcat.2015.12.019_b0070 article-title: Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing publication-title: Catal. Today doi: 10.1016/j.cattod.2006.02.029 |
SSID | ssj0011558 |
Score | 2.6281419 |
Snippet | [Display omitted]
•CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway.•The overall conversion is low due to weak Pt–CO2 interaction.•Pt alone... Display Omitted * CO2 hydrogenation on Pt nanoparticle undergoes RWGS+CO-Hydro pathway. * The overall conversion is low due to weak Pt-CO2 interaction. * Pt... In the current study we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the... In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Activity Carbon dioxide carbon monoxide catalysts chemical bonding cleavage (chemistry) CO2 activation Density density functional theory DFT energy hydrogen hydrogenation Kinetics methane methanol nanoparticles Nitric oxide Platinum Selectivity silica titanium dioxide |
Title | CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support |
URI | https://dx.doi.org/10.1016/j.jcat.2015.12.019 https://www.proquest.com/docview/1832216177 https://www.proquest.com/docview/2131889798 https://www.osti.gov/servlets/purl/1341672 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LatwwcAibQ9tDSNOWbl6o0Fvrrh-yZecWloZNS9NCE8hNlfWgGxp7ye5Ccsm3Z0aWl4aEHAI22NYMFjPSzEiaB8BH4-i4hfNIUQwaVTmKSlcmkavKutDC1KkvNvHjpJic8W_n-fkajPtYGHKrDLK_k-leWocvo0DN0Ww6pRhfnG15ItCkoaRRPoKdCxrlX25Xbh5o8OSdNCZXBIQOgTOdj9cF7e6hCsz9liBl23lcOQ1anG8PpLVXQUebsBFsR3bYde81rNlmC16M-5JtW_Dqv-yCb-DP-GfK_t6YqxYHiWcAw-vX4jPeo99TbFSNoedTfD5gx5feFEcCsNax-Y0PCmTBjwvBPHR7PTWWzZczgn0LZ0dfT8eTKBRUiHRW8iqy2jrtRO54rOvYFVxUhiseuzR3mVMcrRWeFVbEzjiklcoKQxn9kM9lZY1Is3cwaNrGvgemkhptI67rWuECr7AKLbPYZtxkcarxJ0NIekpKHbKNU9GLf7J3K7uQRH1J1JdJKpH6Q_i0wpl1uTaehM57Bsl7I0aiMngSb4e4STiUJleTPxEiUWK7QqRD2O2ZLMNsnksv9mghKIbwYdWMvKXDFdXYdjmXaYLSsaxEVW4_s2M78BLfii7QcRcGi6ul3UOLZ1Hv-yG9D-uHx98nJ3dPlPz7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N3cPgAbEBomwMI_EGUfPhxAlvU7WpZVtBopP2Zhx_iE6QVGsrsf-eO8epmEB7QEqkKPYp0Z19d7bvfgfwzjg6buE8UpSDRlWOotKVSeSqsi60MHXqi01czorJFf90nV_vwLjPhaGwyqD7O53utXV4MwrcHC0XC8rxxdmWJwJdGgKNwiXQLqFT5QPYPZmeT2bbwwQ0mZ1CpmgEJAi5M12Y1w1t8KEVzP2uIAHu_Ns-DVqccn8pbG-Fzp7Ck-A-spPuD_dhxzYHsDfuq7YdwOM_AAafwbfx55R9vzO3LY4TLwOG15f1B7xHXxfYqBpDz3N8_simP703jjxgrWOrO58XyEIoF3bzvdtfC2PZarOkvs_h6ux0Pp5EoaZCpLOSV5HV1mkncsdjXceu4KIyXPHYpbnLnOLosPCssCJ2xiGvVFYYAvVDUZeVNSLNXsCgaRv7EphKanSPuK5rhWu8wip0zmKbcZPFqcaPDCHpOSl1ABynuhc_ZB9ZdiOJ-5K4L5NUIveH8H5Ls-zgNh7snfcCkvcGjUR78CDdIUmTaAgpV1NIERIRtl0h0iEc9UKWYUKvpNd8tBYUQ3i7bUbZ0vmKamy7Wck0QQVZVqIqX_3nj72Bvcn88kJeTGfnh_AIW4ou7_EIBuvbjX2NDtC6Pg4D_Df8uf-s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+hydrogenation+on+Pt%2C+Pt%2FSiO2+and+Pt%2FTiO2%3A+Importance+of+synergy+between+Pt+and+oxide+support&rft.jtitle=Journal+of+catalysis&rft.au=Kattel%2C+Shyam&rft.au=Yan%2C+Binhang&rft.au=Chen%2C+Jingguang+G&rft.au=Liu%2C+Ping&rft.date=2016-11-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=343&rft.spage=115&rft_id=info:doi/10.1016%2Fj.jcat.2015.12.019&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4227665581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |