Latent-variable models for longitudinal data with bivariate ordinal outcomes

We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a li...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 26; no. 5; pp. 1034 - 1054
Main Authors Todem, David, Kim, KyungMann, Lesaffre, Emmanuel
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 28.02.2007
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.2599

Cover

Abstract We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross‐sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject‐specific, but retain the population‐averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. Copyright © 2006 John Wiley & Sons, Ltd.
AbstractList We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. [PUBLICATION ABSTRACT]
We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology.
We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross‐sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject‐specific, but retain the population‐averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. Copyright © 2006 John Wiley & Sons, Ltd.
We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology.We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology.
Author Kim, KyungMann
Todem, David
Lesaffre, Emmanuel
Author_xml – sequence: 1
  givenname: David
  surname: Todem
  fullname: Todem, David
  email: todem@msu.edu
  organization: Department of Epidemiology, Division of Biostatistics, Michigan State University, B601 West Fee Hall, East Lansing, MI 48823, U.S.A
– sequence: 2
  givenname: KyungMann
  surname: Kim
  fullname: Kim, KyungMann
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, U.S.A
– sequence: 3
  givenname: Emmanuel
  surname: Lesaffre
  fullname: Lesaffre, Emmanuel
  organization: Biostatistical Centre, Katholieke Universiteit Leuven, Kapucijnenvoer 35, B-3000 Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16832841$$D View this record in MEDLINE/PubMed
BookMark eNp10ElLxDAUB_Agio4L-AmkeBAvHbO0TXrUwZVRwQWPIZO-ajRtNEldvr3VcUHR0zu83_vz-C-i2da1gNAqwUOCMd0KphnSvCxn0IDgkqeY5mIWDTDlPC04yRfQYgi3GBOSUz6PFkghGBUZGaDxWEVoY_qovFETC0njKrAhqZ1PrGuvTewq0yqbVCqq5MnEm2Ri3nGExPnpznVRuwbCMpqrlQ2w8jGX0OXe7sXoIB2f7h-OtsepZiIr00mtgIPIteC6FDgrRc046IIDxqKghGmcE0orBqIftaA4E0orDUWRV6TkbAltTHPvvXvoIETZmKDBWtWC64IsRB_LMevh-i946zrfvxwkpYxklLOyR2sfqJs0UMl7bxrlX-RnST3YnALtXQge6m-C5Vv_su9fvvXf0-Evqk1U0bg2emXsXwfp9ODJWHj5N1ieHx7_9CZEeP7yyt_JgjOey6uTfXmRifOdo7ORpOwV3r6j0g
CODEN SMEDDA
CitedBy_id crossref_primary_10_1007_s00184_009_0263_2
crossref_primary_10_1080_01621459_2014_917977
crossref_primary_10_1080_02664760903127605
crossref_primary_10_1890_09_1903_1
crossref_primary_10_1007_s11336_013_9367_8
crossref_primary_10_1007_s10260_010_0154_8
crossref_primary_10_1016_j_jbi_2024_104641
crossref_primary_10_1080_02664763_2014_957263
crossref_primary_10_1002_sim_8739
crossref_primary_10_1111_j_1541_0420_2007_00800_x
crossref_primary_10_1002_bimj_201700078
crossref_primary_10_1093_biostatistics_kxp042
crossref_primary_10_1093_biostatistics_kxs058
crossref_primary_10_1002_sim_8200
crossref_primary_10_1198_jasa_2009_0107
crossref_primary_10_1002_bimj_201900177
crossref_primary_10_1111_bmsp_12000
crossref_primary_10_1007_s10985_007_9057_x
crossref_primary_10_1002_sim_3352
crossref_primary_10_1080_02664763_2014_909790
crossref_primary_10_1007_s00180_020_01037_4
Cites_doi 10.1080/01621459.1995.10476493
10.1007/978-1-4419-0318-1
10.1002/sim.4780100907
10.1093/oso/9780198524847.001.0001
10.1080/01621459.1965.10480807
10.2307/2529107
10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3
10.2307/2530704
10.2307/2531734
10.1007/BF02293959
10.1097/00004850-199112003-00001
10.2307/2531158
10.1002/sim.4780131106
10.1080/01621459.1997.10473598
10.1080/01621459.1994.10476788
10.1093/biomet/63.3.581
10.1080/01621459.1994.10476474
10.1016/0169-2607(96)01720-8
10.1214/aoms/1177728725
10.1093/biomet/71.3.531
10.1080/01621459.1992.10475282
10.1080/01621459.1992.10475264
10.1080/01621459.1995.10476583
10.1093/biomet/75.1.57
10.1111/j.0006-341X.2003.00093.x
10.1111/j.0006-341X.1999.00085.x
10.1111/j.2517-6161.1995.tb02046.x
10.1002/(SICI)1097-0258(19960615)15:11<1123::AID-SIM228>3.0.CO;2-L
10.1002/sim.4780141207
10.2307/2685902
10.1002/(SICI)1097-0258(19960730)15:14<1507::AID-SIM316>3.0.CO;2-Z
10.2307/2533433
10.1093/biomet/84.1.33
10.2307/2286403
10.1093/biomet/73.1.13
ContentType Journal Article
Copyright Copyright © 2006 John Wiley & Sons, Ltd.
Copyright (c) 2006 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Feb 28, 2007
Copyright_xml – notice: Copyright © 2006 John Wiley & Sons, Ltd.
– notice: Copyright (c) 2006 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Feb 28, 2007
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.2599
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1054
ExternalDocumentID 1210790191
16832841
10_1002_sim_2599
SIM2599
ark_67375_WNG_T48SBJRC_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: IBC/ENAR
– fundername: NIDCR
  funderid: DE016618‐01
– fundername: Publishing Arts Research Council
  funderid: 98‐1846389
– fundername: Interuniversity Attraction Poles Program P5/24 – Belgian State – Federal Office for Scientific, Technical and Cultural Affairs
– fundername: University of Wisconsin‐Madison
– fundername: NIDCR NIH HHS
  grantid: DE016618-01
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3849-bfae7e85c87c980498f37ec67e0086213c05122d3e8122f82048acace665d1973
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Thu Jul 10 21:59:26 EDT 2025
Fri Jul 25 07:04:35 EDT 2025
Wed Feb 19 01:42:54 EST 2025
Tue Jul 01 04:33:04 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Jan 22 16:36:10 EST 2025
Wed Oct 30 09:55:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright (c) 2006 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3849-bfae7e85c87c980498f37ec67e0086213c05122d3e8122f82048acace665d1973
Notes ArticleID:SIM2599
IBC/ENAR
ark:/67375/WNG-T48SBJRC-2
NIDCR - No. DE016618-01
istex:F85B37F896BF6603E1103A814F238B80B5BB17B3
University of Wisconsin-Madison
Publishing Arts Research Council - No. 98-1846389
Interuniversity Attraction Poles Program P5/24 - Belgian State - Federal Office for Scientific, Technical and Cultural Affairs
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16832841
PQID 223142739
PQPubID 48361
PageCount 21
ParticipantIDs proquest_miscellaneous_68980703
proquest_journals_223142739
pubmed_primary_16832841
crossref_primary_10_1002_sim_2599
crossref_citationtrail_10_1002_sim_2599
wiley_primary_10_1002_sim_2599_SIM2599
istex_primary_ark_67375_WNG_T48SBJRC_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-28
28 February 2007
2007-Feb-28
20070228
PublicationDateYYYYMMDD 2007-02-28
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-28
  day: 28
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2007
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Glonek GFV, McCullagh P. Multivariate logistic models. Journal of the Royal Statistical Society, Series B 1995; 57:533-546.
Hedeker D, Gibbons RD. A random-effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:933-944.
Muthén B. A structural probit model with latent variables. Journal of the American Statistical Association 1979; 74:807-811.
Diggle PJ, Heagerty PJ, Liang K-Y, Zeger SL. The Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002.
Lipsitz SR, Kim K, Zhao L. Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine 1994; 13:1149-1163.
Catalano PJ, Ryan LM. Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 1992; 87:651-658.
Burton SW. A review of the fluvoxamine and its uses in depression. International Clinical Psychopharmacology 1991; 6(Suppl. 3):1-17.
Molenberghs G, Kenward M, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika 1997; 84:33-44.
Dale JR. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 1986; 42:907-917.
Ekholm A, Jokinen J, McDonald JW, Smith PWF. Joint regression and association modelling of longitudinal ordinal data. Biometrics 2003; 59:795-803.
Molenberghs G, Lesaffre E. Marginal modeling of correlated ordinal data using a multivariate plackett distribution. Journal of the American Statistical Association 1994; 89:633-644.
Lesaffre E, Molenberghs G, Dewulf L. Effects of dropouts in a longitudinal study: an application of a repeated ordinal model. Statistics in Medicine 1996; 15:1123-1141.
Rubin DB. Inference and missing data. Biometrika 1976; 63:581-590.
Chernoff H. On the distribution of the likelihood ratio. Annals of the Mathematical Statistics 1954; 25:573-578.
Gibbons RD, Bock RD. Trend in correlated proportions. Psychometrika 1987; 52:113-124.
Fitzmaurice GM, Laird NL. Regression models for a bivariate discrete and continuous outcome with clustering. Journal of the American Statistical Association 1995; 90:845-852.
Lesaffre E, Kaufmann H. Existence and uniqueness of the maximum likelihood estimator for a multivariate probit model. Journal of the American Statistical Association 1992; 87:805-811.
Plackett RL. A class of bivariate distribution. Journal of the American Statistical Association 1965; 60:516-522.
Gail MH, Tan WY, Piantadosi S. Tests for no treatment effect in randomized clinical trials. Biometrika 1988; 75:57-64.
Robins J, Rotnitzky A, Zhao L-P. Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1985; 90:106-121.
McCullogh CE. Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association 1994; 89:330-335.
O'Brien PC. Procedures for comparing multiples endpoints. Biometrics 1984; 40:1079-1087.
Pinheiro JC, Bates DM. Mixed Effects Models in S and S-plus. Springer: New York, 2000.
Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90:106-121.
Kim K. A bivariate cumulative probit regression model for ordered categorical data. Statistics in Medicine 1995; 14:1341-1352.
Ten Have T, Morabia A. Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 1999; 55:85-93.
Hedeker D, Gibbons RD. A computer program for mixed-effects ordinal probit and logistic regression analysis. Computer Methods and Programs in Biomedicine 1996; 49:157-176.
Zeger SL, Liang K-Y, Albert PA. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988; 44:1049-1060.
Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
Lesaffre E, Todem D, Verbeke G. Flexible modelling of the covariance matrix in a linear random effects model. Biometrical Journal 2000; 42:807-822.
Williamson JM, Kim K. A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies. Statistics in Medicine 1996; 15:1507-1518.
Legler JM, Ryan LM. Latent variable model for teratogenesis using multiple binary outcomes. Journal of the American Statistical Association 1997; 92:13-20.
Morrell CH, Pearson JD, Brant LJ. Linear transformations of linear mixed effects models. The American Statistician 1997; 51:338-343.
Ashford JR, Sowden RR. Multivariate probit analysis. Biometrics 1970; 26:535-546.
Lesaffre E, Molenberghs G. Multivariate probit analysis: a neglected procedure in medical statistics. Statistics in Medicine 1991; 10:1391-1403.
Ochi Y, Prentice RL. Likelihood inference in a correlated probit regression model. Biometrika 1984; 71:531-543.
1984; 40
1976; 63
1997; 84
1986; 73
1987; 52
1995; 90
1991; 10
1954; 25
1995; 14
1995; 57
2000; 42
1994; 89
2003; 59
1993
2002
1988; 75
1979; 74
1996; 15
1991; 6
1997; 51
1984; 71
1997; 92
1990
1986; 42
2000
1965; 60
1988; 44
1999; 55
1994; 13
1985; 90
1992; 87
1994; 50
1996; 49
1970; 26
1967
Huber PJ (e_1_2_1_28_2) 1967
McCullogh CE (e_1_2_1_12_2) 1994; 89
Diggle PJ (e_1_2_1_21_2) 2002
Molenberghs G (e_1_2_1_5_2) 1994; 89
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_29_2
Glonek GFV (e_1_2_1_4_2) 1995; 57
Gange S (e_1_2_1_13_2) 1993
Plackett RL (e_1_2_1_8_2) 1965; 60
Kim K (e_1_2_1_41_2) 2000
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_2_2
e_1_2_1_11_2
Robins J (e_1_2_1_16_2) 1985; 90
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_37_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Lipsitz SR, Kim K, Zhao L. Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine 1994; 13:1149-1163.
– reference: Hedeker D, Gibbons RD. A random-effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:933-944.
– reference: Ten Have T, Morabia A. Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 1999; 55:85-93.
– reference: Robins J, Rotnitzky A, Zhao L-P. Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1985; 90:106-121.
– reference: Dale JR. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 1986; 42:907-917.
– reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
– reference: Muthén B. A structural probit model with latent variables. Journal of the American Statistical Association 1979; 74:807-811.
– reference: Morrell CH, Pearson JD, Brant LJ. Linear transformations of linear mixed effects models. The American Statistician 1997; 51:338-343.
– reference: Williamson JM, Kim K. A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies. Statistics in Medicine 1996; 15:1507-1518.
– reference: O'Brien PC. Procedures for comparing multiples endpoints. Biometrics 1984; 40:1079-1087.
– reference: McCullogh CE. Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association 1994; 89:330-335.
– reference: Lesaffre E, Todem D, Verbeke G. Flexible modelling of the covariance matrix in a linear random effects model. Biometrical Journal 2000; 42:807-822.
– reference: Ashford JR, Sowden RR. Multivariate probit analysis. Biometrics 1970; 26:535-546.
– reference: Legler JM, Ryan LM. Latent variable model for teratogenesis using multiple binary outcomes. Journal of the American Statistical Association 1997; 92:13-20.
– reference: Kim K. A bivariate cumulative probit regression model for ordered categorical data. Statistics in Medicine 1995; 14:1341-1352.
– reference: Zeger SL, Liang K-Y, Albert PA. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988; 44:1049-1060.
– reference: Ochi Y, Prentice RL. Likelihood inference in a correlated probit regression model. Biometrika 1984; 71:531-543.
– reference: Hedeker D, Gibbons RD. A computer program for mixed-effects ordinal probit and logistic regression analysis. Computer Methods and Programs in Biomedicine 1996; 49:157-176.
– reference: Ekholm A, Jokinen J, McDonald JW, Smith PWF. Joint regression and association modelling of longitudinal ordinal data. Biometrics 2003; 59:795-803.
– reference: Diggle PJ, Heagerty PJ, Liang K-Y, Zeger SL. The Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002.
– reference: Chernoff H. On the distribution of the likelihood ratio. Annals of the Mathematical Statistics 1954; 25:573-578.
– reference: Lesaffre E, Molenberghs G, Dewulf L. Effects of dropouts in a longitudinal study: an application of a repeated ordinal model. Statistics in Medicine 1996; 15:1123-1141.
– reference: Lesaffre E, Kaufmann H. Existence and uniqueness of the maximum likelihood estimator for a multivariate probit model. Journal of the American Statistical Association 1992; 87:805-811.
– reference: Plackett RL. A class of bivariate distribution. Journal of the American Statistical Association 1965; 60:516-522.
– reference: Fitzmaurice GM, Laird NL. Regression models for a bivariate discrete and continuous outcome with clustering. Journal of the American Statistical Association 1995; 90:845-852.
– reference: Molenberghs G, Kenward M, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika 1997; 84:33-44.
– reference: Glonek GFV, McCullagh P. Multivariate logistic models. Journal of the Royal Statistical Society, Series B 1995; 57:533-546.
– reference: Lesaffre E, Molenberghs G. Multivariate probit analysis: a neglected procedure in medical statistics. Statistics in Medicine 1991; 10:1391-1403.
– reference: Gail MH, Tan WY, Piantadosi S. Tests for no treatment effect in randomized clinical trials. Biometrika 1988; 75:57-64.
– reference: Rubin DB. Inference and missing data. Biometrika 1976; 63:581-590.
– reference: Burton SW. A review of the fluvoxamine and its uses in depression. International Clinical Psychopharmacology 1991; 6(Suppl. 3):1-17.
– reference: Catalano PJ, Ryan LM. Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 1992; 87:651-658.
– reference: Molenberghs G, Lesaffre E. Marginal modeling of correlated ordinal data using a multivariate plackett distribution. Journal of the American Statistical Association 1994; 89:633-644.
– reference: Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90:106-121.
– reference: Gibbons RD, Bock RD. Trend in correlated proportions. Psychometrika 1987; 52:113-124.
– reference: Pinheiro JC, Bates DM. Mixed Effects Models in S and S-plus. Springer: New York, 2000.
– volume: 57
  start-page: 533
  year: 1995
  end-page: 546
  article-title: Multivariate logistic models
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 42
  start-page: 907
  year: 1986
  end-page: 917
  article-title: Global cross‐ratio models for bivariate, discrete, ordered responses
  publication-title: Biometrics
– volume: 75
  start-page: 57
  year: 1988
  end-page: 64
  article-title: Tests for no treatment effect in randomized clinical trials
  publication-title: Biometrika
– volume: 63
  start-page: 581
  year: 1976
  end-page: 590
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 51
  start-page: 338
  year: 1997
  end-page: 343
  article-title: Linear transformations of linear mixed effects models
  publication-title: The American Statistician
– volume: 13
  start-page: 1149
  year: 1994
  end-page: 1163
  article-title: Analysis of repeated categorical data using generalized estimating equations
  publication-title: Statistics in Medicine
– volume: 10
  start-page: 1391
  year: 1991
  end-page: 1403
  article-title: Multivariate probit analysis: a neglected procedure in medical statistics
  publication-title: Statistics in Medicine
– volume: 49
  start-page: 157
  year: 1996
  end-page: 176
  article-title: A computer program for mixed‐effects ordinal probit and logistic regression analysis
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 84
  start-page: 33
  year: 1997
  end-page: 44
  article-title: The analysis of longitudinal ordinal data with non‐random dropout
  publication-title: Biometrika
– year: 2000
– volume: 15
  start-page: 1123
  year: 1996
  end-page: 1141
  article-title: Effects of dropouts in a longitudinal study: an application of a repeated ordinal model
  publication-title: Statistics in Medicine
– year: 1990
– volume: 89
  start-page: 633
  year: 1994
  end-page: 644
  article-title: Marginal modeling of correlated ordinal data using a multivariate plackett distribution
  publication-title: Journal of the American Statistical Association
– volume: 44
  start-page: 1049
  year: 1988
  end-page: 1060
  article-title: Models for longitudinal data: a generalized estimating equation approach
  publication-title: Biometrics
– volume: 87
  start-page: 805
  year: 1992
  end-page: 811
  article-title: Existence and uniqueness of the maximum likelihood estimator for a multivariate probit model
  publication-title: Journal of the American Statistical Association
– volume: 42
  start-page: 807
  year: 2000
  end-page: 822
  article-title: Flexible modelling of the covariance matrix in a linear random effects model
  publication-title: Biometrical Journal
– volume: 90
  start-page: 845
  year: 1995
  end-page: 852
  article-title: Regression models for a bivariate discrete and continuous outcome with clustering
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: 1
  issue: Suppl. 3
  year: 1991
  end-page: 17
  article-title: A review of the fluvoxamine and its uses in depression
  publication-title: International Clinical Psychopharmacology
– volume: 55
  start-page: 85
  year: 1999
  end-page: 93
  article-title: Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data
  publication-title: Biometrics
– volume: 59
  start-page: 795
  year: 2003
  end-page: 803
  article-title: Joint regression and association modelling of longitudinal ordinal data
  publication-title: Biometrics
– year: 1967
– year: 2002
– volume: 50
  start-page: 933
  year: 1994
  end-page: 944
  article-title: A random‐effects ordinal regression model for multilevel analysis
  publication-title: Biometrics
– volume: 71
  start-page: 531
  year: 1984
  end-page: 543
  article-title: Likelihood inference in a correlated probit regression model
  publication-title: Biometrika
– volume: 40
  start-page: 1079
  year: 1984
  end-page: 1087
  article-title: Procedures for comparing multiples endpoints
  publication-title: Biometrics
– volume: 87
  start-page: 651
  year: 1992
  end-page: 658
  article-title: Bivariate latent variable models for clustered discrete and continuous outcomes
  publication-title: Journal of the American Statistical Association
– volume: 92
  start-page: 13
  year: 1997
  end-page: 20
  article-title: Latent variable model for teratogenesis using multiple binary outcomes
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 1507
  year: 1996
  end-page: 1518
  article-title: A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies
  publication-title: Statistics in Medicine
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 26
  start-page: 535
  year: 1970
  end-page: 546
  article-title: Multivariate probit analysis
  publication-title: Biometrics
– volume: 89
  start-page: 330
  year: 1994
  end-page: 335
  article-title: Maximum likelihood variance components estimation for binary data
  publication-title: Journal of the American Statistical Association
– volume: 60
  start-page: 516
  year: 1965
  end-page: 522
  article-title: A class of bivariate distribution
  publication-title: Journal of the American Statistical Association
– volume: 90
  start-page: 106
  year: 1985
  end-page: 121
  article-title: Analysis of semi‐parametric regression models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
– volume: 52
  start-page: 113
  year: 1987
  end-page: 124
  article-title: Trend in correlated proportions
  publication-title: Psychometrika
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
– year: 1993
– volume: 14
  start-page: 1341
  year: 1995
  end-page: 1352
  article-title: A bivariate cumulative probit regression model for ordered categorical data
  publication-title: Statistics in Medicine
– volume: 74
  start-page: 807
  year: 1979
  end-page: 811
  article-title: A structural probit model with latent variables
  publication-title: Journal of the American Statistical Association
– volume: 25
  start-page: 573
  year: 1954
  end-page: 578
  article-title: On the distribution of the likelihood ratio
  publication-title: Annals of the Mathematical Statistics
– ident: e_1_2_1_33_2
  doi: 10.1080/01621459.1995.10476493
– ident: e_1_2_1_26_2
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_1_18_2
  doi: 10.1002/sim.4780100907
– volume-title: The Analysis of Longitudinal Data
  year: 2002
  ident: e_1_2_1_21_2
  doi: 10.1093/oso/9780198524847.001.0001
– volume: 60
  start-page: 516
  year: 1965
  ident: e_1_2_1_8_2
  article-title: A class of bivariate distribution
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1965.10480807
– ident: e_1_2_1_20_2
  doi: 10.2307/2529107
– ident: e_1_2_1_22_2
  doi: 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3
– ident: e_1_2_1_9_2
  doi: 10.2307/2530704
– ident: e_1_2_1_11_2
  doi: 10.2307/2531734
– ident: e_1_2_1_25_2
  doi: 10.1007/BF02293959
– ident: e_1_2_1_2_2
  doi: 10.1097/00004850-199112003-00001
– ident: e_1_2_1_3_2
  doi: 10.2307/2531158
– ident: e_1_2_1_14_2
  doi: 10.1002/sim.4780131106
– ident: e_1_2_1_38_2
  doi: 10.1080/01621459.1997.10473598
– volume: 89
  start-page: 633
  year: 1994
  ident: e_1_2_1_5_2
  article-title: Marginal modeling of correlated ordinal data using a multivariate plackett distribution
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1994.10476788
– ident: e_1_2_1_32_2
  doi: 10.1093/biomet/63.3.581
– volume: 89
  start-page: 330
  year: 1994
  ident: e_1_2_1_12_2
  article-title: Maximum likelihood variance components estimation for binary data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1994.10476474
– ident: e_1_2_1_34_2
  doi: 10.1016/0169-2607(96)01720-8
– ident: e_1_2_1_35_2
– ident: e_1_2_1_37_2
  doi: 10.1214/aoms/1177728725
– volume-title: Technical Report
  year: 2000
  ident: e_1_2_1_41_2
– ident: e_1_2_1_27_2
  doi: 10.1093/biomet/71.3.531
– ident: e_1_2_1_19_2
  doi: 10.1080/01621459.1992.10475282
– ident: e_1_2_1_24_2
  doi: 10.1080/01621459.1992.10475264
– ident: e_1_2_1_40_2
  doi: 10.1080/01621459.1995.10476583
– volume-title: Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability
  year: 1967
  ident: e_1_2_1_28_2
– ident: e_1_2_1_29_2
  doi: 10.1093/biomet/75.1.57
– ident: e_1_2_1_31_2
  doi: 10.1111/j.0006-341X.2003.00093.x
– ident: e_1_2_1_10_2
  doi: 10.1111/j.0006-341X.1999.00085.x
– volume: 90
  start-page: 106
  year: 1985
  ident: e_1_2_1_16_2
  article-title: Analysis of semi‐parametric regression models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476493
– volume-title: Technical Report 77
  year: 1993
  ident: e_1_2_1_13_2
– volume: 57
  start-page: 533
  year: 1995
  ident: e_1_2_1_4_2
  article-title: Multivariate logistic models
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1995.tb02046.x
– ident: e_1_2_1_36_2
  doi: 10.1002/(SICI)1097-0258(19960615)15:11<1123::AID-SIM228>3.0.CO;2-L
– ident: e_1_2_1_6_2
  doi: 10.1002/sim.4780141207
– ident: e_1_2_1_23_2
  doi: 10.2307/2685902
– ident: e_1_2_1_7_2
  doi: 10.1002/(SICI)1097-0258(19960730)15:14<1507::AID-SIM316>3.0.CO;2-Z
– ident: e_1_2_1_17_2
  doi: 10.2307/2533433
– ident: e_1_2_1_30_2
  doi: 10.1093/biomet/84.1.33
– ident: e_1_2_1_39_2
  doi: 10.2307/2286403
– ident: e_1_2_1_15_2
  doi: 10.1093/biomet/73.1.13
SSID ssj0011527
Score 1.9592787
Snippet We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1034
SubjectTerms adaptive Gaussian quadrature
Antidepressants
Antidepressive Agents, Second-Generation - therapeutic use
bivariate ordinal outcome
Fluvoxamine - therapeutic use
Humans
latent variable
Longitudinal Studies
longitudinal/ clustered outcomes
Medical statistics
Models, Statistical
Normal Distribution
Outcome Assessment (Health Care) - statistics & numerical data
Psychiatry
random effects
Random variables
Safety
Title Latent-variable models for longitudinal data with bivariate ordinal outcomes
URI https://api.istex.fr/ark:/67375/WNG-T48SBJRC-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.2599
https://www.ncbi.nlm.nih.gov/pubmed/16832841
https://www.proquest.com/docview/223142739
https://www.proquest.com/docview/68980703
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGOBspSHkVA5ZVvb8SNHKJRSsXvoQ1TiYDleR6pasqhJEOLUn9Df2F_SmThJVVQkxCU5eBL5NfY3Y883hLzxhdEAG0TCpfFgoGyExBTcJEoEqQqdurnC4OTpTG0fpDuH8rC7VYmxMJEfYnC4oWa06zUquMur9SvS0Oro-wSwO8buMaGQNv_D7sAcxfpsrXhCqTSTPe_sBl_vP7y2E93GTv11E8y8jlrbbWfrPvnWVzjeNjmeNHU-8b__4HL8vxY9IPc6NErfxenzkNwK5YjcmXbn7SNyN3r1aAxWGpFlxKaR2vkRmX0BnFrWF2fnP8HgxhAs2ubVqSgAYXqywExIzRyzblG8h0rR5Uvzo1a4DhSs3rZs0dRQ0VA9JgdbH_c3t5MuPUPihUmzJC9c0MFIb7TPDFgaphA6eKVDaycx4UHhOZ-LACCCFwYpgp13Pigl5yzT4glZKhdleEpokbvggsQnS7WWmZS84FnhhebcMzYmb_uhsr7jLscUGic2si5zC31nse_G5PUg-SPyddwgs9aO9iDgTo_xfpuW9uvsk91Pzd77nd1Ny8dktZ8OtlPtygKeYimAPvjNq6EUdBIPWlwZFk1llYH-gKV0TFbiHLqqioIV1KTQoLV2Jvy1jnbv8xTfz_5VcJUsR7czRts_J0v1aRNeAF6q85etZlwCAaoRZg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMcCZSlQI6FyyrZx4kfECQplW3b30G5FD0hW1utIVdssahKEOPET-I38EmbiJFVRkRCX5OBJ5NfY34w93wC8tJlWCBuigAtt0UDZdoHOuA5k5ITMVJzOJQUnjydyeBTvH4vjJXjdxsJ4fojO4UaaUa_XpODkkN66ZA0tTs4HCN6TG7ASI84gy-vdQccdFbb5WumMUqpQtMyz23yr_fLKXrRC3frtOqB5FbfWG8_uXfjcVtnfNzkdVOVsYL__web4n226B3caQMre-Bl0H5Zc3oOb4-bIvQe3vWOP-XilHqwSPPXszg9gMkKompe_fvz8ijY3RWGxOrVOwRALs7MFJUOq5pR4i9FVVEZeXzY7qYVLx9DwrcsWVYk1dcVDONp9P90ZBk2GhsBGOk6CWZY65bSwWtlEo7Ghs0g5K5WrTaUwsqjznM8jhziCZ5pYglObWielmIeJih7Bcr7I3WNg2Sx1qRP0DGOlRCIEz3iS2UhxbsOwD6_asTK2oS-nLBpnxhMvc4N9Z6jv-vCik_ziKTuukdmsh7sTSC9O6YqbEubT5IOZxvrw7f7BjuF9WG_ng2m0uzAIqcIYcR_-ZqMrRbWks5Y0d4uqMFJjf-Bq2oc1P4kuqyJxEdUxNmizngp_raM53BvT-8m_Cm7AreF0PDKjvcnHdVj1XmgKvn8Ky-VF5Z4hfCpnz2s1-Q0N1RWF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB60hVIQL8dLj1W7gtSnnDab7CWPWj22tecgvWDBhyXZ7EJpm1OaRMQnf4K_0V_iTC6nVCqIL8nDTsLeZveb2Z1vAF5ZrxXChijgQls0UDZdoD3XgYyckF7FaS4pOHkyldtH8e6xOO5uVVIsTMsPMXe4kWY06zUp-EXuN65IQ8uT8xFi9-Q2LMYSgQQBov05dVTYp2ulI0qpQtETz27yjf7La1vRIvXqt5tw5nXY2uw743vwpa9xe93kdFRX2ch-_4PM8f-adB_udnCUvWnnzwO45YoBLE26A_cB3GndeqyNVhrAMoHTltv5IUz3EKgW1a8fP7-ixU0xWKxJrFMyRMLsbEapkOqc0m4xuojKyOfLspNGuHIMzd6mbFZXWFFXPoKj8fvDre2gy88Q2EjHSZD51CmnhdXKJhpNDe0j5axUrjGUwsiixnOeRw5RBPeaOIJTm1onpcjDREWPYaGYFW4FmM9SlzpBzzBWSiRCcM8TbyPFuQ3DIbzuh8rYjryccmicmZZ2mRvsO0N9N4SXc8mLlrDjBpn1ZrTnAunlKV1wU8J8nn4wh7E-eLu7v2X4EFb76WA63S4NAqowRtSHv1mbl6JS0klLWrhZXRqpsT9wLR3Ck3YOXVVF4hKqY2zQejMT_lpHc7AzoffTfxVcg6VP78Zmb2f6cRWWWxc0Rd4_g4XqsnbPETtV2YtGSX4Dw4UUNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent-variable+models+for+longitudinal+data+with+bivariate+ordinal+outcomes&rft.jtitle=Statistics+in+medicine&rft.au=Todem%2C+David&rft.au=Kim%2C+KyungMann&rft.au=Lesaffre%2C+Emmanuel&rft.date=2007-02-28&rft.issn=0277-6715&rft.volume=26&rft.issue=5&rft.spage=1034&rft_id=info:doi/10.1002%2Fsim.2599&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon