Latent-variable models for longitudinal data with bivariate ordinal outcomes
We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a li...
Saved in:
Published in | Statistics in medicine Vol. 26; no. 5; pp. 1034 - 1054 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
28.02.2007
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.2599 |
Cover
Abstract | We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross‐sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject‐specific, but retain the population‐averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. Copyright © 2006 John Wiley & Sons, Ltd. |
---|---|
AbstractList | We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. [PUBLICATION ABSTRACT] We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross‐sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject‐specific, but retain the population‐averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. Copyright © 2006 John Wiley & Sons, Ltd. We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology.We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology. |
Author | Kim, KyungMann Todem, David Lesaffre, Emmanuel |
Author_xml | – sequence: 1 givenname: David surname: Todem fullname: Todem, David email: todem@msu.edu organization: Department of Epidemiology, Division of Biostatistics, Michigan State University, B601 West Fee Hall, East Lansing, MI 48823, U.S.A – sequence: 2 givenname: KyungMann surname: Kim fullname: Kim, KyungMann organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, U.S.A – sequence: 3 givenname: Emmanuel surname: Lesaffre fullname: Lesaffre, Emmanuel organization: Biostatistical Centre, Katholieke Universiteit Leuven, Kapucijnenvoer 35, B-3000 Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16832841$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ElLxDAUB_Agio4L-AmkeBAvHbO0TXrUwZVRwQWPIZO-ajRtNEldvr3VcUHR0zu83_vz-C-i2da1gNAqwUOCMd0KphnSvCxn0IDgkqeY5mIWDTDlPC04yRfQYgi3GBOSUz6PFkghGBUZGaDxWEVoY_qovFETC0njKrAhqZ1PrGuvTewq0yqbVCqq5MnEm2Ri3nGExPnpznVRuwbCMpqrlQ2w8jGX0OXe7sXoIB2f7h-OtsepZiIr00mtgIPIteC6FDgrRc046IIDxqKghGmcE0orBqIftaA4E0orDUWRV6TkbAltTHPvvXvoIETZmKDBWtWC64IsRB_LMevh-i946zrfvxwkpYxklLOyR2sfqJs0UMl7bxrlX-RnST3YnALtXQge6m-C5Vv_su9fvvXf0-Evqk1U0bg2emXsXwfp9ODJWHj5N1ieHx7_9CZEeP7yyt_JgjOey6uTfXmRifOdo7ORpOwV3r6j0g |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1007_s00184_009_0263_2 crossref_primary_10_1080_01621459_2014_917977 crossref_primary_10_1080_02664760903127605 crossref_primary_10_1890_09_1903_1 crossref_primary_10_1007_s11336_013_9367_8 crossref_primary_10_1007_s10260_010_0154_8 crossref_primary_10_1016_j_jbi_2024_104641 crossref_primary_10_1080_02664763_2014_957263 crossref_primary_10_1002_sim_8739 crossref_primary_10_1111_j_1541_0420_2007_00800_x crossref_primary_10_1002_bimj_201700078 crossref_primary_10_1093_biostatistics_kxp042 crossref_primary_10_1093_biostatistics_kxs058 crossref_primary_10_1002_sim_8200 crossref_primary_10_1198_jasa_2009_0107 crossref_primary_10_1002_bimj_201900177 crossref_primary_10_1111_bmsp_12000 crossref_primary_10_1007_s10985_007_9057_x crossref_primary_10_1002_sim_3352 crossref_primary_10_1080_02664763_2014_909790 crossref_primary_10_1007_s00180_020_01037_4 |
Cites_doi | 10.1080/01621459.1995.10476493 10.1007/978-1-4419-0318-1 10.1002/sim.4780100907 10.1093/oso/9780198524847.001.0001 10.1080/01621459.1965.10480807 10.2307/2529107 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3 10.2307/2530704 10.2307/2531734 10.1007/BF02293959 10.1097/00004850-199112003-00001 10.2307/2531158 10.1002/sim.4780131106 10.1080/01621459.1997.10473598 10.1080/01621459.1994.10476788 10.1093/biomet/63.3.581 10.1080/01621459.1994.10476474 10.1016/0169-2607(96)01720-8 10.1214/aoms/1177728725 10.1093/biomet/71.3.531 10.1080/01621459.1992.10475282 10.1080/01621459.1992.10475264 10.1080/01621459.1995.10476583 10.1093/biomet/75.1.57 10.1111/j.0006-341X.2003.00093.x 10.1111/j.0006-341X.1999.00085.x 10.1111/j.2517-6161.1995.tb02046.x 10.1002/(SICI)1097-0258(19960615)15:11<1123::AID-SIM228>3.0.CO;2-L 10.1002/sim.4780141207 10.2307/2685902 10.1002/(SICI)1097-0258(19960730)15:14<1507::AID-SIM316>3.0.CO;2-Z 10.2307/2533433 10.1093/biomet/84.1.33 10.2307/2286403 10.1093/biomet/73.1.13 |
ContentType | Journal Article |
Copyright | Copyright © 2006 John Wiley & Sons, Ltd. Copyright (c) 2006 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Feb 28, 2007 |
Copyright_xml | – notice: Copyright © 2006 John Wiley & Sons, Ltd. – notice: Copyright (c) 2006 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Feb 28, 2007 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.2599 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1054 |
ExternalDocumentID | 1210790191 16832841 10_1002_sim_2599 SIM2599 ark_67375_WNG_T48SBJRC_2 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: IBC/ENAR – fundername: NIDCR funderid: DE016618‐01 – fundername: Publishing Arts Research Council funderid: 98‐1846389 – fundername: Interuniversity Attraction Poles Program P5/24 – Belgian State – Federal Office for Scientific, Technical and Cultural Affairs – fundername: University of Wisconsin‐Madison – fundername: NIDCR NIH HHS grantid: DE016618-01 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3849-bfae7e85c87c980498f37ec67e0086213c05122d3e8122f82048acace665d1973 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Thu Jul 10 21:59:26 EDT 2025 Fri Jul 25 07:04:35 EDT 2025 Wed Feb 19 01:42:54 EST 2025 Tue Jul 01 04:33:04 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Wed Jan 22 16:36:10 EST 2025 Wed Oct 30 09:55:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright (c) 2006 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3849-bfae7e85c87c980498f37ec67e0086213c05122d3e8122f82048acace665d1973 |
Notes | ArticleID:SIM2599 IBC/ENAR ark:/67375/WNG-T48SBJRC-2 NIDCR - No. DE016618-01 istex:F85B37F896BF6603E1103A814F238B80B5BB17B3 University of Wisconsin-Madison Publishing Arts Research Council - No. 98-1846389 Interuniversity Attraction Poles Program P5/24 - Belgian State - Federal Office for Scientific, Technical and Cultural Affairs SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 16832841 |
PQID | 223142739 |
PQPubID | 48361 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_68980703 proquest_journals_223142739 pubmed_primary_16832841 crossref_primary_10_1002_sim_2599 crossref_citationtrail_10_1002_sim_2599 wiley_primary_10_1002_sim_2599_SIM2599 istex_primary_ark_67375_WNG_T48SBJRC_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-28 28 February 2007 2007-Feb-28 20070228 |
PublicationDateYYYYMMDD | 2007-02-28 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2007 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Glonek GFV, McCullagh P. Multivariate logistic models. Journal of the Royal Statistical Society, Series B 1995; 57:533-546. Hedeker D, Gibbons RD. A random-effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:933-944. Muthén B. A structural probit model with latent variables. Journal of the American Statistical Association 1979; 74:807-811. Diggle PJ, Heagerty PJ, Liang K-Y, Zeger SL. The Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002. Lipsitz SR, Kim K, Zhao L. Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine 1994; 13:1149-1163. Catalano PJ, Ryan LM. Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 1992; 87:651-658. Burton SW. A review of the fluvoxamine and its uses in depression. International Clinical Psychopharmacology 1991; 6(Suppl. 3):1-17. Molenberghs G, Kenward M, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika 1997; 84:33-44. Dale JR. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 1986; 42:907-917. Ekholm A, Jokinen J, McDonald JW, Smith PWF. Joint regression and association modelling of longitudinal ordinal data. Biometrics 2003; 59:795-803. Molenberghs G, Lesaffre E. Marginal modeling of correlated ordinal data using a multivariate plackett distribution. Journal of the American Statistical Association 1994; 89:633-644. Lesaffre E, Molenberghs G, Dewulf L. Effects of dropouts in a longitudinal study: an application of a repeated ordinal model. Statistics in Medicine 1996; 15:1123-1141. Rubin DB. Inference and missing data. Biometrika 1976; 63:581-590. Chernoff H. On the distribution of the likelihood ratio. Annals of the Mathematical Statistics 1954; 25:573-578. Gibbons RD, Bock RD. Trend in correlated proportions. Psychometrika 1987; 52:113-124. Fitzmaurice GM, Laird NL. Regression models for a bivariate discrete and continuous outcome with clustering. Journal of the American Statistical Association 1995; 90:845-852. Lesaffre E, Kaufmann H. Existence and uniqueness of the maximum likelihood estimator for a multivariate probit model. Journal of the American Statistical Association 1992; 87:805-811. Plackett RL. A class of bivariate distribution. Journal of the American Statistical Association 1965; 60:516-522. Gail MH, Tan WY, Piantadosi S. Tests for no treatment effect in randomized clinical trials. Biometrika 1988; 75:57-64. Robins J, Rotnitzky A, Zhao L-P. Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1985; 90:106-121. McCullogh CE. Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association 1994; 89:330-335. O'Brien PC. Procedures for comparing multiples endpoints. Biometrics 1984; 40:1079-1087. Pinheiro JC, Bates DM. Mixed Effects Models in S and S-plus. Springer: New York, 2000. Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90:106-121. Kim K. A bivariate cumulative probit regression model for ordered categorical data. Statistics in Medicine 1995; 14:1341-1352. Ten Have T, Morabia A. Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 1999; 55:85-93. Hedeker D, Gibbons RD. A computer program for mixed-effects ordinal probit and logistic regression analysis. Computer Methods and Programs in Biomedicine 1996; 49:157-176. Zeger SL, Liang K-Y, Albert PA. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988; 44:1049-1060. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22. Lesaffre E, Todem D, Verbeke G. Flexible modelling of the covariance matrix in a linear random effects model. Biometrical Journal 2000; 42:807-822. Williamson JM, Kim K. A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies. Statistics in Medicine 1996; 15:1507-1518. Legler JM, Ryan LM. Latent variable model for teratogenesis using multiple binary outcomes. Journal of the American Statistical Association 1997; 92:13-20. Morrell CH, Pearson JD, Brant LJ. Linear transformations of linear mixed effects models. The American Statistician 1997; 51:338-343. Ashford JR, Sowden RR. Multivariate probit analysis. Biometrics 1970; 26:535-546. Lesaffre E, Molenberghs G. Multivariate probit analysis: a neglected procedure in medical statistics. Statistics in Medicine 1991; 10:1391-1403. Ochi Y, Prentice RL. Likelihood inference in a correlated probit regression model. Biometrika 1984; 71:531-543. 1984; 40 1976; 63 1997; 84 1986; 73 1987; 52 1995; 90 1991; 10 1954; 25 1995; 14 1995; 57 2000; 42 1994; 89 2003; 59 1993 2002 1988; 75 1979; 74 1996; 15 1991; 6 1997; 51 1984; 71 1997; 92 1990 1986; 42 2000 1965; 60 1988; 44 1999; 55 1994; 13 1985; 90 1992; 87 1994; 50 1996; 49 1970; 26 1967 Huber PJ (e_1_2_1_28_2) 1967 McCullogh CE (e_1_2_1_12_2) 1994; 89 Diggle PJ (e_1_2_1_21_2) 2002 Molenberghs G (e_1_2_1_5_2) 1994; 89 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_29_2 Glonek GFV (e_1_2_1_4_2) 1995; 57 Gange S (e_1_2_1_13_2) 1993 Plackett RL (e_1_2_1_8_2) 1965; 60 Kim K (e_1_2_1_41_2) 2000 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_2_2 e_1_2_1_11_2 Robins J (e_1_2_1_16_2) 1985; 90 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_37_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
References_xml | – reference: Lipsitz SR, Kim K, Zhao L. Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine 1994; 13:1149-1163. – reference: Hedeker D, Gibbons RD. A random-effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:933-944. – reference: Ten Have T, Morabia A. Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 1999; 55:85-93. – reference: Robins J, Rotnitzky A, Zhao L-P. Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1985; 90:106-121. – reference: Dale JR. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 1986; 42:907-917. – reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22. – reference: Muthén B. A structural probit model with latent variables. Journal of the American Statistical Association 1979; 74:807-811. – reference: Morrell CH, Pearson JD, Brant LJ. Linear transformations of linear mixed effects models. The American Statistician 1997; 51:338-343. – reference: Williamson JM, Kim K. A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies. Statistics in Medicine 1996; 15:1507-1518. – reference: O'Brien PC. Procedures for comparing multiples endpoints. Biometrics 1984; 40:1079-1087. – reference: McCullogh CE. Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association 1994; 89:330-335. – reference: Lesaffre E, Todem D, Verbeke G. Flexible modelling of the covariance matrix in a linear random effects model. Biometrical Journal 2000; 42:807-822. – reference: Ashford JR, Sowden RR. Multivariate probit analysis. Biometrics 1970; 26:535-546. – reference: Legler JM, Ryan LM. Latent variable model for teratogenesis using multiple binary outcomes. Journal of the American Statistical Association 1997; 92:13-20. – reference: Kim K. A bivariate cumulative probit regression model for ordered categorical data. Statistics in Medicine 1995; 14:1341-1352. – reference: Zeger SL, Liang K-Y, Albert PA. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988; 44:1049-1060. – reference: Ochi Y, Prentice RL. Likelihood inference in a correlated probit regression model. Biometrika 1984; 71:531-543. – reference: Hedeker D, Gibbons RD. A computer program for mixed-effects ordinal probit and logistic regression analysis. Computer Methods and Programs in Biomedicine 1996; 49:157-176. – reference: Ekholm A, Jokinen J, McDonald JW, Smith PWF. Joint regression and association modelling of longitudinal ordinal data. Biometrics 2003; 59:795-803. – reference: Diggle PJ, Heagerty PJ, Liang K-Y, Zeger SL. The Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002. – reference: Chernoff H. On the distribution of the likelihood ratio. Annals of the Mathematical Statistics 1954; 25:573-578. – reference: Lesaffre E, Molenberghs G, Dewulf L. Effects of dropouts in a longitudinal study: an application of a repeated ordinal model. Statistics in Medicine 1996; 15:1123-1141. – reference: Lesaffre E, Kaufmann H. Existence and uniqueness of the maximum likelihood estimator for a multivariate probit model. Journal of the American Statistical Association 1992; 87:805-811. – reference: Plackett RL. A class of bivariate distribution. Journal of the American Statistical Association 1965; 60:516-522. – reference: Fitzmaurice GM, Laird NL. Regression models for a bivariate discrete and continuous outcome with clustering. Journal of the American Statistical Association 1995; 90:845-852. – reference: Molenberghs G, Kenward M, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika 1997; 84:33-44. – reference: Glonek GFV, McCullagh P. Multivariate logistic models. Journal of the Royal Statistical Society, Series B 1995; 57:533-546. – reference: Lesaffre E, Molenberghs G. Multivariate probit analysis: a neglected procedure in medical statistics. Statistics in Medicine 1991; 10:1391-1403. – reference: Gail MH, Tan WY, Piantadosi S. Tests for no treatment effect in randomized clinical trials. Biometrika 1988; 75:57-64. – reference: Rubin DB. Inference and missing data. Biometrika 1976; 63:581-590. – reference: Burton SW. A review of the fluvoxamine and its uses in depression. International Clinical Psychopharmacology 1991; 6(Suppl. 3):1-17. – reference: Catalano PJ, Ryan LM. Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 1992; 87:651-658. – reference: Molenberghs G, Lesaffre E. Marginal modeling of correlated ordinal data using a multivariate plackett distribution. Journal of the American Statistical Association 1994; 89:633-644. – reference: Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90:106-121. – reference: Gibbons RD, Bock RD. Trend in correlated proportions. Psychometrika 1987; 52:113-124. – reference: Pinheiro JC, Bates DM. Mixed Effects Models in S and S-plus. Springer: New York, 2000. – volume: 57 start-page: 533 year: 1995 end-page: 546 article-title: Multivariate logistic models publication-title: Journal of the Royal Statistical Society, Series B – volume: 42 start-page: 907 year: 1986 end-page: 917 article-title: Global cross‐ratio models for bivariate, discrete, ordered responses publication-title: Biometrics – volume: 75 start-page: 57 year: 1988 end-page: 64 article-title: Tests for no treatment effect in randomized clinical trials publication-title: Biometrika – volume: 63 start-page: 581 year: 1976 end-page: 590 article-title: Inference and missing data publication-title: Biometrika – volume: 51 start-page: 338 year: 1997 end-page: 343 article-title: Linear transformations of linear mixed effects models publication-title: The American Statistician – volume: 13 start-page: 1149 year: 1994 end-page: 1163 article-title: Analysis of repeated categorical data using generalized estimating equations publication-title: Statistics in Medicine – volume: 10 start-page: 1391 year: 1991 end-page: 1403 article-title: Multivariate probit analysis: a neglected procedure in medical statistics publication-title: Statistics in Medicine – volume: 49 start-page: 157 year: 1996 end-page: 176 article-title: A computer program for mixed‐effects ordinal probit and logistic regression analysis publication-title: Computer Methods and Programs in Biomedicine – volume: 84 start-page: 33 year: 1997 end-page: 44 article-title: The analysis of longitudinal ordinal data with non‐random dropout publication-title: Biometrika – year: 2000 – volume: 15 start-page: 1123 year: 1996 end-page: 1141 article-title: Effects of dropouts in a longitudinal study: an application of a repeated ordinal model publication-title: Statistics in Medicine – year: 1990 – volume: 89 start-page: 633 year: 1994 end-page: 644 article-title: Marginal modeling of correlated ordinal data using a multivariate plackett distribution publication-title: Journal of the American Statistical Association – volume: 44 start-page: 1049 year: 1988 end-page: 1060 article-title: Models for longitudinal data: a generalized estimating equation approach publication-title: Biometrics – volume: 87 start-page: 805 year: 1992 end-page: 811 article-title: Existence and uniqueness of the maximum likelihood estimator for a multivariate probit model publication-title: Journal of the American Statistical Association – volume: 42 start-page: 807 year: 2000 end-page: 822 article-title: Flexible modelling of the covariance matrix in a linear random effects model publication-title: Biometrical Journal – volume: 90 start-page: 845 year: 1995 end-page: 852 article-title: Regression models for a bivariate discrete and continuous outcome with clustering publication-title: Journal of the American Statistical Association – volume: 6 start-page: 1 issue: Suppl. 3 year: 1991 end-page: 17 article-title: A review of the fluvoxamine and its uses in depression publication-title: International Clinical Psychopharmacology – volume: 55 start-page: 85 year: 1999 end-page: 93 article-title: Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data publication-title: Biometrics – volume: 59 start-page: 795 year: 2003 end-page: 803 article-title: Joint regression and association modelling of longitudinal ordinal data publication-title: Biometrics – year: 1967 – year: 2002 – volume: 50 start-page: 933 year: 1994 end-page: 944 article-title: A random‐effects ordinal regression model for multilevel analysis publication-title: Biometrics – volume: 71 start-page: 531 year: 1984 end-page: 543 article-title: Likelihood inference in a correlated probit regression model publication-title: Biometrika – volume: 40 start-page: 1079 year: 1984 end-page: 1087 article-title: Procedures for comparing multiples endpoints publication-title: Biometrics – volume: 87 start-page: 651 year: 1992 end-page: 658 article-title: Bivariate latent variable models for clustered discrete and continuous outcomes publication-title: Journal of the American Statistical Association – volume: 92 start-page: 13 year: 1997 end-page: 20 article-title: Latent variable model for teratogenesis using multiple binary outcomes publication-title: Journal of the American Statistical Association – volume: 15 start-page: 1507 year: 1996 end-page: 1518 article-title: A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies publication-title: Statistics in Medicine – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 26 start-page: 535 year: 1970 end-page: 546 article-title: Multivariate probit analysis publication-title: Biometrics – volume: 89 start-page: 330 year: 1994 end-page: 335 article-title: Maximum likelihood variance components estimation for binary data publication-title: Journal of the American Statistical Association – volume: 60 start-page: 516 year: 1965 end-page: 522 article-title: A class of bivariate distribution publication-title: Journal of the American Statistical Association – volume: 90 start-page: 106 year: 1985 end-page: 121 article-title: Analysis of semi‐parametric regression models for repeated outcomes in the presence of missing data publication-title: Journal of the American Statistical Association – volume: 52 start-page: 113 year: 1987 end-page: 124 article-title: Trend in correlated proportions publication-title: Psychometrika – volume: 90 start-page: 106 year: 1995 end-page: 121 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: Journal of the American Statistical Association – year: 1993 – volume: 14 start-page: 1341 year: 1995 end-page: 1352 article-title: A bivariate cumulative probit regression model for ordered categorical data publication-title: Statistics in Medicine – volume: 74 start-page: 807 year: 1979 end-page: 811 article-title: A structural probit model with latent variables publication-title: Journal of the American Statistical Association – volume: 25 start-page: 573 year: 1954 end-page: 578 article-title: On the distribution of the likelihood ratio publication-title: Annals of the Mathematical Statistics – ident: e_1_2_1_33_2 doi: 10.1080/01621459.1995.10476493 – ident: e_1_2_1_26_2 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_1_18_2 doi: 10.1002/sim.4780100907 – volume-title: The Analysis of Longitudinal Data year: 2002 ident: e_1_2_1_21_2 doi: 10.1093/oso/9780198524847.001.0001 – volume: 60 start-page: 516 year: 1965 ident: e_1_2_1_8_2 article-title: A class of bivariate distribution publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1965.10480807 – ident: e_1_2_1_20_2 doi: 10.2307/2529107 – ident: e_1_2_1_22_2 doi: 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3 – ident: e_1_2_1_9_2 doi: 10.2307/2530704 – ident: e_1_2_1_11_2 doi: 10.2307/2531734 – ident: e_1_2_1_25_2 doi: 10.1007/BF02293959 – ident: e_1_2_1_2_2 doi: 10.1097/00004850-199112003-00001 – ident: e_1_2_1_3_2 doi: 10.2307/2531158 – ident: e_1_2_1_14_2 doi: 10.1002/sim.4780131106 – ident: e_1_2_1_38_2 doi: 10.1080/01621459.1997.10473598 – volume: 89 start-page: 633 year: 1994 ident: e_1_2_1_5_2 article-title: Marginal modeling of correlated ordinal data using a multivariate plackett distribution publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1994.10476788 – ident: e_1_2_1_32_2 doi: 10.1093/biomet/63.3.581 – volume: 89 start-page: 330 year: 1994 ident: e_1_2_1_12_2 article-title: Maximum likelihood variance components estimation for binary data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1994.10476474 – ident: e_1_2_1_34_2 doi: 10.1016/0169-2607(96)01720-8 – ident: e_1_2_1_35_2 – ident: e_1_2_1_37_2 doi: 10.1214/aoms/1177728725 – volume-title: Technical Report year: 2000 ident: e_1_2_1_41_2 – ident: e_1_2_1_27_2 doi: 10.1093/biomet/71.3.531 – ident: e_1_2_1_19_2 doi: 10.1080/01621459.1992.10475282 – ident: e_1_2_1_24_2 doi: 10.1080/01621459.1992.10475264 – ident: e_1_2_1_40_2 doi: 10.1080/01621459.1995.10476583 – volume-title: Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability year: 1967 ident: e_1_2_1_28_2 – ident: e_1_2_1_29_2 doi: 10.1093/biomet/75.1.57 – ident: e_1_2_1_31_2 doi: 10.1111/j.0006-341X.2003.00093.x – ident: e_1_2_1_10_2 doi: 10.1111/j.0006-341X.1999.00085.x – volume: 90 start-page: 106 year: 1985 ident: e_1_2_1_16_2 article-title: Analysis of semi‐parametric regression models for repeated outcomes in the presence of missing data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476493 – volume-title: Technical Report 77 year: 1993 ident: e_1_2_1_13_2 – volume: 57 start-page: 533 year: 1995 ident: e_1_2_1_4_2 article-title: Multivariate logistic models publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1995.tb02046.x – ident: e_1_2_1_36_2 doi: 10.1002/(SICI)1097-0258(19960615)15:11<1123::AID-SIM228>3.0.CO;2-L – ident: e_1_2_1_6_2 doi: 10.1002/sim.4780141207 – ident: e_1_2_1_23_2 doi: 10.2307/2685902 – ident: e_1_2_1_7_2 doi: 10.1002/(SICI)1097-0258(19960730)15:14<1507::AID-SIM316>3.0.CO;2-Z – ident: e_1_2_1_17_2 doi: 10.2307/2533433 – ident: e_1_2_1_30_2 doi: 10.1093/biomet/84.1.33 – ident: e_1_2_1_39_2 doi: 10.2307/2286403 – ident: e_1_2_1_15_2 doi: 10.1093/biomet/73.1.13 |
SSID | ssj0011527 |
Score | 1.9592787 |
Snippet | We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1034 |
SubjectTerms | adaptive Gaussian quadrature Antidepressants Antidepressive Agents, Second-Generation - therapeutic use bivariate ordinal outcome Fluvoxamine - therapeutic use Humans latent variable Longitudinal Studies longitudinal/ clustered outcomes Medical statistics Models, Statistical Normal Distribution Outcome Assessment (Health Care) - statistics & numerical data Psychiatry random effects Random variables Safety |
Title | Latent-variable models for longitudinal data with bivariate ordinal outcomes |
URI | https://api.istex.fr/ark:/67375/WNG-T48SBJRC-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.2599 https://www.ncbi.nlm.nih.gov/pubmed/16832841 https://www.proquest.com/docview/223142739 https://www.proquest.com/docview/68980703 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGOBspSHkVA5ZVvb8SNHKJRSsXvoQ1TiYDleR6pasqhJEOLUn9Df2F_SmThJVVQkxCU5eBL5NfY3Y883hLzxhdEAG0TCpfFgoGyExBTcJEoEqQqdurnC4OTpTG0fpDuH8rC7VYmxMJEfYnC4oWa06zUquMur9SvS0Oro-wSwO8buMaGQNv_D7sAcxfpsrXhCqTSTPe_sBl_vP7y2E93GTv11E8y8jlrbbWfrPvnWVzjeNjmeNHU-8b__4HL8vxY9IPc6NErfxenzkNwK5YjcmXbn7SNyN3r1aAxWGpFlxKaR2vkRmX0BnFrWF2fnP8HgxhAs2ubVqSgAYXqywExIzRyzblG8h0rR5Uvzo1a4DhSs3rZs0dRQ0VA9JgdbH_c3t5MuPUPihUmzJC9c0MFIb7TPDFgaphA6eKVDaycx4UHhOZ-LACCCFwYpgp13Pigl5yzT4glZKhdleEpokbvggsQnS7WWmZS84FnhhebcMzYmb_uhsr7jLscUGic2si5zC31nse_G5PUg-SPyddwgs9aO9iDgTo_xfpuW9uvsk91Pzd77nd1Ny8dktZ8OtlPtygKeYimAPvjNq6EUdBIPWlwZFk1llYH-gKV0TFbiHLqqioIV1KTQoLV2Jvy1jnbv8xTfz_5VcJUsR7czRts_J0v1aRNeAF6q85etZlwCAaoRZg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMcCZSlQI6FyyrZx4kfECQplW3b30G5FD0hW1utIVdssahKEOPET-I38EmbiJFVRkRCX5OBJ5NfY34w93wC8tJlWCBuigAtt0UDZdoHOuA5k5ITMVJzOJQUnjydyeBTvH4vjJXjdxsJ4fojO4UaaUa_XpODkkN66ZA0tTs4HCN6TG7ASI84gy-vdQccdFbb5WumMUqpQtMyz23yr_fLKXrRC3frtOqB5FbfWG8_uXfjcVtnfNzkdVOVsYL__web4n226B3caQMre-Bl0H5Zc3oOb4-bIvQe3vWOP-XilHqwSPPXszg9gMkKompe_fvz8ijY3RWGxOrVOwRALs7MFJUOq5pR4i9FVVEZeXzY7qYVLx9DwrcsWVYk1dcVDONp9P90ZBk2GhsBGOk6CWZY65bSwWtlEo7Ghs0g5K5WrTaUwsqjznM8jhziCZ5pYglObWielmIeJih7Bcr7I3WNg2Sx1qRP0DGOlRCIEz3iS2UhxbsOwD6_asTK2oS-nLBpnxhMvc4N9Z6jv-vCik_ziKTuukdmsh7sTSC9O6YqbEubT5IOZxvrw7f7BjuF9WG_ng2m0uzAIqcIYcR_-ZqMrRbWks5Y0d4uqMFJjf-Bq2oc1P4kuqyJxEdUxNmizngp_raM53BvT-8m_Cm7AreF0PDKjvcnHdVj1XmgKvn8Ky-VF5Z4hfCpnz2s1-Q0N1RWF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB60hVIQL8dLj1W7gtSnnDab7CWPWj22tecgvWDBhyXZ7EJpm1OaRMQnf4K_0V_iTC6nVCqIL8nDTsLeZveb2Z1vAF5ZrxXChijgQls0UDZdoD3XgYyckF7FaS4pOHkyldtH8e6xOO5uVVIsTMsPMXe4kWY06zUp-EXuN65IQ8uT8xFi9-Q2LMYSgQQBov05dVTYp2ulI0qpQtETz27yjf7La1vRIvXqt5tw5nXY2uw743vwpa9xe93kdFRX2ch-_4PM8f-adB_udnCUvWnnzwO45YoBLE26A_cB3GndeqyNVhrAMoHTltv5IUz3EKgW1a8fP7-ixU0xWKxJrFMyRMLsbEapkOqc0m4xuojKyOfLspNGuHIMzd6mbFZXWFFXPoKj8fvDre2gy88Q2EjHSZD51CmnhdXKJhpNDe0j5axUrjGUwsiixnOeRw5RBPeaOIJTm1onpcjDREWPYaGYFW4FmM9SlzpBzzBWSiRCcM8TbyPFuQ3DIbzuh8rYjryccmicmZZ2mRvsO0N9N4SXc8mLlrDjBpn1ZrTnAunlKV1wU8J8nn4wh7E-eLu7v2X4EFb76WA63S4NAqowRtSHv1mbl6JS0klLWrhZXRqpsT9wLR3Ck3YOXVVF4hKqY2zQejMT_lpHc7AzoffTfxVcg6VP78Zmb2f6cRWWWxc0Rd4_g4XqsnbPETtV2YtGSX4Dw4UUNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent-variable+models+for+longitudinal+data+with+bivariate+ordinal+outcomes&rft.jtitle=Statistics+in+medicine&rft.au=Todem%2C+David&rft.au=Kim%2C+KyungMann&rft.au=Lesaffre%2C+Emmanuel&rft.date=2007-02-28&rft.issn=0277-6715&rft.volume=26&rft.issue=5&rft.spage=1034&rft_id=info:doi/10.1002%2Fsim.2599&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |