A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air
This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequen...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 1; p. 149 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.12.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a −3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and −95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout. |
---|---|
AbstractList | This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout. This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a −3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and −95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout. This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO ; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor ( ) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient ( ) were extracted and are reported. Device decreased to 334 and total increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout. This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO 3 ; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor ( Q ) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a −3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/°C and 57.5 ppb/°C 2 for resonant mode A, and −95.43 ppm/°C and 55.8 ppb/°C 2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient ( k t 2 ) were extracted and are reported. Device Q decreased to 334 and total k t 2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout. |
Author | Eisner, Savannah R. Gong, Songbin Lu, Ruochen Chapin, Cailin A. Yang, Yansong Senesky, Debbie G. |
AuthorAffiliation | 1 Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA 2 Department of Aeronautics and Astronautics, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA; cchapin3@stanford.edu (C.A.C.); dsenesky@stanford.edu (D.G.S.) 3 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801, USA; rlu10@illinois.edu (R.L.); yyang165@illinois.edu (Y.Y.); songbin@illinois.edu (S.G.) |
AuthorAffiliation_xml | – name: 2 Department of Aeronautics and Astronautics, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA; cchapin3@stanford.edu (C.A.C.); dsenesky@stanford.edu (D.G.S.) – name: 1 Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA – name: 3 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801, USA; rlu10@illinois.edu (R.L.); yyang165@illinois.edu (Y.Y.); songbin@illinois.edu (S.G.) |
Author_xml | – sequence: 1 givenname: Savannah R. orcidid: 0000-0003-2423-2597 surname: Eisner fullname: Eisner, Savannah R. – sequence: 2 givenname: Cailin A. surname: Chapin fullname: Chapin, Cailin A. – sequence: 3 givenname: Ruochen orcidid: 0000-0003-0025-3924 surname: Lu fullname: Lu, Ruochen – sequence: 4 givenname: Yansong surname: Yang fullname: Yang, Yansong – sequence: 5 givenname: Songbin surname: Gong fullname: Gong, Songbin – sequence: 6 givenname: Debbie G. surname: Senesky fullname: Senesky, Debbie G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33383685$$D View this record in MEDLINE/PubMed |
BookMark | eNplkstqWzEQhkVJaS7toi9QBN00Cze6HkmbgjFJG3Aa6CVboSPpODLHR66kU_Bb9Rn6ZJVjJyQpWozQfPPrZ2aOwcEQBw_AW4w-UqrQWSYY1cPUC3CEGWETSQg6eHQ_BMc5LxEilFL5ChxuA20kPwI3Uzg3xSfT9xt4E9pkShgWcB7KbRhX8GuIbU3Dq_Or7_Cbz3EwJSY4Tcls4PXa73FTIEcI_v0zg2GA05Beg5ed6bN_s48n4OfF-Y_Zl8n8-vPlbDqfWCqZmoi2EQ11TnolqBPcKCGcE8Qhy1HTSoUldoiSRnTe846RjiEinPIeU0GUoifgcqfrolnqdQorkzY6mqDvHmJaaJNKsL3XncMYc0S5c5Rh5ZQkrlWcSW6ZtMxVrU87rfXYrryzfii1LU9En2aGcKsX8bcWQnGCmyrwYS-Q4q_R56JXIVvf92bwccyaMMGYql9u0ffP0GUc01BbdUc1SFGMKvXusaMHK_fjq8DZDrAp5px8p20odSRxazD0GiO9XRD9sCC14vRZxb3o_-w_-m-26w |
CitedBy_id | crossref_primary_10_3390_mi15020195 crossref_primary_10_1002_aelm_202100986 crossref_primary_10_1109_JSEN_2021_3075535 crossref_primary_10_1109_TPEL_2023_3334211 crossref_primary_10_1109_TUFFC_2024_3448217 crossref_primary_10_1109_JMEMS_2021_3072898 crossref_primary_10_1109_JMEMS_2021_3092724 crossref_primary_10_1109_TUFFC_2024_3504285 crossref_primary_10_3390_mi15111367 |
Cites_doi | 10.1007/978-3-319-28688-4 10.1109/JMEMS.2013.2292368 10.1109/LED.2014.2358577 10.1016/j.sna.2018.06.047 10.1109/TMTT.2012.2228671 10.1109/JMEMS.2019.2892708 10.1109/MEMSYS.2017.7863571 10.1364/OL.25.000613 10.1002/adma.201104842 10.1063/1.3430042 10.1109/ICSENS.2016.7808781 10.1109/TRANSDUCERS.2017.7994169 10.1109/ICSENS.2018.8589600 10.1109/FREQ.2008.4623013 10.1109/TUFFC.2010.1443 10.1109/MEMSYS.2018.8346663 10.1109/MEMSYS.2010.5442304 10.1109/ULTSYM.2012.0524 10.1002/pssb.19660130202 10.1038/ncomms11249 10.1016/j.ssi.2012.02.026 10.1109/TUFFC.2004.1367482 10.1109/ICSENS.2017.8234068 10.1109/LSENS.2019.2908691 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s21010149 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_fd1115035dd3419d982db95485c48c4d PMC7795216 33383685 10_3390_s21010149 |
Genre | Letter Correspondence |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NASA grantid: NNX17AG44G |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO IAO ITC K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3849-7b6763dd8e973d75a977dd72d0c506b89181d03267fee5f42f4027d9ee1372993 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:59:37 EDT 2025 Thu Aug 21 13:57:48 EDT 2025 Fri Jul 11 12:11:39 EDT 2025 Fri Jul 25 20:51:40 EDT 2025 Wed Feb 19 02:29:48 EST 2025 Tue Jul 01 03:56:00 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SH0 mode lithium niobate RF MEMS piezoelectric resonators high-temperature |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3849-7b6763dd8e973d75a977dd72d0c506b89181d03267fee5f42f4027d9ee1372993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correspondence-1 |
ORCID | 0000-0003-2423-2597 0000-0003-0025-3924 |
OpenAccessLink | https://doaj.org/article/fd1115035dd3419d982db95485c48c4d |
PMID | 33383685 |
PQID | 2474609310 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd1115035dd3419d982db95485c48c4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795216 proquest_miscellaneous_2474499546 proquest_journals_2474609310 pubmed_primary_33383685 crossref_citationtrail_10_3390_s21010149 crossref_primary_10_3390_s21010149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201229 |
PublicationDateYYYYMMDD | 2020-12-29 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201229 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_13 Li (ref_6) 2018; 279 ref_11 Smolenskii (ref_17) 1966; 13 ref_15 Streque (ref_14) 2019; 3 Lin (ref_10) 2012; 24 Fachberger (ref_16) 2004; 51 ref_24 ref_22 Gokhale (ref_1) 2014; 23 ref_21 ref_20 Lu (ref_23) 2019; 28 Knuuttila (ref_19) 2000; 25 ref_3 ref_2 Ansari (ref_12) 2014; 35 Lin (ref_9) 2010; 57 Weidenfelder (ref_18) 2012; 224 ref_26 ref_8 Gong (ref_25) 2013; 61 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_24 doi: 10.1007/978-3-319-28688-4 – volume: 23 start-page: 803 year: 2014 ident: ref_1 article-title: Uncooled infrared detectors using gallium nitride on silicon micromechanical resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2013.2292368 – volume: 35 start-page: 1127 year: 2014 ident: ref_12 article-title: A temperature-compensated gallium nitride micromechanical resonator publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2014.2358577 – volume: 279 start-page: 399 year: 2018 ident: ref_6 article-title: Temperature characteristics of langasite surface acoustic wave resonators coated with SiO2 films publication-title: Sens. Actuator A Phys. doi: 10.1016/j.sna.2018.06.047 – ident: ref_26 – volume: 61 start-page: 403 year: 2013 ident: ref_25 article-title: Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2012.2228671 – volume: 28 start-page: 209 year: 2019 ident: ref_23 article-title: Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2019.2892708 – ident: ref_20 doi: 10.1109/MEMSYS.2017.7863571 – volume: 25 start-page: 613 year: 2000 ident: ref_19 article-title: Scanning Michelson interferometer for imaging surface acoustic wave fields publication-title: Opt. Lett. doi: 10.1364/OL.25.000613 – volume: 24 start-page: 2722 year: 2012 ident: ref_10 article-title: AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators publication-title: Adv. Mater. doi: 10.1002/adma.201104842 – ident: ref_11 doi: 10.1063/1.3430042 – ident: ref_3 doi: 10.1109/ICSENS.2016.7808781 – ident: ref_21 doi: 10.1109/TRANSDUCERS.2017.7994169 – ident: ref_2 doi: 10.1109/ICSENS.2018.8589600 – ident: ref_5 doi: 10.1109/FREQ.2008.4623013 – volume: 57 start-page: 524 year: 2010 ident: ref_9 article-title: Temperature-compensated aluminum nitride lamb wave resonators publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1443 – ident: ref_22 doi: 10.1109/MEMSYS.2018.8346663 – ident: ref_8 doi: 10.1109/MEMSYS.2010.5442304 – ident: ref_7 doi: 10.1109/ULTSYM.2012.0524 – ident: ref_15 – volume: 13 start-page: 309 year: 1966 ident: ref_17 article-title: The curie temperature of LiNbO3. publication-title: Phys. Status Solidi B doi: 10.1002/pssb.19660130202 – ident: ref_4 doi: 10.1038/ncomms11249 – volume: 224 start-page: 26 year: 2012 ident: ref_18 article-title: Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures publication-title: Solid State Ion. doi: 10.1016/j.ssi.2012.02.026 – volume: 51 start-page: 1427 year: 2004 ident: ref_16 article-title: Applicability of LiNbO3, langasite and GaPO4 in high temperature SAW sensors operating at radio frequencies publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2004.1367482 – ident: ref_13 doi: 10.1109/ICSENS.2017.8234068 – volume: 3 start-page: 1 year: 2019 ident: ref_14 article-title: Stoichiometric lithium niobate crystals: Towards identifiable wireless surface acoustic wave sensors operable up to 600 °C publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2019.2908691 |
SSID | ssj0023338 |
Score | 2.3750308 |
Snippet | This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C... This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO ; LN) MEMS resonator array up to 500 °C... This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO 3 ; LN) MEMS resonator array up to 500 °C... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 149 |
SubjectTerms | Acoustics high-temperature Letter lithium niobate Microelectromechanical systems piezoelectric resonators RF MEMS Sensors SH0 mode Signal processing Thin films |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BucAB8U-gIIM4cIma2E5sn9BStapQtxyg1d6i-Cc00pJddrOHvhXPwJMxk2TTLqq4xqNoZM945rPH3wB8SEshpeUhFqVOYkypLfpcULFyKk94EFJ3z6OnZ_nJufwyy2bDgdt6KKvc7ondRu0Xjs7ID7hUMkf4nSaflr9i6hpFt6tDC427cI-oy6ikS82uAZdA_NWzCQmE9gdrhDfUmtbsxKCOqv-2_PLfMskbcef4ETwcEkY26Vf4MdwJzRN4cING8ClcTNhpSS-J5_MrdkH4l2qZ2WndXtabn-ysRp9tA5seTb8xOq5vCGjjH1flFfu6DIN42bIsSdif34esbtikXj2D8-Oj74cn8dAvIXZCSxMrm-Nu4b0ORgmvshJzO-8V94nLktxqg9HcJ5ivqSqErJK8QvCovAkhpcs7I57DXrNowktgOjfWO-OFtUE6rUxqvcXApSvBRWVsBB-3M1i4gUycelrMCwQVNNnFONkRvB9Flz2Dxm1Cn2kZRgEive4-LFY_isGHisqnlL-KzHtiofNGc1QKIVfmpHbSR7C_XcRi8MR1cW03Ebwbh9GH6GKkbMJi08tIIsbLI3jRr_moCdkQkfRHoHasYUfV3ZGmvux4upUymBzlr_6v1mu4zwnDpzzmZh_22tUmvMFEp7VvO2v-C_FN-8c priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VcoED4puUggziwCWQ2E5sHxBaqlYV6pYDbNVbFMdOG2nJljQrdf8Vv4FfxkySjbpoj1yTUeR4ZjLvxfYbgHdxLqS03Ici11GIkNpiznkVqkKlEfdC6u549PQ0PZ7Jr-fJ-Q6se2wOE3i9ldpRP6lZM_9w82v1GRP-EzFOpOwfr5G2UMtZcwfuYkFSlJ9TOS4mcIE0rBcV2jTfKEWdYv82mPnvbslb5efoITwYcCOb9I5-BDu-fgz3b6kJPoGzCTvJ6UDxfL5iZ0SDaUszO6nay2r5k51WmLqtZ9PD6XdGf-1r4tv4xCZfsW9XfjDPW5ZEEfvz-4BVNZtUzVOYHR3-ODgOh7YJYSG0NKGyKX40nNPeKOFUkiPEc05xFxVJlFptsKi7CGGbKr1PSslL5JDKGe9jWsMz4hns1ovavwCmU2NdYZyw1stCKxNbZ7F-6VJwURobwPv1DGbFoClOrS3mGXILmuxsnOwA3o6mV72QxjajL-SG0YC0r7sLi-YiG1IpK11MMFYkzpEYnTOa46CQeSWF1IV0AeyvnZit4ynjUsk0MghmA3gz3sZUovWRvPaLZW8jSR8vDeB57_NxJBRDpNUfgNqIho2hbt6pq8tOrlspgxgp3fsf7_YS7nEi_DEPudmH3bZZ-leIilr7uov5v5zkCfI priority: 102 providerName: Scholars Portal |
Title | A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33383685 https://www.proquest.com/docview/2474609310 https://www.proquest.com/docview/2474499546 https://pubmed.ncbi.nlm.nih.gov/PMC7795216 https://doaj.org/article/fd1115035dd3419d982db95485c48c4d |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BucAB8d3QsjKIA5eoie3E9nFb7VKh7oKAVnuL4thRIy1ptc0e-q_4Df1lzCTZaBdV4sLFh3gUOeMZ-73Yfgb4GOdCSst9KHIdhQipLeacV6EqVBpxL6Ruj0fP5unpufyySBZbV33RnrBOHrhz3FHpYgItInGOpMec0dxZUilLCqkL6Wj0xTlvQ6Z6qiWQeXU6QgJJ_dENEhu6lNbszD6tSP99yPLvDZJbM870GTztoSIbd018Dg98_QKebAkIvoSLMTvL6QzxcnnLLoj50i5mdlY1l9X6F5tXmK2NZ7PJ7AejH_U1UWx84yq_ZV-vfW-eNyyJInb3-4RVNRtXq1dwPp38PDkN-5sSwkJoaUJlUxwnnNPeKOFUkiOqc05xFxVJlFptcB53ESI1VXqflJKXSBuVM97HtGxnxGvYq69qvw9Mp8a6wjhhrZeFVia26G8T6VJwURobwKeNB7OilxGn2yyWGdIJcnY2ODuAD4PpdaedcZ_RMXXDYEBy1-0DDIKsD4LsX0EQwOGmE7M-B28yLpVMI4P4NYD3QzVmDy2J5LW_Wnc2kiTx0gDedH0-tIRiiOT5A1A70bDT1N2aurpsFbqVMgiL0rf_49sO4DEnjh_zkJtD2GtWa_8OgVBjR_BQLRSWevp5BI-OJ_Nv30dtHmA5k_oPNkEIBg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAgaBxCWqYztxfEBoKa22dHc50FZ7S-PYoZGW7LIPof1TiN_AL2Mmr3ZRxa3XeBRZ8_DM58c3hLwJUiGl4c4Xacx8KKkNxJxTvspUxLgTMq6eRw9HUf9Efh6H4y3yq30Lg9cq2zWxWqjtNMM98l0ulYwAfgfsw-yHj12j8HS1baFRu8WRW_8EyLZ4f_gJ7PuW84P9472-33QV8DMRS-0rE0FMWRs7rYRVYQoVkLWKW5aFLDKxhpxnGVQ1KncuzCXPAWIpq50L8IgLyZdgyb8BiZdhRKnxBcATgPdq9iIhNNtdAJzCVrh6I-dVrQGuqmf_vZZ5Kc8d3CV3mgKV9mqPuke2XHmf3L5EW_iAnPboIMWXy5PJmp4i3sa703RQLM-L1Xc6KmCNWDo63B9-pXg8UCKwhz_O0zX9MnONeLqkIWP0z-89WpS0V8wfkpNr0eQjsl1OS_eE0DjSxmbaCmOczGKlA2MNJMo4F1zk2njkXavBJGvIy7GHxiQBEIPKTjple-R1JzqrGTuuEvqIZugEkGS7-jCdf0uamE1yG2C9LEJrkfXO6pjDpADihZmMM2k9stMaMWkif5Fc-KlHXnXDELN4EJOWbrqqZSQS8UUeeVzbvJsJ-hA2BfCI2vCGjalujpTFecULrpSGYix6-v9pvSQ3-8fDQTI4HB09I7c47h8E3Od6h2wv5yv3HIqspXlReTYlZ9cdSn8BFmc22Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJwQLxxKbAgkLhYsXfXXu8BodA2amkSkKBVbsbrXVNLqRMSRyj_ijNHfhkzfrVBFbdevSNrNDszO98-viHktZ9wITSzLk8iz4WSWkPMWenKVIYes1xE1fPo0Tg8PBEfJ8Fki_xu38Lgtco2J1aJ2sxS3CPvMSFFCPDb93pZcy3i8_7g_fyHix2k8KS1badRu8ixXf8E-LZ8d7QPc_2GscHB171Dt-kw4KY8EsqVOoT4MiaySnIjgwSqIWMkM14aeKGOFKx_xoMKR2bWBplgGcAtaZS1Ph53IRETpP8bkgc-xpicXIA9DtivZjLiXHm9JUArbIurNta_qk3AVbXtv1c0L615g7vkTlOs0n7tXffIli3uk9uXKAwfkNM-HSb4ink6XdNTxN54j5oO8_IsX53TcQ75orR0dDD6QvGooECQD39cJGv6aW4b8aSkgefRP7_2aF7Qfr54SE6uxZKPyHYxK-wTQqNQaZMqw7W2Io2k8rXRsGhGGWc8U9ohb1sLxmlDZI79NKYxABo0dtwZ2yGvOtF5zd5xldAHnIZOAAm3qw-zxfe4id84Mz7WzjwwBhnwjIoYKAVwL0hFlArjkN12EuMmCyzjC591yMtuGOIXD2WSws5WtYxAUr7QIY_rOe80QR_CBgEOkRvesKHq5kiRn1Uc4VIqKMzCnf-r9YLchCCKh0fj46fkFsOtBJ-5TO2S7XKxss-g3ir188qxKfl23ZH0F5IzOw8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Laterally+Vibrating+Lithium+Niobate+MEMS+Resonator+Array+Operating+at+500+%C2%B0C+in+Air&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Savannah+R.+Eisner&rft.au=Cailin+A.+Chapin&rft.au=Ruochen+Lu&rft.au=Yansong+Yang&rft.date=2020-12-29&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=1&rft.spage=149&rft_id=info:doi/10.3390%2Fs21010149&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fd1115035dd3419d982db95485c48c4d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |