A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air

This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequen...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 1; p. 149
Main Authors Eisner, Savannah R., Chapin, Cailin A., Lu, Ruochen, Yang, Yansong, Gong, Songbin, Senesky, Debbie G.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.12.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a −3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and −95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.
AbstractList This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.
This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a −3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and −95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.
This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO ; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor ( ) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient ( ) were extracted and are reported. Device decreased to 334 and total increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.
This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO 3 ; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor ( Q ) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a −3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/°C and 57.5 ppb/°C 2 for resonant mode A, and −95.43 ppm/°C and 55.8 ppb/°C 2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient ( k t 2 ) were extracted and are reported. Device Q decreased to 334 and total k t 2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.
Author Eisner, Savannah R.
Gong, Songbin
Lu, Ruochen
Chapin, Cailin A.
Yang, Yansong
Senesky, Debbie G.
AuthorAffiliation 1 Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA
2 Department of Aeronautics and Astronautics, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA; cchapin3@stanford.edu (C.A.C.); dsenesky@stanford.edu (D.G.S.)
3 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801, USA; rlu10@illinois.edu (R.L.); yyang165@illinois.edu (Y.Y.); songbin@illinois.edu (S.G.)
AuthorAffiliation_xml – name: 2 Department of Aeronautics and Astronautics, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA; cchapin3@stanford.edu (C.A.C.); dsenesky@stanford.edu (D.G.S.)
– name: 1 Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA
– name: 3 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801, USA; rlu10@illinois.edu (R.L.); yyang165@illinois.edu (Y.Y.); songbin@illinois.edu (S.G.)
Author_xml – sequence: 1
  givenname: Savannah R.
  orcidid: 0000-0003-2423-2597
  surname: Eisner
  fullname: Eisner, Savannah R.
– sequence: 2
  givenname: Cailin A.
  surname: Chapin
  fullname: Chapin, Cailin A.
– sequence: 3
  givenname: Ruochen
  orcidid: 0000-0003-0025-3924
  surname: Lu
  fullname: Lu, Ruochen
– sequence: 4
  givenname: Yansong
  surname: Yang
  fullname: Yang, Yansong
– sequence: 5
  givenname: Songbin
  surname: Gong
  fullname: Gong, Songbin
– sequence: 6
  givenname: Debbie G.
  surname: Senesky
  fullname: Senesky, Debbie G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33383685$$D View this record in MEDLINE/PubMed
BookMark eNplkstqWzEQhkVJaS7toi9QBN00Cze6HkmbgjFJG3Aa6CVboSPpODLHR66kU_Bb9Rn6ZJVjJyQpWozQfPPrZ2aOwcEQBw_AW4w-UqrQWSYY1cPUC3CEGWETSQg6eHQ_BMc5LxEilFL5ChxuA20kPwI3Uzg3xSfT9xt4E9pkShgWcB7KbRhX8GuIbU3Dq_Or7_Cbz3EwJSY4Tcls4PXa73FTIEcI_v0zg2GA05Beg5ed6bN_s48n4OfF-Y_Zl8n8-vPlbDqfWCqZmoi2EQ11TnolqBPcKCGcE8Qhy1HTSoUldoiSRnTe846RjiEinPIeU0GUoifgcqfrolnqdQorkzY6mqDvHmJaaJNKsL3XncMYc0S5c5Rh5ZQkrlWcSW6ZtMxVrU87rfXYrryzfii1LU9En2aGcKsX8bcWQnGCmyrwYS-Q4q_R56JXIVvf92bwccyaMMGYql9u0ffP0GUc01BbdUc1SFGMKvXusaMHK_fjq8DZDrAp5px8p20odSRxazD0GiO9XRD9sCC14vRZxb3o_-w_-m-26w
CitedBy_id crossref_primary_10_3390_mi15020195
crossref_primary_10_1002_aelm_202100986
crossref_primary_10_1109_JSEN_2021_3075535
crossref_primary_10_1109_TPEL_2023_3334211
crossref_primary_10_1109_TUFFC_2024_3448217
crossref_primary_10_1109_JMEMS_2021_3072898
crossref_primary_10_1109_JMEMS_2021_3092724
crossref_primary_10_1109_TUFFC_2024_3504285
crossref_primary_10_3390_mi15111367
Cites_doi 10.1007/978-3-319-28688-4
10.1109/JMEMS.2013.2292368
10.1109/LED.2014.2358577
10.1016/j.sna.2018.06.047
10.1109/TMTT.2012.2228671
10.1109/JMEMS.2019.2892708
10.1109/MEMSYS.2017.7863571
10.1364/OL.25.000613
10.1002/adma.201104842
10.1063/1.3430042
10.1109/ICSENS.2016.7808781
10.1109/TRANSDUCERS.2017.7994169
10.1109/ICSENS.2018.8589600
10.1109/FREQ.2008.4623013
10.1109/TUFFC.2010.1443
10.1109/MEMSYS.2018.8346663
10.1109/MEMSYS.2010.5442304
10.1109/ULTSYM.2012.0524
10.1002/pssb.19660130202
10.1038/ncomms11249
10.1016/j.ssi.2012.02.026
10.1109/TUFFC.2004.1367482
10.1109/ICSENS.2017.8234068
10.1109/LSENS.2019.2908691
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s21010149
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_fd1115035dd3419d982db95485c48c4d
PMC7795216
33383685
10_3390_s21010149
Genre Letter
Correspondence
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NASA
  grantid: NNX17AG44G
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
IAO
ITC
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3849-7b6763dd8e973d75a977dd72d0c506b89181d03267fee5f42f4027d9ee1372993
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 00:59:37 EDT 2025
Thu Aug 21 13:57:48 EDT 2025
Fri Jul 11 12:11:39 EDT 2025
Fri Jul 25 20:51:40 EDT 2025
Wed Feb 19 02:29:48 EST 2025
Tue Jul 01 03:56:00 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SH0 mode
lithium niobate
RF MEMS
piezoelectric resonators
high-temperature
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3849-7b6763dd8e973d75a977dd72d0c506b89181d03267fee5f42f4027d9ee1372993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correspondence-1
ORCID 0000-0003-2423-2597
0000-0003-0025-3924
OpenAccessLink https://doaj.org/article/fd1115035dd3419d982db95485c48c4d
PMID 33383685
PQID 2474609310
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_fd1115035dd3419d982db95485c48c4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795216
proquest_miscellaneous_2474499546
proquest_journals_2474609310
pubmed_primary_33383685
crossref_citationtrail_10_3390_s21010149
crossref_primary_10_3390_s21010149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201229
PublicationDateYYYYMMDD 2020-12-29
PublicationDate_xml – month: 12
  year: 2020
  text: 20201229
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
Li (ref_6) 2018; 279
ref_11
Smolenskii (ref_17) 1966; 13
ref_15
Streque (ref_14) 2019; 3
Lin (ref_10) 2012; 24
Fachberger (ref_16) 2004; 51
ref_24
ref_22
Gokhale (ref_1) 2014; 23
ref_21
ref_20
Lu (ref_23) 2019; 28
Knuuttila (ref_19) 2000; 25
ref_3
ref_2
Ansari (ref_12) 2014; 35
Lin (ref_9) 2010; 57
Weidenfelder (ref_18) 2012; 224
ref_26
ref_8
Gong (ref_25) 2013; 61
ref_5
ref_4
ref_7
References_xml – ident: ref_24
  doi: 10.1007/978-3-319-28688-4
– volume: 23
  start-page: 803
  year: 2014
  ident: ref_1
  article-title: Uncooled infrared detectors using gallium nitride on silicon micromechanical resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2013.2292368
– volume: 35
  start-page: 1127
  year: 2014
  ident: ref_12
  article-title: A temperature-compensated gallium nitride micromechanical resonator
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2014.2358577
– volume: 279
  start-page: 399
  year: 2018
  ident: ref_6
  article-title: Temperature characteristics of langasite surface acoustic wave resonators coated with SiO2 films
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/j.sna.2018.06.047
– ident: ref_26
– volume: 61
  start-page: 403
  year: 2013
  ident: ref_25
  article-title: Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2012.2228671
– volume: 28
  start-page: 209
  year: 2019
  ident: ref_23
  article-title: Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2019.2892708
– ident: ref_20
  doi: 10.1109/MEMSYS.2017.7863571
– volume: 25
  start-page: 613
  year: 2000
  ident: ref_19
  article-title: Scanning Michelson interferometer for imaging surface acoustic wave fields
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.000613
– volume: 24
  start-page: 2722
  year: 2012
  ident: ref_10
  article-title: AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104842
– ident: ref_11
  doi: 10.1063/1.3430042
– ident: ref_3
  doi: 10.1109/ICSENS.2016.7808781
– ident: ref_21
  doi: 10.1109/TRANSDUCERS.2017.7994169
– ident: ref_2
  doi: 10.1109/ICSENS.2018.8589600
– ident: ref_5
  doi: 10.1109/FREQ.2008.4623013
– volume: 57
  start-page: 524
  year: 2010
  ident: ref_9
  article-title: Temperature-compensated aluminum nitride lamb wave resonators
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1443
– ident: ref_22
  doi: 10.1109/MEMSYS.2018.8346663
– ident: ref_8
  doi: 10.1109/MEMSYS.2010.5442304
– ident: ref_7
  doi: 10.1109/ULTSYM.2012.0524
– ident: ref_15
– volume: 13
  start-page: 309
  year: 1966
  ident: ref_17
  article-title: The curie temperature of LiNbO3.
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.19660130202
– ident: ref_4
  doi: 10.1038/ncomms11249
– volume: 224
  start-page: 26
  year: 2012
  ident: ref_18
  article-title: Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2012.02.026
– volume: 51
  start-page: 1427
  year: 2004
  ident: ref_16
  article-title: Applicability of LiNbO3, langasite and GaPO4 in high temperature SAW sensors operating at radio frequencies
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2004.1367482
– ident: ref_13
  doi: 10.1109/ICSENS.2017.8234068
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: Stoichiometric lithium niobate crystals: Towards identifiable wireless surface acoustic wave sensors operable up to 600 °C
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2019.2908691
SSID ssj0023338
Score 2.3750308
Snippet This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C...
This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO ; LN) MEMS resonator array up to 500 °C...
This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO 3 ; LN) MEMS resonator array up to 500 °C...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 149
SubjectTerms Acoustics
high-temperature
Letter
lithium niobate
Microelectromechanical systems
piezoelectric resonators
RF MEMS
Sensors
SH0 mode
Signal processing
Thin films
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BucAB8U-gIIM4cIma2E5sn9BStapQtxyg1d6i-Cc00pJddrOHvhXPwJMxk2TTLqq4xqNoZM945rPH3wB8SEshpeUhFqVOYkypLfpcULFyKk94EFJ3z6OnZ_nJufwyy2bDgdt6KKvc7ondRu0Xjs7ID7hUMkf4nSaflr9i6hpFt6tDC427cI-oy6ikS82uAZdA_NWzCQmE9gdrhDfUmtbsxKCOqv-2_PLfMskbcef4ETwcEkY26Vf4MdwJzRN4cING8ClcTNhpSS-J5_MrdkH4l2qZ2WndXtabn-ysRp9tA5seTb8xOq5vCGjjH1flFfu6DIN42bIsSdif34esbtikXj2D8-Oj74cn8dAvIXZCSxMrm-Nu4b0ORgmvshJzO-8V94nLktxqg9HcJ5ivqSqErJK8QvCovAkhpcs7I57DXrNowktgOjfWO-OFtUE6rUxqvcXApSvBRWVsBB-3M1i4gUycelrMCwQVNNnFONkRvB9Flz2Dxm1Cn2kZRgEive4-LFY_isGHisqnlL-KzHtiofNGc1QKIVfmpHbSR7C_XcRi8MR1cW03Ebwbh9GH6GKkbMJi08tIIsbLI3jRr_moCdkQkfRHoHasYUfV3ZGmvux4upUymBzlr_6v1mu4zwnDpzzmZh_22tUmvMFEp7VvO2v-C_FN-8c
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VcoED4puUggziwCWQ2E5sHxBaqlYV6pYDbNVbFMdOG2nJljQrdf8Vv4FfxkySjbpoj1yTUeR4ZjLvxfYbgHdxLqS03Ici11GIkNpiznkVqkKlEfdC6u549PQ0PZ7Jr-fJ-Q6se2wOE3i9ldpRP6lZM_9w82v1GRP-EzFOpOwfr5G2UMtZcwfuYkFSlJ9TOS4mcIE0rBcV2jTfKEWdYv82mPnvbslb5efoITwYcCOb9I5-BDu-fgz3b6kJPoGzCTvJ6UDxfL5iZ0SDaUszO6nay2r5k51WmLqtZ9PD6XdGf-1r4tv4xCZfsW9XfjDPW5ZEEfvz-4BVNZtUzVOYHR3-ODgOh7YJYSG0NKGyKX40nNPeKOFUkiPEc05xFxVJlFptsKi7CGGbKr1PSslL5JDKGe9jWsMz4hns1ovavwCmU2NdYZyw1stCKxNbZ7F-6VJwURobwPv1DGbFoClOrS3mGXILmuxsnOwA3o6mV72QxjajL-SG0YC0r7sLi-YiG1IpK11MMFYkzpEYnTOa46CQeSWF1IV0AeyvnZit4ynjUsk0MghmA3gz3sZUovWRvPaLZW8jSR8vDeB57_NxJBRDpNUfgNqIho2hbt6pq8tOrlspgxgp3fsf7_YS7nEi_DEPudmH3bZZ-leIilr7uov5v5zkCfI
  priority: 102
  providerName: Scholars Portal
Title A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air
URI https://www.ncbi.nlm.nih.gov/pubmed/33383685
https://www.proquest.com/docview/2474609310
https://www.proquest.com/docview/2474499546
https://pubmed.ncbi.nlm.nih.gov/PMC7795216
https://doaj.org/article/fd1115035dd3419d982db95485c48c4d
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BucAB8d3QsjKIA5eoie3E9nFb7VKh7oKAVnuL4thRIy1ptc0e-q_4Df1lzCTZaBdV4sLFh3gUOeMZ-73Yfgb4GOdCSst9KHIdhQipLeacV6EqVBpxL6Ruj0fP5unpufyySBZbV33RnrBOHrhz3FHpYgItInGOpMec0dxZUilLCqkL6Wj0xTlvQ6Z6qiWQeXU6QgJJ_dENEhu6lNbszD6tSP99yPLvDZJbM870GTztoSIbd018Dg98_QKebAkIvoSLMTvL6QzxcnnLLoj50i5mdlY1l9X6F5tXmK2NZ7PJ7AejH_U1UWx84yq_ZV-vfW-eNyyJInb3-4RVNRtXq1dwPp38PDkN-5sSwkJoaUJlUxwnnNPeKOFUkiOqc05xFxVJlFptcB53ESI1VXqflJKXSBuVM97HtGxnxGvYq69qvw9Mp8a6wjhhrZeFVia26G8T6VJwURobwKeNB7OilxGn2yyWGdIJcnY2ODuAD4PpdaedcZ_RMXXDYEBy1-0DDIKsD4LsX0EQwOGmE7M-B28yLpVMI4P4NYD3QzVmDy2J5LW_Wnc2kiTx0gDedH0-tIRiiOT5A1A70bDT1N2aurpsFbqVMgiL0rf_49sO4DEnjh_zkJtD2GtWa_8OgVBjR_BQLRSWevp5BI-OJ_Nv30dtHmA5k_oPNkEIBg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAgaBxCWqYztxfEBoKa22dHc50FZ7S-PYoZGW7LIPof1TiN_AL2Mmr3ZRxa3XeBRZ8_DM58c3hLwJUiGl4c4Xacx8KKkNxJxTvspUxLgTMq6eRw9HUf9Efh6H4y3yq30Lg9cq2zWxWqjtNMM98l0ulYwAfgfsw-yHj12j8HS1baFRu8WRW_8EyLZ4f_gJ7PuW84P9472-33QV8DMRS-0rE0FMWRs7rYRVYQoVkLWKW5aFLDKxhpxnGVQ1KncuzCXPAWIpq50L8IgLyZdgyb8BiZdhRKnxBcATgPdq9iIhNNtdAJzCVrh6I-dVrQGuqmf_vZZ5Kc8d3CV3mgKV9mqPuke2XHmf3L5EW_iAnPboIMWXy5PJmp4i3sa703RQLM-L1Xc6KmCNWDo63B9-pXg8UCKwhz_O0zX9MnONeLqkIWP0z-89WpS0V8wfkpNr0eQjsl1OS_eE0DjSxmbaCmOczGKlA2MNJMo4F1zk2njkXavBJGvIy7GHxiQBEIPKTjple-R1JzqrGTuuEvqIZugEkGS7-jCdf0uamE1yG2C9LEJrkfXO6pjDpADihZmMM2k9stMaMWkif5Fc-KlHXnXDELN4EJOWbrqqZSQS8UUeeVzbvJsJ-hA2BfCI2vCGjalujpTFecULrpSGYix6-v9pvSQ3-8fDQTI4HB09I7c47h8E3Od6h2wv5yv3HIqspXlReTYlZ9cdSn8BFmc22Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJwQLxxKbAgkLhYsXfXXu8BodA2amkSkKBVbsbrXVNLqRMSRyj_ijNHfhkzfrVBFbdevSNrNDszO98-viHktZ9wITSzLk8iz4WSWkPMWenKVIYes1xE1fPo0Tg8PBEfJ8Fki_xu38Lgtco2J1aJ2sxS3CPvMSFFCPDb93pZcy3i8_7g_fyHix2k8KS1badRu8ixXf8E-LZ8d7QPc_2GscHB171Dt-kw4KY8EsqVOoT4MiaySnIjgwSqIWMkM14aeKGOFKx_xoMKR2bWBplgGcAtaZS1Ph53IRETpP8bkgc-xpicXIA9DtivZjLiXHm9JUArbIurNta_qk3AVbXtv1c0L615g7vkTlOs0n7tXffIli3uk9uXKAwfkNM-HSb4ink6XdNTxN54j5oO8_IsX53TcQ75orR0dDD6QvGooECQD39cJGv6aW4b8aSkgefRP7_2aF7Qfr54SE6uxZKPyHYxK-wTQqNQaZMqw7W2Io2k8rXRsGhGGWc8U9ohb1sLxmlDZI79NKYxABo0dtwZ2yGvOtF5zd5xldAHnIZOAAm3qw-zxfe4id84Mz7WzjwwBhnwjIoYKAVwL0hFlArjkN12EuMmCyzjC591yMtuGOIXD2WSws5WtYxAUr7QIY_rOe80QR_CBgEOkRvesKHq5kiRn1Uc4VIqKMzCnf-r9YLchCCKh0fj46fkFsOtBJ-5TO2S7XKxss-g3ir188qxKfl23ZH0F5IzOw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Laterally+Vibrating+Lithium+Niobate+MEMS+Resonator+Array+Operating+at+500+%C2%B0C+in+Air&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Savannah+R.+Eisner&rft.au=Cailin+A.+Chapin&rft.au=Ruochen+Lu&rft.au=Yansong+Yang&rft.date=2020-12-29&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=1&rft.spage=149&rft_id=info:doi/10.3390%2Fs21010149&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fd1115035dd3419d982db95485c48c4d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon