Nanoporous Iridium Nanosheets for Polymer Electrolyte Membrane Electrolysis

The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 34
Main Authors Chatterjee, Swarnendu, Peng, Xiong, Intikhab, Saad, Zeng, Guosong, Kariuki, Nancy N., Myers, Deborah J., Danilovic, Nemanja, Snyder, Joshua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2021
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIrx‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO2 nanoparticle catalyst. The utility of the npIrx‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mgIr cm−2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles. Nanoporous Ir nanosheets (npIrx‐NS) are a unique anode catalyst combining high surface‐to‐volume and interconnected metallic backbone to yield enhanced mass activities and reduced ohmic losses in water electrolyzers. The utility of npIrx‐NS is demonstrated by enhanced performance at low loadings while exhibiting negligible loss in performance following 50 000 accelerated stress test cycles.
AbstractList Abstract The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIr x ‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO 2 nanoparticle catalyst. The utility of the npIr x ‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mg Ir cm −2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles.
The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIrx‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO2 nanoparticle catalyst. The utility of the npIrx‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mgIr cm−2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles.
The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIrx‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO2 nanoparticle catalyst. The utility of the npIrx‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mgIr cm−2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles. Nanoporous Ir nanosheets (npIrx‐NS) are a unique anode catalyst combining high surface‐to‐volume and interconnected metallic backbone to yield enhanced mass activities and reduced ohmic losses in water electrolyzers. The utility of npIrx‐NS is demonstrated by enhanced performance at low loadings while exhibiting negligible loss in performance following 50 000 accelerated stress test cycles.
The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIr x ‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO 2 nanoparticle catalyst. The utility of the npIr x ‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mg Ir cm −2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles.
Author Kariuki, Nancy N.
Snyder, Joshua
Intikhab, Saad
Myers, Deborah J.
Danilovic, Nemanja
Zeng, Guosong
Chatterjee, Swarnendu
Peng, Xiong
Author_xml – sequence: 1
  givenname: Swarnendu
  surname: Chatterjee
  fullname: Chatterjee, Swarnendu
  organization: Drexel University
– sequence: 2
  givenname: Xiong
  surname: Peng
  fullname: Peng, Xiong
  organization: Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Saad
  surname: Intikhab
  fullname: Intikhab, Saad
  organization: Drexel University
– sequence: 4
  givenname: Guosong
  surname: Zeng
  fullname: Zeng, Guosong
  organization: Lawrence Berkeley National Laboratory
– sequence: 5
  givenname: Nancy N.
  surname: Kariuki
  fullname: Kariuki, Nancy N.
  organization: Argonne National Laboratory
– sequence: 6
  givenname: Deborah J.
  surname: Myers
  fullname: Myers, Deborah J.
  organization: Argonne National Laboratory
– sequence: 7
  givenname: Nemanja
  surname: Danilovic
  fullname: Danilovic, Nemanja
  email: ndanilovic@lbl.gov
  organization: Lawrence Berkeley National Laboratory
– sequence: 8
  givenname: Joshua
  orcidid: 0000-0003-3162-4126
  surname: Snyder
  fullname: Snyder, Joshua
  email: jds43@drexel.edu
  organization: Drexel University
BackLink https://www.osti.gov/biblio/1997300$$D View this record in Osti.gov
BookMark eNqFkM1PAjEQxRuDiYhcPW_0DPZz2T0SgkoE9KDnppRpKNltsV1i-O8tWQOJiXEunU7eb-blXaOO8w4QuiV4SDCmDwpcPaSYEkw4Ky5Ql-SED_KC486pZ_QK9WPc4lS8JJixLnpZKud3Pvh9zGbBru2-zo6juAFoYmZ8yN58daghZNMKdBPSp4FsAfUqKAfnYbTxBl0aVUXo_7w99PE4fZ88D-avT7PJeD7QrODFoACWm1Wh1iYvS6xKUVLBBKHCGOBUE0PwSOcC6JqsdXLK6YgaCgIKw5UAw3rort3rY2Nl1LYBvdHeuWRFkrIcMYyT6L4V7YL_3ENs5Nbvg0u-JBUjTHOcc5FUw1alg48xgJG7YGsVDpJgeQxWHoOVp2ATwH8B6bxqrHdNULb6Gytb7MtWcPjniBxPl4sz-w1mv48J
CitedBy_id crossref_primary_10_1039_D3YA00492A
crossref_primary_10_1021_acs_chemrev_3c00904
crossref_primary_10_1002_smll_202304307
crossref_primary_10_1002_aenm_202204169
crossref_primary_10_1002_aenm_202401659
crossref_primary_10_1002_adem_202301538
crossref_primary_10_1002_smll_202301516
crossref_primary_10_1016_j_cej_2024_153015
crossref_primary_10_1016_j_susmat_2024_e00972
crossref_primary_10_1016_j_joule_2024_01_002
crossref_primary_10_1002_anie_202504531
crossref_primary_10_1002_sstr_202200130
crossref_primary_10_1021_acsmaterialslett_4c00835
crossref_primary_10_1021_acssuschemeng_3c06209
crossref_primary_10_3390_nano13152264
crossref_primary_10_1002_advs_202102950
crossref_primary_10_1016_j_cej_2023_147913
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125552
crossref_primary_10_1021_acscatal_2c06282
crossref_primary_10_1002_anie_202410978
crossref_primary_10_1002_aenm_202400999
crossref_primary_10_1016_j_apcatb_2023_123402
crossref_primary_10_1038_s41467_023_41102_2
crossref_primary_10_1002_ange_202212341
crossref_primary_10_1016_j_ijhydene_2023_07_048
crossref_primary_10_1002_advs_202309440
crossref_primary_10_3390_electrochem3040040
crossref_primary_10_1002_anie_202415032
crossref_primary_10_3390_chemengineering8060116
crossref_primary_10_1002_ange_202504531
crossref_primary_10_1021_acsnano_4c06373
crossref_primary_10_1016_j_xcrp_2024_101880
crossref_primary_10_1021_acs_chemrev_4c00133
crossref_primary_10_1016_j_ijhydene_2025_02_443
crossref_primary_10_1038_s41467_025_58019_7
crossref_primary_10_1021_acsaem_4c01866
crossref_primary_10_1021_acscatal_2c00570
crossref_primary_10_1016_j_jpowsour_2023_232654
crossref_primary_10_1039_D4EE03541K
crossref_primary_10_1016_j_cattod_2023_114140
crossref_primary_10_1021_acscatal_3c05162
crossref_primary_10_1002_adma_202308060
crossref_primary_10_1002_bte2_20230017
crossref_primary_10_1016_j_joule_2024_06_005
crossref_primary_10_1039_D2TA07677B
crossref_primary_10_1002_anie_202212341
crossref_primary_10_1155_2023_3183108
crossref_primary_10_1016_j_apcatb_2024_124462
crossref_primary_10_1039_D3EY00279A
crossref_primary_10_1021_acs_chemrev_2c00469
crossref_primary_10_1016_j_apcatb_2023_123298
crossref_primary_10_1016_j_apsusc_2021_151911
crossref_primary_10_1134_S2635167624600135
crossref_primary_10_1021_acs_energyfuels_3c01473
crossref_primary_10_1002_ange_202415032
crossref_primary_10_1002_EXP_20220112
crossref_primary_10_1021_accountsmr_1c00180
crossref_primary_10_1038_s41467_024_54646_8
crossref_primary_10_1016_j_jpowsour_2022_232130
crossref_primary_10_1002_advs_202201654
crossref_primary_10_1021_acsenergylett_4c02475
crossref_primary_10_1002_ange_202410978
crossref_primary_10_1016_j_flatc_2024_100801
crossref_primary_10_1021_acs_nanolett_2c03461
crossref_primary_10_1039_D4QI00013G
crossref_primary_10_1039_D4NR01117A
Cites_doi 10.1039/C9EE03626A
10.1149/2.0981802jes
10.1149/2.F04181if
10.1149/2.1241908jes
10.1063/1.555839
10.1107/S0021889809008802
10.1021/jz501061n
10.1002/aenm.201903216
10.1021/acscatal.0c03098
10.1038/s41467-017-01734-7
10.1149/2.0231915jes
10.1021/ja2054644
10.1038/nmat2878
10.1039/c2ra20087b
10.1149/1.2940319
10.1149/1.1784820
10.1021/jp025868l
10.1038/ncomms12363
10.1016/j.nanoen.2019.02.020
10.1038/nmat3391
10.1002/anie.201406455
10.1149/2.0111706jes
10.1039/C9EE01872G
10.1039/C7TA05681H
10.1038/35068529
10.1063/1.2051791
10.1021/am900600y
10.1016/j.ijhydene.2018.06.109
10.1103/PhysRevLett.68.1168
10.1016/j.elecom.2007.03.001
10.1021/acsaem.0c00735
10.1016/0956-7151(91)90062-6
10.1021/acsami.0c15687
10.1126/science.aaf5050
10.1149/1.1492288
10.1002/adma.200702760
10.1149/2.0421908jes
10.1021/acscatal.7b03787
10.1016/j.jcat.2020.11.038
10.1149/2.0731904jes
10.1021/acsmaterialslett.9b00414
10.1039/D0EE03244A
10.1016/j.electacta.2012.08.059
10.1146/annurev-chembioeng-060718-030241
10.1016/j.electacta.2020.137113
10.1107/S0021889809002222
10.1149/2.0151611jes
10.1107/S0021889812004037
10.1016/j.ijhydene.2019.02.074
10.1021/acsami.0c12111
10.1021/jp212310v
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
OTOTI
DOI 10.1002/aenm.202101438
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 1997300
10_1002_aenm_202101438
AENM202101438
Genre article
GrantInformation_xml – fundername: Argonne National Laboratory
  funderid: DE‐AS02‐06CH11357
– fundername: National Center for Electron Microscopy
– fundername: National Science Foundation Division of Materials Research
  funderid: 1904571; DE‐AC02‐05CH11231
– fundername: Advanced Photon Source
– fundername: Argonne National Laboratory
  funderid: DE‐AC02‐06CH11357
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
OTOTI
ID FETCH-LOGICAL-c3848-8e36fb8adf6990a9592535125ffe42c1f107c65e2d1dc0044272f2e5e8f4a5ef3
ISSN 1614-6832
IngestDate Sun Jul 13 03:03:16 EDT 2025
Sun Jul 20 09:10:40 EDT 2025
Tue Jul 01 01:43:40 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Jan 22 16:29:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3848-8e36fb8adf6990a9592535125ffe42c1f107c65e2d1dc0044272f2e5e8f4a5ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0003-3162-4126
0000000331624126
OpenAccessLink https://www.osti.gov/biblio/1997300
PQID 2570260645
PQPubID 886389
PageCount 11
ParticipantIDs osti_scitechconnect_1997300
proquest_journals_2570260645
crossref_primary_10_1002_aenm_202101438
crossref_citationtrail_10_1002_aenm_202101438
wiley_primary_10_1002_aenm_202101438_AENM202101438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 5
2017; 8
2018; 165
1991; 39
2009; 42
2019; 10
2019; 1
2020; 362
2019; 12
2019; 59
2019; 15
2005; 87
2020; 13
2020; 12
2020; 10
2018; 43
2012; 11
2018; 27
2019; 166
2016; 163
2011; 133
2001; 410
2016; 7
2018; 8
2014; 5
2012; 2
2020; 3
2019; 44
2004; 151
2002; 106
2007; 9
2019
2016; 353
2021; 393
2002; 149
1992; 68
2017; 164
2008; 20
2008; 155
2010; 2
2012; 45
2012; 116
2010; 9
2012; 85
1989; 18
2014; 53
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Alia S. (e_1_2_9_53_1) 2019
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 9
  start-page: 1639
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 20
  start-page: 4883
  year: 2008
  publication-title: Adv. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 42
  start-page: 347
  year: 2009
  publication-title: J. Appl. Crystallogr.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 2474
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 1449
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 4872
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 85
  start-page: 384
  year: 2012
  publication-title: Electrochim. Acta
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 165
  start-page: F82
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 375
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3548
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 469
  year: 2009
  publication-title: J. Appl. Crystallogr.
– volume: 59
  start-page: 146
  year: 2019
  publication-title: Nano Energy
– volume: 9
  start-page: 904
  year: 2010
  publication-title: Nat. Mater.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 166
  start-page: F555
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 39
  start-page: 2477
  year: 1991
  publication-title: Acta Metall. Mater.
– volume: 166
  start-page: F487
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 526
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 106
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 155
  start-page: C464
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 43
  year: 2018
  publication-title: Int. J. Hydrogen Energy
– volume: 166
  start-page: F282
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 353
  start-page: 1011
  year: 2016
  publication-title: Science
– volume: 68
  start-page: 1168
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– year: 2019
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 4481
  year: 2012
  publication-title: RSC Adv.
– volume: 410
  start-page: 450
  year: 2001
  publication-title: Nature
– volume: 15
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 219
  year: 2019
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 44
  start-page: 9174
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 8276
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 11
  start-page: 775
  year: 2012
  publication-title: Nat. Mater.
– volume: 18
  start-page: 1
  year: 1989
  publication-title: J. Phys. Chem. Ref. Data
– volume: 362
  year: 2020
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 2111
  year: 2018
  publication-title: ACS Catal.
– volume: 151
  start-page: C614
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 164
  start-page: F464
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 116
  start-page: 6497
  year: 2012
  publication-title: J. Phys. Chem. A
– volume: 13
  start-page: 2096
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 393
  start-page: 303
  year: 2021
  publication-title: J. Catal.
– volume: 149
  start-page: B370
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 45
  start-page: 324
  year: 2012
  publication-title: J. Appl. Crystallogr.
– volume: 27
  start-page: 47
  year: 2018
  publication-title: Electrochem. Soc. Interface
– ident: e_1_2_9_49_1
  doi: 10.1039/C9EE03626A
– ident: e_1_2_9_19_1
  doi: 10.1149/2.0981802jes
– ident: e_1_2_9_1_1
  doi: 10.1149/2.F04181if
– ident: e_1_2_9_3_1
– ident: e_1_2_9_18_1
  doi: 10.1149/2.1241908jes
– ident: e_1_2_9_31_1
  doi: 10.1063/1.555839
– ident: e_1_2_9_27_1
  doi: 10.1107/S0021889809008802
– volume-title: H2@Scale : Experimental Characterization of Durability of Advanced Electrolyzer Concepts in Dynamic Loading
  year: 2019
  ident: e_1_2_9_53_1
– ident: e_1_2_9_7_1
  doi: 10.1021/jz501061n
– ident: e_1_2_9_17_1
  doi: 10.1002/aenm.201903216
– ident: e_1_2_9_14_1
  doi: 10.1021/acscatal.0c03098
– ident: e_1_2_9_11_1
  doi: 10.1038/s41467-017-01734-7
– ident: e_1_2_9_51_1
  doi: 10.1149/2.0231915jes
– ident: e_1_2_9_54_1
  doi: 10.1021/ja2054644
– ident: e_1_2_9_4_1
– ident: e_1_2_9_39_1
  doi: 10.1038/nmat2878
– ident: e_1_2_9_43_1
  doi: 10.1039/c2ra20087b
– ident: e_1_2_9_45_1
  doi: 10.1149/1.2940319
– ident: e_1_2_9_2_1
– ident: e_1_2_9_34_1
  doi: 10.1149/1.1784820
– ident: e_1_2_9_40_1
  doi: 10.1021/jp025868l
– ident: e_1_2_9_10_1
  doi: 10.1038/ncomms12363
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nanoen.2019.02.020
– ident: e_1_2_9_37_1
  doi: 10.1038/nmat3391
– ident: e_1_2_9_38_1
  doi: 10.1002/anie.201406455
– ident: e_1_2_9_20_1
  doi: 10.1149/2.0111706jes
– ident: e_1_2_9_8_1
  doi: 10.1039/C9EE01872G
– ident: e_1_2_9_33_1
  doi: 10.1039/C7TA05681H
– ident: e_1_2_9_35_1
  doi: 10.1038/35068529
– ident: e_1_2_9_26_1
  doi: 10.1063/1.2051791
– ident: e_1_2_9_47_1
  doi: 10.1021/am900600y
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ijhydene.2018.06.109
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevLett.68.1168
– ident: e_1_2_9_41_1
  doi: 10.1016/j.elecom.2007.03.001
– ident: e_1_2_9_15_1
  doi: 10.1021/acsaem.0c00735
– ident: e_1_2_9_30_1
  doi: 10.1016/0956-7151(91)90062-6
– ident: e_1_2_9_6_1
  doi: 10.1021/acsami.0c15687
– ident: e_1_2_9_9_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_9_36_1
  doi: 10.1149/1.1492288
– ident: e_1_2_9_44_1
  doi: 10.1002/adma.200702760
– ident: e_1_2_9_52_1
  doi: 10.1149/2.0421908jes
– ident: e_1_2_9_16_1
  doi: 10.1021/acscatal.7b03787
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jcat.2020.11.038
– ident: e_1_2_9_48_1
  doi: 10.1149/2.0731904jes
– ident: e_1_2_9_22_1
  doi: 10.1021/acsmaterialslett.9b00414
– ident: e_1_2_9_46_1
  doi: 10.1039/D0EE03244A
– ident: e_1_2_9_42_1
  doi: 10.1016/j.electacta.2012.08.059
– ident: e_1_2_9_5_1
  doi: 10.1146/annurev-chembioeng-060718-030241
– ident: e_1_2_9_32_1
  doi: 10.1016/j.electacta.2020.137113
– ident: e_1_2_9_29_1
  doi: 10.1107/S0021889809002222
– ident: e_1_2_9_12_1
  doi: 10.1149/2.0151611jes
– ident: e_1_2_9_28_1
  doi: 10.1107/S0021889812004037
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ijhydene.2019.02.074
– ident: e_1_2_9_13_1
  doi: 10.1021/acsami.0c12111
– ident: e_1_2_9_55_1
  doi: 10.1021/jp212310v
SSID ssj0000491033
Score 2.5979633
Snippet The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the...
Abstract The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accelerated tests
Catalysts
Catalytic activity
Electrodes
Electrolysis
Electrolytes
Energy technology
Hydrogen-based energy
Inhomogeneity
Ionomers
Iridium
Membranes
Morphology
Nanoparticles
nanoporous metals
Nanosheets
oxygen evolution reaction
Oxygen evolution reactions
Polymers
water electrolysis
Title Nanoporous Iridium Nanosheets for Polymer Electrolyte Membrane Electrolysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202101438
https://www.proquest.com/docview/2570260645
https://www.osti.gov/biblio/1997300
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4inKLsgHJE6GxHHc5FjBwvLoXtiVeoscZ8x22SaoSYWWX884dh6F5XmJWstKGs_n0TfTmc-EPJU27kllwWSgCyYkpEwlQcKA5xwURttiZruRF8fy6FS8W8bLoYi97S5p8uf625V9Jf9jVRxDu9ou2X-wbH9THMDPaF-8ooXx-lc2RtdYIX-2VaxvN6titV1bb1nVZwBNq7Ngy9su17aOw512c3HZ4DaGNYbISC77wXpVj0nqvKsLANcYiKTWvc2oFsA2AZ17kf2valNCWWwHN-scyBJf_FOPvbJZfT5TuUtDq6LPWPvJb7ZV3U33WQge9mVWY1835ByRHV9R-dMlN5yrRWLAZBLt-uJwhDmX5fzJxzvNWAWlFRLg9qxhpw_zg262raCJguA62eMYQaAL3Ju_Wnz42CfgMDQKg6htwOh-SSfqGfAXu7ffIS2TCp3vTkAyDmtaXnJym9zyAQWdO3TcIdegvEtujmQm75H3A06oxwkdcEIRJ9TjhI5wQjuc0DFO7pPT14cnL4-YP0SD6SgRCUsgkiZPVGEkEg-VximPI2R5sTEguA4Nxv9axsCLsND2730-44ZDDIkRKgYTPSCTsirhIaEBKDEL-CxHEi7w7qnJpTYRshuBQYRSU8K6Vcq0V5i3B51cZE4bm2d2VbN-VafkWT__i9NW-eXMfbvoGbJCK22sbQ2YbjJv4ik56GyR-d1ZZ_Z0RozVpYinhLf2-cMzsvnh8aL_9ui3T9wnN4ZNcEAmzWYLj5GcNvkTD7PvsvaOrw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Iridium+Nanosheets+for+Polymer+Electrolyte+Membrane+Electrolysis&rft.jtitle=Advanced+energy+materials&rft.au=Chatterjee%2C+Swarnendu&rft.au=Peng%2C+Xiong&rft.au=Intikhab%2C+Saad&rft.au=Zeng%2C+Guosong&rft.date=2021-09-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1614-6832&rft.volume=11&rft.issue=34&rft_id=info:doi/10.1002%2Faenm.202101438&rft.externalDocID=1997300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon