Nanoporous Iridium Nanosheets for Polymer Electrolyte Membrane Electrolysis
The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 34 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2021
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIrx‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO2 nanoparticle catalyst. The utility of the npIrx‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mgIr cm−2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles.
Nanoporous Ir nanosheets (npIrx‐NS) are a unique anode catalyst combining high surface‐to‐volume and interconnected metallic backbone to yield enhanced mass activities and reduced ohmic losses in water electrolyzers. The utility of npIrx‐NS is demonstrated by enhanced performance at low loadings while exhibiting negligible loss in performance following 50 000 accelerated stress test cycles. |
---|---|
AbstractList | Abstract
The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIr
x
‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO
2
nanoparticle catalyst. The utility of the npIr
x
‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mg
Ir
cm
−2
while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles. The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIrx‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO2 nanoparticle catalyst. The utility of the npIrx‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mgIr cm−2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles. The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIrx‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO2 nanoparticle catalyst. The utility of the npIrx‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mgIr cm−2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles. Nanoporous Ir nanosheets (npIrx‐NS) are a unique anode catalyst combining high surface‐to‐volume and interconnected metallic backbone to yield enhanced mass activities and reduced ohmic losses in water electrolyzers. The utility of npIrx‐NS is demonstrated by enhanced performance at low loadings while exhibiting negligible loss in performance following 50 000 accelerated stress test cycles. The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the technological portfolio. Much of the focus on anode catalyst development for polymer electrolyte membrane water electrolyzers (PEMWE) is centered on activity as controlled by compositional and morphological impacts on reactant/intermediate/product adsorption. However, the effectiveness of this strategy is found to be limited upon integration of these materials into PEMWE membrane electrode assemblies (MEA). Regardless of catalyst activity, the combination of electrode inhomogeneity, ionomer integration, and high density of oxide–oxide interfaces yields significant performance losses associated with poor catalytic electrode conductivity. Here many of these limitations are addressed through the development of a unique catalyst morphology composed of nanoporous Ir nanosheets (npIr x ‐NS) that exhibit high catalytic activity for the anodic oxygen evolution reaction and superior electrode electronic conductivity in comparison to a commercial IrO 2 nanoparticle catalyst. The utility of the npIr x ‐NS is demonstrated through incorporation into PEMWE MEAs where their performance exceeds that of commercial catalyst coated membranes at loadings as low as 0.06 mg Ir cm −2 while exhibiting a negligible loss in performance following 50 000 accelerated stress test cycles. |
Author | Kariuki, Nancy N. Snyder, Joshua Intikhab, Saad Myers, Deborah J. Danilovic, Nemanja Zeng, Guosong Chatterjee, Swarnendu Peng, Xiong |
Author_xml | – sequence: 1 givenname: Swarnendu surname: Chatterjee fullname: Chatterjee, Swarnendu organization: Drexel University – sequence: 2 givenname: Xiong surname: Peng fullname: Peng, Xiong organization: Lawrence Berkeley National Laboratory – sequence: 3 givenname: Saad surname: Intikhab fullname: Intikhab, Saad organization: Drexel University – sequence: 4 givenname: Guosong surname: Zeng fullname: Zeng, Guosong organization: Lawrence Berkeley National Laboratory – sequence: 5 givenname: Nancy N. surname: Kariuki fullname: Kariuki, Nancy N. organization: Argonne National Laboratory – sequence: 6 givenname: Deborah J. surname: Myers fullname: Myers, Deborah J. organization: Argonne National Laboratory – sequence: 7 givenname: Nemanja surname: Danilovic fullname: Danilovic, Nemanja email: ndanilovic@lbl.gov organization: Lawrence Berkeley National Laboratory – sequence: 8 givenname: Joshua orcidid: 0000-0003-3162-4126 surname: Snyder fullname: Snyder, Joshua email: jds43@drexel.edu organization: Drexel University |
BackLink | https://www.osti.gov/biblio/1997300$$D View this record in Osti.gov |
BookMark | eNqFkM1PAjEQxRuDiYhcPW_0DPZz2T0SgkoE9KDnppRpKNltsV1i-O8tWQOJiXEunU7eb-blXaOO8w4QuiV4SDCmDwpcPaSYEkw4Ky5Ql-SED_KC486pZ_QK9WPc4lS8JJixLnpZKud3Pvh9zGbBru2-zo6juAFoYmZ8yN58daghZNMKdBPSp4FsAfUqKAfnYbTxBl0aVUXo_7w99PE4fZ88D-avT7PJeD7QrODFoACWm1Wh1iYvS6xKUVLBBKHCGOBUE0PwSOcC6JqsdXLK6YgaCgIKw5UAw3rort3rY2Nl1LYBvdHeuWRFkrIcMYyT6L4V7YL_3ENs5Nbvg0u-JBUjTHOcc5FUw1alg48xgJG7YGsVDpJgeQxWHoOVp2ATwH8B6bxqrHdNULb6Gytb7MtWcPjniBxPl4sz-w1mv48J |
CitedBy_id | crossref_primary_10_1039_D3YA00492A crossref_primary_10_1021_acs_chemrev_3c00904 crossref_primary_10_1002_smll_202304307 crossref_primary_10_1002_aenm_202204169 crossref_primary_10_1002_aenm_202401659 crossref_primary_10_1002_adem_202301538 crossref_primary_10_1002_smll_202301516 crossref_primary_10_1016_j_cej_2024_153015 crossref_primary_10_1016_j_susmat_2024_e00972 crossref_primary_10_1016_j_joule_2024_01_002 crossref_primary_10_1002_anie_202504531 crossref_primary_10_1002_sstr_202200130 crossref_primary_10_1021_acsmaterialslett_4c00835 crossref_primary_10_1021_acssuschemeng_3c06209 crossref_primary_10_3390_nano13152264 crossref_primary_10_1002_advs_202102950 crossref_primary_10_1016_j_cej_2023_147913 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125552 crossref_primary_10_1021_acscatal_2c06282 crossref_primary_10_1002_anie_202410978 crossref_primary_10_1002_aenm_202400999 crossref_primary_10_1016_j_apcatb_2023_123402 crossref_primary_10_1038_s41467_023_41102_2 crossref_primary_10_1002_ange_202212341 crossref_primary_10_1016_j_ijhydene_2023_07_048 crossref_primary_10_1002_advs_202309440 crossref_primary_10_3390_electrochem3040040 crossref_primary_10_1002_anie_202415032 crossref_primary_10_3390_chemengineering8060116 crossref_primary_10_1002_ange_202504531 crossref_primary_10_1021_acsnano_4c06373 crossref_primary_10_1016_j_xcrp_2024_101880 crossref_primary_10_1021_acs_chemrev_4c00133 crossref_primary_10_1016_j_ijhydene_2025_02_443 crossref_primary_10_1038_s41467_025_58019_7 crossref_primary_10_1021_acsaem_4c01866 crossref_primary_10_1021_acscatal_2c00570 crossref_primary_10_1016_j_jpowsour_2023_232654 crossref_primary_10_1039_D4EE03541K crossref_primary_10_1016_j_cattod_2023_114140 crossref_primary_10_1021_acscatal_3c05162 crossref_primary_10_1002_adma_202308060 crossref_primary_10_1002_bte2_20230017 crossref_primary_10_1016_j_joule_2024_06_005 crossref_primary_10_1039_D2TA07677B crossref_primary_10_1002_anie_202212341 crossref_primary_10_1155_2023_3183108 crossref_primary_10_1016_j_apcatb_2024_124462 crossref_primary_10_1039_D3EY00279A crossref_primary_10_1021_acs_chemrev_2c00469 crossref_primary_10_1016_j_apcatb_2023_123298 crossref_primary_10_1016_j_apsusc_2021_151911 crossref_primary_10_1134_S2635167624600135 crossref_primary_10_1021_acs_energyfuels_3c01473 crossref_primary_10_1002_ange_202415032 crossref_primary_10_1002_EXP_20220112 crossref_primary_10_1021_accountsmr_1c00180 crossref_primary_10_1038_s41467_024_54646_8 crossref_primary_10_1016_j_jpowsour_2022_232130 crossref_primary_10_1002_advs_202201654 crossref_primary_10_1021_acsenergylett_4c02475 crossref_primary_10_1002_ange_202410978 crossref_primary_10_1016_j_flatc_2024_100801 crossref_primary_10_1021_acs_nanolett_2c03461 crossref_primary_10_1039_D4QI00013G crossref_primary_10_1039_D4NR01117A |
Cites_doi | 10.1039/C9EE03626A 10.1149/2.0981802jes 10.1149/2.F04181if 10.1149/2.1241908jes 10.1063/1.555839 10.1107/S0021889809008802 10.1021/jz501061n 10.1002/aenm.201903216 10.1021/acscatal.0c03098 10.1038/s41467-017-01734-7 10.1149/2.0231915jes 10.1021/ja2054644 10.1038/nmat2878 10.1039/c2ra20087b 10.1149/1.2940319 10.1149/1.1784820 10.1021/jp025868l 10.1038/ncomms12363 10.1016/j.nanoen.2019.02.020 10.1038/nmat3391 10.1002/anie.201406455 10.1149/2.0111706jes 10.1039/C9EE01872G 10.1039/C7TA05681H 10.1038/35068529 10.1063/1.2051791 10.1021/am900600y 10.1016/j.ijhydene.2018.06.109 10.1103/PhysRevLett.68.1168 10.1016/j.elecom.2007.03.001 10.1021/acsaem.0c00735 10.1016/0956-7151(91)90062-6 10.1021/acsami.0c15687 10.1126/science.aaf5050 10.1149/1.1492288 10.1002/adma.200702760 10.1149/2.0421908jes 10.1021/acscatal.7b03787 10.1016/j.jcat.2020.11.038 10.1149/2.0731904jes 10.1021/acsmaterialslett.9b00414 10.1039/D0EE03244A 10.1016/j.electacta.2012.08.059 10.1146/annurev-chembioeng-060718-030241 10.1016/j.electacta.2020.137113 10.1107/S0021889809002222 10.1149/2.0151611jes 10.1107/S0021889812004037 10.1016/j.ijhydene.2019.02.074 10.1021/acsami.0c12111 10.1021/jp212310v |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M OTOTI |
DOI | 10.1002/aenm.202101438 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 1997300 10_1002_aenm_202101438 AENM202101438 |
Genre | article |
GrantInformation_xml | – fundername: Argonne National Laboratory funderid: DE‐AS02‐06CH11357 – fundername: National Center for Electron Microscopy – fundername: National Science Foundation Division of Materials Research funderid: 1904571; DE‐AC02‐05CH11231 – fundername: Advanced Photon Source – fundername: Argonne National Laboratory funderid: DE‐AC02‐06CH11357 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M OTOTI |
ID | FETCH-LOGICAL-c3848-8e36fb8adf6990a9592535125ffe42c1f107c65e2d1dc0044272f2e5e8f4a5ef3 |
ISSN | 1614-6832 |
IngestDate | Sun Jul 13 03:03:16 EDT 2025 Sun Jul 20 09:10:40 EDT 2025 Tue Jul 01 01:43:40 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Jan 22 16:29:23 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3848-8e36fb8adf6990a9592535125ffe42c1f107c65e2d1dc0044272f2e5e8f4a5ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
ORCID | 0000-0003-3162-4126 0000000331624126 |
OpenAccessLink | https://www.osti.gov/biblio/1997300 |
PQID | 2570260645 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1997300 proquest_journals_2570260645 crossref_primary_10_1002_aenm_202101438 crossref_citationtrail_10_1002_aenm_202101438 wiley_primary_10_1002_aenm_202101438_AENM202101438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 5 2017; 8 2018; 165 1991; 39 2009; 42 2019; 10 2019; 1 2020; 362 2019; 12 2019; 59 2019; 15 2005; 87 2020; 13 2020; 12 2020; 10 2018; 43 2012; 11 2018; 27 2019; 166 2016; 163 2011; 133 2001; 410 2016; 7 2018; 8 2014; 5 2012; 2 2020; 3 2019; 44 2004; 151 2002; 106 2007; 9 2019 2016; 353 2021; 393 2002; 149 1992; 68 2017; 164 2008; 20 2008; 155 2010; 2 2012; 45 2012; 116 2010; 9 2012; 85 1989; 18 2014; 53 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Alia S. (e_1_2_9_53_1) 2019 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 9 start-page: 1639 year: 2007 publication-title: Electrochem. Commun. – volume: 20 start-page: 4883 year: 2008 publication-title: Adv. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 42 start-page: 347 year: 2009 publication-title: J. Appl. Crystallogr. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 2474 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 1449 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 4872 year: 2020 publication-title: Energy Environ. Sci. – volume: 85 start-page: 384 year: 2012 publication-title: Electrochim. Acta – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 165 start-page: F82 year: 2018 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 375 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3548 year: 2019 publication-title: Energy Environ. Sci. – volume: 42 start-page: 469 year: 2009 publication-title: J. Appl. Crystallogr. – volume: 59 start-page: 146 year: 2019 publication-title: Nano Energy – volume: 9 start-page: 904 year: 2010 publication-title: Nat. Mater. – volume: 10 year: 2020 publication-title: ACS Catal. – volume: 166 start-page: F555 year: 2019 publication-title: J. Electrochem. Soc. – volume: 39 start-page: 2477 year: 1991 publication-title: Acta Metall. Mater. – volume: 166 start-page: F487 year: 2019 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 526 year: 2019 publication-title: ACS Mater. Lett. – volume: 106 year: 2002 publication-title: J. Phys. Chem. B – volume: 155 start-page: C464 year: 2008 publication-title: J. Electrochem. Soc. – volume: 43 year: 2018 publication-title: Int. J. Hydrogen Energy – volume: 166 start-page: F282 year: 2019 publication-title: J. Electrochem. Soc. – volume: 353 start-page: 1011 year: 2016 publication-title: Science – volume: 68 start-page: 1168 year: 1992 publication-title: Phys. Rev. Lett. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – year: 2019 – volume: 163 year: 2016 publication-title: J. Electrochem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 4481 year: 2012 publication-title: RSC Adv. – volume: 410 start-page: 450 year: 2001 publication-title: Nature – volume: 15 year: 2019 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 219 year: 2019 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 44 start-page: 9174 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 8276 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 11 start-page: 775 year: 2012 publication-title: Nat. Mater. – volume: 18 start-page: 1 year: 1989 publication-title: J. Phys. Chem. Ref. Data – volume: 362 year: 2020 publication-title: Electrochim. Acta – volume: 8 start-page: 2111 year: 2018 publication-title: ACS Catal. – volume: 151 start-page: C614 year: 2004 publication-title: J. Electrochem. Soc. – volume: 164 start-page: F464 year: 2017 publication-title: J. Electrochem. Soc. – volume: 116 start-page: 6497 year: 2012 publication-title: J. Phys. Chem. A – volume: 13 start-page: 2096 year: 2020 publication-title: Energy Environ. Sci. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 393 start-page: 303 year: 2021 publication-title: J. Catal. – volume: 149 start-page: B370 year: 2002 publication-title: J. Electrochem. Soc. – volume: 45 start-page: 324 year: 2012 publication-title: J. Appl. Crystallogr. – volume: 27 start-page: 47 year: 2018 publication-title: Electrochem. Soc. Interface – ident: e_1_2_9_49_1 doi: 10.1039/C9EE03626A – ident: e_1_2_9_19_1 doi: 10.1149/2.0981802jes – ident: e_1_2_9_1_1 doi: 10.1149/2.F04181if – ident: e_1_2_9_3_1 – ident: e_1_2_9_18_1 doi: 10.1149/2.1241908jes – ident: e_1_2_9_31_1 doi: 10.1063/1.555839 – ident: e_1_2_9_27_1 doi: 10.1107/S0021889809008802 – volume-title: H2@Scale : Experimental Characterization of Durability of Advanced Electrolyzer Concepts in Dynamic Loading year: 2019 ident: e_1_2_9_53_1 – ident: e_1_2_9_7_1 doi: 10.1021/jz501061n – ident: e_1_2_9_17_1 doi: 10.1002/aenm.201903216 – ident: e_1_2_9_14_1 doi: 10.1021/acscatal.0c03098 – ident: e_1_2_9_11_1 doi: 10.1038/s41467-017-01734-7 – ident: e_1_2_9_51_1 doi: 10.1149/2.0231915jes – ident: e_1_2_9_54_1 doi: 10.1021/ja2054644 – ident: e_1_2_9_4_1 – ident: e_1_2_9_39_1 doi: 10.1038/nmat2878 – ident: e_1_2_9_43_1 doi: 10.1039/c2ra20087b – ident: e_1_2_9_45_1 doi: 10.1149/1.2940319 – ident: e_1_2_9_2_1 – ident: e_1_2_9_34_1 doi: 10.1149/1.1784820 – ident: e_1_2_9_40_1 doi: 10.1021/jp025868l – ident: e_1_2_9_10_1 doi: 10.1038/ncomms12363 – ident: e_1_2_9_21_1 doi: 10.1016/j.nanoen.2019.02.020 – ident: e_1_2_9_37_1 doi: 10.1038/nmat3391 – ident: e_1_2_9_38_1 doi: 10.1002/anie.201406455 – ident: e_1_2_9_20_1 doi: 10.1149/2.0111706jes – ident: e_1_2_9_8_1 doi: 10.1039/C9EE01872G – ident: e_1_2_9_33_1 doi: 10.1039/C7TA05681H – ident: e_1_2_9_35_1 doi: 10.1038/35068529 – ident: e_1_2_9_26_1 doi: 10.1063/1.2051791 – ident: e_1_2_9_47_1 doi: 10.1021/am900600y – ident: e_1_2_9_23_1 doi: 10.1016/j.ijhydene.2018.06.109 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevLett.68.1168 – ident: e_1_2_9_41_1 doi: 10.1016/j.elecom.2007.03.001 – ident: e_1_2_9_15_1 doi: 10.1021/acsaem.0c00735 – ident: e_1_2_9_30_1 doi: 10.1016/0956-7151(91)90062-6 – ident: e_1_2_9_6_1 doi: 10.1021/acsami.0c15687 – ident: e_1_2_9_9_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_9_36_1 doi: 10.1149/1.1492288 – ident: e_1_2_9_44_1 doi: 10.1002/adma.200702760 – ident: e_1_2_9_52_1 doi: 10.1149/2.0421908jes – ident: e_1_2_9_16_1 doi: 10.1021/acscatal.7b03787 – ident: e_1_2_9_24_1 doi: 10.1016/j.jcat.2020.11.038 – ident: e_1_2_9_48_1 doi: 10.1149/2.0731904jes – ident: e_1_2_9_22_1 doi: 10.1021/acsmaterialslett.9b00414 – ident: e_1_2_9_46_1 doi: 10.1039/D0EE03244A – ident: e_1_2_9_42_1 doi: 10.1016/j.electacta.2012.08.059 – ident: e_1_2_9_5_1 doi: 10.1146/annurev-chembioeng-060718-030241 – ident: e_1_2_9_32_1 doi: 10.1016/j.electacta.2020.137113 – ident: e_1_2_9_29_1 doi: 10.1107/S0021889809002222 – ident: e_1_2_9_12_1 doi: 10.1149/2.0151611jes – ident: e_1_2_9_28_1 doi: 10.1107/S0021889812004037 – ident: e_1_2_9_50_1 doi: 10.1016/j.ijhydene.2019.02.074 – ident: e_1_2_9_13_1 doi: 10.1021/acsami.0c12111 – ident: e_1_2_9_55_1 doi: 10.1021/jp212310v |
SSID | ssj0000491033 |
Score | 2.5979633 |
Snippet | The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to the... Abstract The growth of the hydrogen economy is predicated on advancements in electrochemical energy technologies, with water electrolysis as a key component to... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accelerated tests Catalysts Catalytic activity Electrodes Electrolysis Electrolytes Energy technology Hydrogen-based energy Inhomogeneity Ionomers Iridium Membranes Morphology Nanoparticles nanoporous metals Nanosheets oxygen evolution reaction Oxygen evolution reactions Polymers water electrolysis |
Title | Nanoporous Iridium Nanosheets for Polymer Electrolyte Membrane Electrolysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202101438 https://www.proquest.com/docview/2570260645 https://www.osti.gov/biblio/1997300 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4inKLsgHJE6GxHHc5FjBwvLoXtiVeoscZ8x22SaoSYWWX884dh6F5XmJWstKGs_n0TfTmc-EPJU27kllwWSgCyYkpEwlQcKA5xwURttiZruRF8fy6FS8W8bLoYi97S5p8uf625V9Jf9jVRxDu9ou2X-wbH9THMDPaF-8ooXx-lc2RtdYIX-2VaxvN6titV1bb1nVZwBNq7Ngy9su17aOw512c3HZ4DaGNYbISC77wXpVj0nqvKsLANcYiKTWvc2oFsA2AZ17kf2valNCWWwHN-scyBJf_FOPvbJZfT5TuUtDq6LPWPvJb7ZV3U33WQge9mVWY1835ByRHV9R-dMlN5yrRWLAZBLt-uJwhDmX5fzJxzvNWAWlFRLg9qxhpw_zg262raCJguA62eMYQaAL3Ju_Wnz42CfgMDQKg6htwOh-SSfqGfAXu7ffIS2TCp3vTkAyDmtaXnJym9zyAQWdO3TcIdegvEtujmQm75H3A06oxwkdcEIRJ9TjhI5wQjuc0DFO7pPT14cnL4-YP0SD6SgRCUsgkiZPVGEkEg-VximPI2R5sTEguA4Nxv9axsCLsND2730-44ZDDIkRKgYTPSCTsirhIaEBKDEL-CxHEi7w7qnJpTYRshuBQYRSU8K6Vcq0V5i3B51cZE4bm2d2VbN-VafkWT__i9NW-eXMfbvoGbJCK22sbQ2YbjJv4ik56GyR-d1ZZ_Z0RozVpYinhLf2-cMzsvnh8aL_9ui3T9wnN4ZNcEAmzWYLj5GcNvkTD7PvsvaOrw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Iridium+Nanosheets+for+Polymer+Electrolyte+Membrane+Electrolysis&rft.jtitle=Advanced+energy+materials&rft.au=Chatterjee%2C+Swarnendu&rft.au=Peng%2C+Xiong&rft.au=Intikhab%2C+Saad&rft.au=Zeng%2C+Guosong&rft.date=2021-09-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1614-6832&rft.volume=11&rft.issue=34&rft_id=info:doi/10.1002%2Faenm.202101438&rft.externalDocID=1997300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |