Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators
Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enh...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 42 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2019
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag+) and deposition in SF films.
A completely new materials engineering strategy, functionalized templated mesoscopic reconstruction, is introduced. The designed silk meso‐functional materials display significantly enhanced performance and gives rise to a new class of silk electronics (memristors and synaptic emulators). This progress represents a breakthrough in flexible materials and flexible electronics. |
---|---|
AbstractList | Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag+) and deposition in SF films. Abstract Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag + ) and deposition in SF films. Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag + ) and deposition in SF films. Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag+) and deposition in SF films. A completely new materials engineering strategy, functionalized templated mesoscopic reconstruction, is introduced. The designed silk meso‐functional materials display significantly enhanced performance and gives rise to a new class of silk electronics (memristors and synaptic emulators). This progress represents a breakthrough in flexible materials and flexible electronics. |
Author | Shi, Chenyang Sushko, Maria L. Wang, Jingjuan Yan, Xiaobing Qiu, Wu Liu, Xiang Yang |
Author_xml | – sequence: 1 givenname: Chenyang surname: Shi fullname: Shi, Chenyang organization: Xiamen University – sequence: 2 givenname: Jingjuan surname: Wang fullname: Wang, Jingjuan organization: Hebei University – sequence: 3 givenname: Maria L. surname: Sushko fullname: Sushko, Maria L. organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Wu surname: Qiu fullname: Qiu, Wu organization: Xiamen University – sequence: 5 givenname: Xiaobing surname: Yan fullname: Yan, Xiaobing email: yanxiaobing@ime.ac.cn organization: Hebei University – sequence: 6 givenname: Xiang Yang orcidid: 0000-0002-3890-8300 surname: Liu fullname: Liu, Xiang Yang email: phyliuxy@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.osti.gov/biblio/1557005$$D View this record in Osti.gov |
BookMark | eNqFkcFvFCEUh4mpiW316pnoebePAYbB21p3W5NuPVQTb4RhWKUysAIbO8f-52VdUxMT0xOPl-97efA7QUchBovQawJzAtCc6WEzzhsgEpgQ4hk6Ji1pZxSa7uixJl9foJOcbwGIEJQdo_sb53_glbd3rvcWL701JcXgTH6HVymO-H0c--kOjzE5_JtdfMPXOkTjd7nYlPHl1Cc34LWuN6d9xiXitc0xm7h1ppZjcrnESuow4Jsp6G2p_eW483rffomeb6pmX_05T9GX1fLz-eXs6tPFx_PF1czQjokZt9JQAkYKoLKzhMmGSU2pbUFqyUXT6V6CYZuuHYRl0HHdtX3HheVND4Okp-jNYW7MxalsXLHmu4kh1BcrwrkA4BV6e4C2Kf7c2VzUbdylUPdSDQXOmvpxXaXYgTIp5pzsRtVpurgYStLOKwJqn4jaJ6IeE6na_B9tm9yo0_R_QR6EX87b6QlaLT6s1n_dB-U1oMA |
CitedBy_id | crossref_primary_10_1002_adma_202005910 crossref_primary_10_1021_acsami_9b19721 crossref_primary_10_1021_acssensors_4c01568 crossref_primary_10_3390_ma16051884 crossref_primary_10_1016_j_talanta_2023_124565 crossref_primary_10_1021_acsami_3c19261 crossref_primary_10_1177_0040517520975622 crossref_primary_10_1016_j_est_2022_106032 crossref_primary_10_1063_5_0232757 crossref_primary_10_1063_5_0174426 crossref_primary_10_1002_adma_202411946 crossref_primary_10_1021_acsaelm_3c00558 crossref_primary_10_1021_acs_jpclett_1c02815 crossref_primary_10_1002_smll_202000203 crossref_primary_10_3390_nano12223976 crossref_primary_10_3390_biomimetics8080612 crossref_primary_10_1039_D2NH00163B crossref_primary_10_1016_j_electacta_2021_139611 crossref_primary_10_1002_adma_202105196 crossref_primary_10_1021_acs_nanolett_4c04783 crossref_primary_10_1021_acsami_0c15530 crossref_primary_10_1016_j_jcrysgro_2022_126977 crossref_primary_10_1063_5_0156972 crossref_primary_10_3390_nano12173061 crossref_primary_10_3390_mi14020235 crossref_primary_10_1002_smsc_202200028 crossref_primary_10_1039_D3TC03034B crossref_primary_10_1007_s10854_023_11101_6 crossref_primary_10_1002_smsc_202000049 crossref_primary_10_1007_s40843_022_2115_6 crossref_primary_10_3390_nano12203709 crossref_primary_10_1039_D3NR01347B crossref_primary_10_1002_aelm_202100843 crossref_primary_10_1002_aelm_202101139 crossref_primary_10_1021_acsbiomaterials_1c00513 crossref_primary_10_1038_s41427_020_00274_9 crossref_primary_10_1039_D2TB00046F crossref_primary_10_1002_adfm_202002882 crossref_primary_10_1016_j_nanoen_2021_106748 crossref_primary_10_1063_5_0171193 crossref_primary_10_1002_adma_202211202 crossref_primary_10_1016_j_ijbiomac_2024_137926 crossref_primary_10_1002_aelm_202201032 crossref_primary_10_1002_aenm_202100519 crossref_primary_10_1093_nar_gkab271 crossref_primary_10_1016_j_nanoen_2020_105156 crossref_primary_10_1039_D3TC04507B crossref_primary_10_1016_j_orgel_2023_106745 crossref_primary_10_1016_j_sna_2023_114681 crossref_primary_10_1002_smll_202201205 crossref_primary_10_1021_acs_analchem_0c04165 crossref_primary_10_1021_acsbiomaterials_0c01657 crossref_primary_10_1039_D4SU00459K crossref_primary_10_1039_D1CP04622E crossref_primary_10_1186_s12951_023_02117_5 crossref_primary_10_1002_adma_202500073 crossref_primary_10_1126_sciadv_ado4142 crossref_primary_10_1021_acsbiomaterials_4c00254 crossref_primary_10_1021_acsnano_1c00820 crossref_primary_10_1016_j_orgel_2022_106622 crossref_primary_10_1080_03081079_2021_1985487 crossref_primary_10_1002_aisy_202000180 crossref_primary_10_1002_adma_202301321 crossref_primary_10_1021_acsami_1c07687 crossref_primary_10_1088_1361_6528_ad8890 crossref_primary_10_1002_advs_202103981 crossref_primary_10_1016_j_mtphys_2024_101429 crossref_primary_10_1063_5_0060344 crossref_primary_10_1016_j_matt_2024_10_006 crossref_primary_10_1002_adma_202311472 crossref_primary_10_1002_aelm_201901402 crossref_primary_10_7498_aps_69_20200928 crossref_primary_10_1016_j_surfin_2024_105090 crossref_primary_10_7498_aps_69_20200617 crossref_primary_10_1002_smtd_202001055 crossref_primary_10_1007_s40843_024_3072_4 crossref_primary_10_3390_nano13233021 crossref_primary_10_1039_D1MH01433A crossref_primary_10_1002_adfm_202003635 crossref_primary_10_1016_j_ceramint_2022_05_264 crossref_primary_10_1016_j_cej_2021_131999 crossref_primary_10_1021_acsbiomaterials_2c00209 |
Cites_doi | 10.1002/anie.201606661 10.1002/adfm.201603403 10.1126/science.1260318 10.1016/j.mser.2014.06.002 10.1039/C5NR04768D 10.1002/adma.201301983 10.1021/jz201032w 10.1126/science.aaa9306 10.1038/nnano.2014.38 10.1038/ncomms5232 10.1002/adhm.201600312 10.1038/nature16492 10.1039/C8CS00187A 10.1002/adfm.201700628 10.1039/C3TB21602K 10.1002/smll.200900726 10.1002/adfm.201705320 10.1002/adfm.201400249 10.1021/bm900993n 10.1038/nature25494 10.1002/adfm.201602908 10.1038/s41928-018-0021-4 10.1038/s41598-017-12209-6 10.1002/smll.201502906 10.1002/adma.201004071 10.1523/JNEUROSCI.18-24-10464.1998 10.1021/nl904092h 10.1126/science.1206157 10.1021/acsnano.7b03347 10.1002/adma.201504276 10.1002/adfm.201501389 10.1002/smll.201800288 10.1016/j.mattod.2017.12.001 10.1002/adma.201700906 10.1103/PhysRevLett.93.077402 10.1038/srep10150 10.1038/ncomms1737 10.1038/nature02630 10.1146/annurev.physiol.64.092501.114547 10.4208/cicp.040913.120514a 10.1002/advs.201800714 10.1038/ncomms2573 10.1039/C5CS00074B 10.1002/adfm.201600813 10.1021/bi00713a027 10.1002/bip.360280910 10.1039/C6CC00989A 10.1039/c2nr30729d 10.1038/nature16521 10.1021/ma961293c |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1002/adfm.201904777 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 1557005 10_1002_adfm_201904777 ADFM201904777 |
Genre | article |
GrantInformation_xml | – fundername: Doctoral Fund of the Ministry of Education funderid: 20130121110018 – fundername: Higher Education Discipline Innovation Project funderid: B16029 – fundername: National Nature Science Foundation funderid: U1405226 – fundername: Department of Physics – fundername: Outstanding Youth Project of Hebei Province funderid: F2016201220 – fundername: National Natural Science Foundation of China funderid: 61306098; 61674050; 61422407; 61874158 – fundername: 1000 Talents Program – fundername: Natural Science Foundation of Hebei Province funderid: E2012201088; E2013201176 – fundername: Science and Technology Project of Xiamen City funderid: 3502Z20183012 – fundername: National University of Singapore |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c3847-5e9c310c970398e149249a33e609a95728ab90c4f86d7e4085a86b857e52b0d93 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Sep 18 05:39:44 EDT 2023 Fri Jul 25 08:00:23 EDT 2025 Tue Jul 01 04:12:03 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:39:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3847-5e9c310c970398e149249a33e609a95728ab90c4f86d7e4085a86b857e52b0d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE DE‐AC05‐76RLO1830 |
ORCID | 0000-0002-3890-8300 0000000238908300 |
OpenAccessLink | https://www.osti.gov/biblio/1557005 |
PQID | 2305420018 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1557005 proquest_journals_2305420018 crossref_citationtrail_10_1002_adfm_201904777 crossref_primary_10_1002_adfm_201904777 wiley_primary_10_1002_adfm_201904777_ADFM201904777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Germany |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2010; 11 2017; 7 2010; 10 1974; 13 2013; 4 2013; 25 2015; 347 2014; 24 2018; 47 1998; 18 2014; 5 2018; 5 2014; 2 2018; 1 2015; 44 2014; 16 2011; 23 2014; 9 2011; 333 2018; 28 2015; 5 2011; 2 2017; 27 2016; 529 2008 2016; 52 2017; 29 2014; 83 2018; 21 2015; 7 2011; 5 2016; 12 1989; 28 2004; 429 2016; 55 2015; 350 2016; 5 2015; 25 2012; 3 2004; 93 2002; 64 1997; 30 2017; 11 2018; 555 2016; 530 2009; 5 2016; 28 2012; 4 2016; 26 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Ramos C. Z. (e_1_2_7_50_1) 2011; 5 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Hemminger J. (e_1_2_7_20_1) 2008 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 2 start-page: 2136 year: 2014 publication-title: J. Mater. Chem. B – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 6486 year: 2018 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 3350 year: 1974 publication-title: Biochemistry – volume: 18 year: 1998 publication-title: J. Neurosci. – volume: 10 start-page: 1297 year: 2010 publication-title: Nano Lett. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 14 year: 2018 publication-title: Small – volume: 21 start-page: 537 year: 2018 publication-title: Mater. Today – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 5 start-page: 2528 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 25 start-page: 5498 year: 2013 publication-title: Adv. Mater. – volume: 44 start-page: 7881 year: 2015 publication-title: Chem. Soc. Rev. – year: 2008 – volume: 24 start-page: 5284 year: 2014 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 130 year: 2018 publication-title: Nat. Electron. – volume: 5 start-page: 2253 year: 2009 publication-title: Small – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 26 year: 2011 publication-title: Front. Neurosci. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 9032 year: 2016 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 4255 year: 2012 publication-title: Nanoscale – volume: 30 start-page: 2860 year: 1997 publication-title: Macromolecules – volume: 23 start-page: 1630 year: 2011 publication-title: Adv. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 530 start-page: 71 year: 2016 publication-title: Nature – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 28 start-page: 4250 year: 2016 publication-title: Adv. Mater. – volume: 429 start-page: 739 year: 2004 publication-title: Nature – volume: 12 start-page: 2715 year: 2016 publication-title: Small – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 16 start-page: 1298 year: 2014 publication-title: Commun. Comput. Phys. – volume: 347 start-page: 159 year: 2015 publication-title: Science – volume: 52 start-page: 4828 year: 2016 publication-title: Chem. Commun. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 4232 year: 2014 publication-title: Nat. Commun. – volume: 83 start-page: 1 year: 2014 publication-title: Mater. Sci. Eng., R – volume: 4 start-page: 1575 year: 2013 publication-title: Nat. Commun. – volume: 2 start-page: 2352 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 732 year: 2012 publication-title: Nat. Commun. – volume: 11 start-page: 8962 year: 2017 publication-title: ACS Nano – volume: 350 start-page: 313 year: 2015 publication-title: Science – volume: 7 year: 2015 publication-title: Nanoscale – volume: 11 start-page: 143 year: 2010 publication-title: Biomacromolecules – volume: 26 start-page: 5534 year: 2016 publication-title: Adv. Funct. Mater. – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 26 start-page: 8978 year: 2016 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1613 year: 1989 publication-title: Biopolymers – volume: 64 start-page: 355 year: 2002 publication-title: Annu. Rev. Physiol. – volume: 25 start-page: 3825 year: 2015 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_39_1 doi: 10.1002/anie.201606661 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201603403 – ident: e_1_2_7_9_1 doi: 10.1126/science.1260318 – ident: e_1_2_7_17_1 doi: 10.1016/j.mser.2014.06.002 – ident: e_1_2_7_15_1 doi: 10.1039/C5NR04768D – ident: e_1_2_7_27_1 doi: 10.1002/adma.201301983 – ident: e_1_2_7_43_1 doi: 10.1021/jz201032w – ident: e_1_2_7_7_1 doi: 10.1126/science.aaa9306 – ident: e_1_2_7_6_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_7_45_1 doi: 10.1038/ncomms5232 – ident: e_1_2_7_32_1 doi: 10.1002/adhm.201600312 – ident: e_1_2_7_8_1 doi: 10.1038/nature16492 – ident: e_1_2_7_13_1 doi: 10.1039/C8CS00187A – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201700628 – ident: e_1_2_7_22_1 doi: 10.1039/C3TB21602K – ident: e_1_2_7_41_1 doi: 10.1002/smll.200900726 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201705320 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201400249 – ident: e_1_2_7_52_1 doi: 10.1021/bm900993n – ident: e_1_2_7_3_1 doi: 10.1038/nature25494 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201602908 – ident: e_1_2_7_18_1 doi: 10.1038/s41928-018-0021-4 – volume-title: A Report from the Basic Energy Sciences Advisory Committee year: 2008 ident: e_1_2_7_20_1 – ident: e_1_2_7_28_1 doi: 10.1038/s41598-017-12209-6 – ident: e_1_2_7_14_1 doi: 10.1002/smll.201502906 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201004071 – ident: e_1_2_7_48_1 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – ident: e_1_2_7_47_1 doi: 10.1021/nl904092h – ident: e_1_2_7_5_1 doi: 10.1126/science.1206157 – ident: e_1_2_7_2_1 doi: 10.1021/acsnano.7b03347 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201504276 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201501389 – ident: e_1_2_7_25_1 doi: 10.1002/smll.201800288 – volume: 5 start-page: 26 year: 2011 ident: e_1_2_7_50_1 publication-title: Front. Neurosci. – ident: e_1_2_7_26_1 doi: 10.1016/j.mattod.2017.12.001 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201700906 – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevLett.93.077402 – ident: e_1_2_7_51_1 doi: 10.1038/srep10150 – ident: e_1_2_7_46_1 doi: 10.1038/ncomms1737 – ident: e_1_2_7_34_1 doi: 10.1038/nature02630 – ident: e_1_2_7_49_1 doi: 10.1146/annurev.physiol.64.092501.114547 – ident: e_1_2_7_42_1 doi: 10.4208/cicp.040913.120514a – ident: e_1_2_7_44_1 doi: 10.1002/advs.201800714 – ident: e_1_2_7_10_1 doi: 10.1038/ncomms2573 – ident: e_1_2_7_21_1 doi: 10.1039/C5CS00074B – ident: e_1_2_7_33_1 doi: 10.1002/adfm.201600813 – ident: e_1_2_7_36_1 doi: 10.1021/bi00713a027 – ident: e_1_2_7_37_1 doi: 10.1002/bip.360280910 – ident: e_1_2_7_29_1 doi: 10.1039/C6CC00989A – ident: e_1_2_7_40_1 doi: 10.1039/c2nr30729d – ident: e_1_2_7_4_1 doi: 10.1038/nature16521 – ident: e_1_2_7_35_1 doi: 10.1021/ma961293c |
SSID | ssj0017734 |
Score | 2.5736241 |
Snippet | Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to... Abstract Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic force microscopy Biocompatibility Bioelectricity Charge transport Crystallization Density functional theory Electronics Emulators Flexible components Materials science Memristors mesoscopic Nanoclusters nanoseeds Performance enhancement Serum albumin Silk fibroin Switching theory synaptic emulators Transport phenomena |
Title | Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201904777 https://www.proquest.com/docview/2305420018 https://www.osti.gov/biblio/1557005 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQucCBN6LssvIBiVN2U8exHW6FbVQhwoGyUm-W7bio2iZZNam03Rv_nJmkDS0SQoJbEo2VxJ7H52TmG0Leghoga5wPDISPgAOgDmwuosA7FQpmlOIxFgpnX8T0in-ax_ODKv6OH6L_4IaW0fprNHBj64tfpKEmX2AlOQQ0LiWWk2PCFqKirz1_1EjK7reyGGGC12i-Z20M2cXx8KOoNKjAuo4Q5yFubQNP-piY_SN3-SbX55vGnru739gc_-ednpBHO1RKx50aPSX3fPmMPDzgKnxOfsyWq2uaIn-mXXk66dvn1O9puq4K-qEq7PaWFtV6SVvZ8XcKvrtyqw2SMdR0usXqMJqZptN62lQ083WFhTFLB4dFy3MAkqbM6WxbGnBnjk4K7DAGl1-Qq3Ty7eM02PVvCFwEQS-IfeIAPboEvEqiPOzFYK9nosiLMDFJLJkyNgkdXyiRS49Ua0YJq2LpY2bDPIlekkFZlf4VoYnn0gDSinIruPEeXKNkOYu49UIyvxiSYL9-2u3IzbHHxkp3tMxM49TqfmqH5F0vf9PRevxR8gTVQQMgQVZdh-lHrtEjpC4L4yE53WuJ3hl_rWFXF3PMVVNDwtrl_ss99Pgyzfqz1_8y6IQ8wOMuzfCUDJr1xr8BuNTYM3J_fJl9np21pvETlnkM3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegHIAD34huA3xA4pQtdRzb4VagUYFlB7ZJu1m2407VmgS1qbRy4z_nvaQJKxJCgltiPSuJ_T6d936PkDfABoga5wMD5iPg4FAHNhdR4J0KBTNK8RgLhbMTMT3nny_iLpsQa2FafIj-wA0lo9HXKOB4IH30CzXU5DMsJQeLxqWUt8kdbOvdRFVfewSpkZTtj2UxwhSv0UWH2xiyo935O3ZpUIF87ficNz3XxvSkD4ntXrrNOLk6XNf20H3_Dc_xv77qEXmwdUzpuOWkx-SWL5-Q-zfgCp-SH6fzxRVNEULTLjyd9B10Vu9ouqwK-r4q7OaaFtVyThva8SUF9V25xRrxGFZ0usECMZqZumV8Wlc086sKa2PmDi6LBuoAKE2Z09NNaUCjOTopsMkYDD8j5-nk7MM02LZwCFwEdi-IfeLAgXQJKJZEeQjHINwzUeRFmJgklkwZm4SOz5TIpUe0NaOEVbH0MbNhnkTPyaCsSv-C0MRzacDZinIruPEetKNkOYu49UIyPxuSoNtA7bb45thmY6FbZGamcWl1v7RD8ran_9Yie_yRch_5QYNPgsC6DjOQXK1HiF4WxkNy0LGJ3sr_SkNgF3NMV1NDwpr9_ssz9PhjmvV3e_8y6TW5Oz3LjvXxp5Mv--QejrdZhwdkUC_X_iV4T7V91cjHT-ecD2M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagSAgOvBFld8EHJE7ZTR3HdvZWaKPy6AqxrNSbZTsuqrZJVm0qUW77z5lJ2myLhJDglkRjJbHn8TmZ-YaQN6AGyBrnAwPhI-AAqAObiSjwToWCGaV4jIXC4zMxuuAfJ_Fkp4q_4YdoP7ihZdT-Gg38Kpue3JCGmmyKleQQ0LiU8ja5w0WoUK8HX1sCqZ6UzX9l0cMMr95kS9sYspP98XthqVOCee1Bzl3gWkee9CEx22duEk4uj1eVPXY_f6Nz_J-XekQebGAp7Td69Jjc8sUTcn-HrPApuT6fzS9pigSadu7psO2fszyl6aLM6bsyt-sfNC8XM1rL9r9TcN6lm6-QjWFJR2ssD6NjUzVqT6uSjv2yxMqYmYPDvCY6AElTZPR8XRjwZ44Oc2wxBpefkYt0-O39KNg0cAhcBFEviH3iAD66BNxKojxsxmCzZ6LIizAxSSyZMjYJHZ8qkUmPXGtGCati6WNmwyyJnpNOURb-BaGJ59IA1IoyK7jxHnyjZBmLuPVCMj_tkmC7ftpt2M2xycZcN7zMTOPU6nZqu-RtK3_V8Hr8UfIA1UEDIkFaXYf5R67SPeQuC-MuOdxqid5Y_1LDti7mmKymuoTVy_2Xe-j-IB23Zy__ZdBrcvfLINWfP5x9OiD38HKTcnhIOtVi5Y8AOlX2VW0dvwDCug4b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+Flexible+Electronics%3A+From+Bombyx+mori+Silk+Ag+Nanoclusters+Hybrid+Materials+to+Mesoscopic+Memristors+and+Synaptic+Emulators&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Chenyang&rft.au=Wang%2C+Jingjuan&rft.au=Sushko%2C+Maria+L.&rft.au=Qiu%2C+Wu&rft.date=2019-10-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=42&rft_id=info:doi/10.1002%2Fadfm.201904777&rft.externalDocID=1557005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |