Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators

Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enh...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 42
Main Authors Shi, Chenyang, Wang, Jingjuan, Sushko, Maria L., Qiu, Wu, Yan, Xiaobing, Liu, Xiang Yang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2019
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag+) and deposition in SF films. A completely new materials engineering strategy, functionalized templated mesoscopic reconstruction, is introduced. The designed silk meso‐functional materials display significantly enhanced performance and gives rise to a new class of silk electronics (memristors and synaptic emulators). This progress represents a breakthrough in flexible materials and flexible electronics.
AbstractList Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag+) and deposition in SF films.
Abstract Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag + ) and deposition in SF films.
Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag + ) and deposition in SF films.
Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to acquire new mesoscopic bioelectronic hybrid materials of silk fibroin (SF)‐Ag nanoclusters (AgNCs@BSA; BSA: bovine serum albumin), which enhance significantly the performance of silk memristors. It is to build AgNCs@BSA into SF mesoscopic networks by templated β‐crystallization. Atomic force microscopy potential probing indicates that AgNCs@BSA serve as electronic potential wells that change completely the transport behavior of charge particles within the SF films. This leads to significant enhancement in the switching speed (≈10 ns), very good switching stability, extremely low set/reset voltages (0.3/−0.18 V) of SF meso‐hybrid memristors, compared with the original and other organic memristors, and displays unique synapse characteristics and the capability of synapse learning. Classical density functional theory Poisson–Nernst–Planck simulations indicate that the enhanced performance is subject to the low potential paths interconnecting the AgNCs@BSA, which guide charges' transport (Ag+) and deposition in SF films. A completely new materials engineering strategy, functionalized templated mesoscopic reconstruction, is introduced. The designed silk meso‐functional materials display significantly enhanced performance and gives rise to a new class of silk electronics (memristors and synaptic emulators). This progress represents a breakthrough in flexible materials and flexible electronics.
Author Shi, Chenyang
Sushko, Maria L.
Wang, Jingjuan
Yan, Xiaobing
Qiu, Wu
Liu, Xiang Yang
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Shi
  fullname: Shi, Chenyang
  organization: Xiamen University
– sequence: 2
  givenname: Jingjuan
  surname: Wang
  fullname: Wang, Jingjuan
  organization: Hebei University
– sequence: 3
  givenname: Maria L.
  surname: Sushko
  fullname: Sushko, Maria L.
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Wu
  surname: Qiu
  fullname: Qiu, Wu
  organization: Xiamen University
– sequence: 5
  givenname: Xiaobing
  surname: Yan
  fullname: Yan, Xiaobing
  email: yanxiaobing@ime.ac.cn
  organization: Hebei University
– sequence: 6
  givenname: Xiang Yang
  orcidid: 0000-0002-3890-8300
  surname: Liu
  fullname: Liu, Xiang Yang
  email: phyliuxy@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.osti.gov/biblio/1557005$$D View this record in Osti.gov
BookMark eNqFkcFvFCEUh4mpiW316pnoebePAYbB21p3W5NuPVQTb4RhWKUysAIbO8f-52VdUxMT0xOPl-97efA7QUchBovQawJzAtCc6WEzzhsgEpgQ4hk6Ji1pZxSa7uixJl9foJOcbwGIEJQdo_sb53_glbd3rvcWL701JcXgTH6HVymO-H0c--kOjzE5_JtdfMPXOkTjd7nYlPHl1Cc34LWuN6d9xiXitc0xm7h1ppZjcrnESuow4Jsp6G2p_eW483rffomeb6pmX_05T9GX1fLz-eXs6tPFx_PF1czQjokZt9JQAkYKoLKzhMmGSU2pbUFqyUXT6V6CYZuuHYRl0HHdtX3HheVND4Okp-jNYW7MxalsXLHmu4kh1BcrwrkA4BV6e4C2Kf7c2VzUbdylUPdSDQXOmvpxXaXYgTIp5pzsRtVpurgYStLOKwJqn4jaJ6IeE6na_B9tm9yo0_R_QR6EX87b6QlaLT6s1n_dB-U1oMA
CitedBy_id crossref_primary_10_1002_adma_202005910
crossref_primary_10_1021_acsami_9b19721
crossref_primary_10_1021_acssensors_4c01568
crossref_primary_10_3390_ma16051884
crossref_primary_10_1016_j_talanta_2023_124565
crossref_primary_10_1021_acsami_3c19261
crossref_primary_10_1177_0040517520975622
crossref_primary_10_1016_j_est_2022_106032
crossref_primary_10_1063_5_0232757
crossref_primary_10_1063_5_0174426
crossref_primary_10_1002_adma_202411946
crossref_primary_10_1021_acsaelm_3c00558
crossref_primary_10_1021_acs_jpclett_1c02815
crossref_primary_10_1002_smll_202000203
crossref_primary_10_3390_nano12223976
crossref_primary_10_3390_biomimetics8080612
crossref_primary_10_1039_D2NH00163B
crossref_primary_10_1016_j_electacta_2021_139611
crossref_primary_10_1002_adma_202105196
crossref_primary_10_1021_acs_nanolett_4c04783
crossref_primary_10_1021_acsami_0c15530
crossref_primary_10_1016_j_jcrysgro_2022_126977
crossref_primary_10_1063_5_0156972
crossref_primary_10_3390_nano12173061
crossref_primary_10_3390_mi14020235
crossref_primary_10_1002_smsc_202200028
crossref_primary_10_1039_D3TC03034B
crossref_primary_10_1007_s10854_023_11101_6
crossref_primary_10_1002_smsc_202000049
crossref_primary_10_1007_s40843_022_2115_6
crossref_primary_10_3390_nano12203709
crossref_primary_10_1039_D3NR01347B
crossref_primary_10_1002_aelm_202100843
crossref_primary_10_1002_aelm_202101139
crossref_primary_10_1021_acsbiomaterials_1c00513
crossref_primary_10_1038_s41427_020_00274_9
crossref_primary_10_1039_D2TB00046F
crossref_primary_10_1002_adfm_202002882
crossref_primary_10_1016_j_nanoen_2021_106748
crossref_primary_10_1063_5_0171193
crossref_primary_10_1002_adma_202211202
crossref_primary_10_1016_j_ijbiomac_2024_137926
crossref_primary_10_1002_aelm_202201032
crossref_primary_10_1002_aenm_202100519
crossref_primary_10_1093_nar_gkab271
crossref_primary_10_1016_j_nanoen_2020_105156
crossref_primary_10_1039_D3TC04507B
crossref_primary_10_1016_j_orgel_2023_106745
crossref_primary_10_1016_j_sna_2023_114681
crossref_primary_10_1002_smll_202201205
crossref_primary_10_1021_acs_analchem_0c04165
crossref_primary_10_1021_acsbiomaterials_0c01657
crossref_primary_10_1039_D4SU00459K
crossref_primary_10_1039_D1CP04622E
crossref_primary_10_1186_s12951_023_02117_5
crossref_primary_10_1002_adma_202500073
crossref_primary_10_1126_sciadv_ado4142
crossref_primary_10_1021_acsbiomaterials_4c00254
crossref_primary_10_1021_acsnano_1c00820
crossref_primary_10_1016_j_orgel_2022_106622
crossref_primary_10_1080_03081079_2021_1985487
crossref_primary_10_1002_aisy_202000180
crossref_primary_10_1002_adma_202301321
crossref_primary_10_1021_acsami_1c07687
crossref_primary_10_1088_1361_6528_ad8890
crossref_primary_10_1002_advs_202103981
crossref_primary_10_1016_j_mtphys_2024_101429
crossref_primary_10_1063_5_0060344
crossref_primary_10_1016_j_matt_2024_10_006
crossref_primary_10_1002_adma_202311472
crossref_primary_10_1002_aelm_201901402
crossref_primary_10_7498_aps_69_20200928
crossref_primary_10_1016_j_surfin_2024_105090
crossref_primary_10_7498_aps_69_20200617
crossref_primary_10_1002_smtd_202001055
crossref_primary_10_1007_s40843_024_3072_4
crossref_primary_10_3390_nano13233021
crossref_primary_10_1039_D1MH01433A
crossref_primary_10_1002_adfm_202003635
crossref_primary_10_1016_j_ceramint_2022_05_264
crossref_primary_10_1016_j_cej_2021_131999
crossref_primary_10_1021_acsbiomaterials_2c00209
Cites_doi 10.1002/anie.201606661
10.1002/adfm.201603403
10.1126/science.1260318
10.1016/j.mser.2014.06.002
10.1039/C5NR04768D
10.1002/adma.201301983
10.1021/jz201032w
10.1126/science.aaa9306
10.1038/nnano.2014.38
10.1038/ncomms5232
10.1002/adhm.201600312
10.1038/nature16492
10.1039/C8CS00187A
10.1002/adfm.201700628
10.1039/C3TB21602K
10.1002/smll.200900726
10.1002/adfm.201705320
10.1002/adfm.201400249
10.1021/bm900993n
10.1038/nature25494
10.1002/adfm.201602908
10.1038/s41928-018-0021-4
10.1038/s41598-017-12209-6
10.1002/smll.201502906
10.1002/adma.201004071
10.1523/JNEUROSCI.18-24-10464.1998
10.1021/nl904092h
10.1126/science.1206157
10.1021/acsnano.7b03347
10.1002/adma.201504276
10.1002/adfm.201501389
10.1002/smll.201800288
10.1016/j.mattod.2017.12.001
10.1002/adma.201700906
10.1103/PhysRevLett.93.077402
10.1038/srep10150
10.1038/ncomms1737
10.1038/nature02630
10.1146/annurev.physiol.64.092501.114547
10.4208/cicp.040913.120514a
10.1002/advs.201800714
10.1038/ncomms2573
10.1039/C5CS00074B
10.1002/adfm.201600813
10.1021/bi00713a027
10.1002/bip.360280910
10.1039/C6CC00989A
10.1039/c2nr30729d
10.1038/nature16521
10.1021/ma961293c
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1002/adfm.201904777
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1557005
10_1002_adfm_201904777
ADFM201904777
Genre article
GrantInformation_xml – fundername: Doctoral Fund of the Ministry of Education
  funderid: 20130121110018
– fundername: Higher Education Discipline Innovation Project
  funderid: B16029
– fundername: National Nature Science Foundation
  funderid: U1405226
– fundername: Department of Physics
– fundername: Outstanding Youth Project of Hebei Province
  funderid: F2016201220
– fundername: National Natural Science Foundation of China
  funderid: 61306098; 61674050; 61422407; 61874158
– fundername: 1000 Talents Program
– fundername: Natural Science Foundation of Hebei Province
  funderid: E2012201088; E2013201176
– fundername: Science and Technology Project of Xiamen City
  funderid: 3502Z20183012
– fundername: National University of Singapore
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c3847-5e9c310c970398e149249a33e609a95728ab90c4f86d7e4085a86b857e52b0d93
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Sep 18 05:39:44 EDT 2023
Fri Jul 25 08:00:23 EDT 2025
Tue Jul 01 04:12:03 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:39:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3847-5e9c310c970398e149249a33e609a95728ab90c4f86d7e4085a86b857e52b0d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
DE‐AC05‐76RLO1830
ORCID 0000-0002-3890-8300
0000000238908300
OpenAccessLink https://www.osti.gov/biblio/1557005
PQID 2305420018
PQPubID 2045204
PageCount 12
ParticipantIDs osti_scitechconnect_1557005
proquest_journals_2305420018
crossref_citationtrail_10_1002_adfm_201904777
crossref_primary_10_1002_adfm_201904777
wiley_primary_10_1002_adfm_201904777_ADFM201904777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Germany
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2010; 11
2017; 7
2010; 10
1974; 13
2013; 4
2013; 25
2015; 347
2014; 24
2018; 47
1998; 18
2014; 5
2018; 5
2014; 2
2018; 1
2015; 44
2014; 16
2011; 23
2014; 9
2011; 333
2018; 28
2015; 5
2011; 2
2017; 27
2016; 529
2008
2016; 52
2017; 29
2014; 83
2018; 21
2015; 7
2011; 5
2016; 12
1989; 28
2004; 429
2016; 55
2015; 350
2016; 5
2015; 25
2012; 3
2004; 93
2002; 64
1997; 30
2017; 11
2018; 555
2016; 530
2009; 5
2016; 28
2012; 4
2016; 26
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Ramos C. Z. (e_1_2_7_50_1) 2011; 5
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Hemminger J. (e_1_2_7_20_1) 2008
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 2
  start-page: 2136
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 6486
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 3350
  year: 1974
  publication-title: Biochemistry
– volume: 18
  year: 1998
  publication-title: J. Neurosci.
– volume: 10
  start-page: 1297
  year: 2010
  publication-title: Nano Lett.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 21
  start-page: 537
  year: 2018
  publication-title: Mater. Today
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  start-page: 2528
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 25
  start-page: 5498
  year: 2013
  publication-title: Adv. Mater.
– volume: 44
  start-page: 7881
  year: 2015
  publication-title: Chem. Soc. Rev.
– year: 2008
– volume: 24
  start-page: 5284
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 130
  year: 2018
  publication-title: Nat. Electron.
– volume: 5
  start-page: 2253
  year: 2009
  publication-title: Small
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 26
  year: 2011
  publication-title: Front. Neurosci.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 9032
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 4255
  year: 2012
  publication-title: Nanoscale
– volume: 30
  start-page: 2860
  year: 1997
  publication-title: Macromolecules
– volume: 23
  start-page: 1630
  year: 2011
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 530
  start-page: 71
  year: 2016
  publication-title: Nature
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 28
  start-page: 4250
  year: 2016
  publication-title: Adv. Mater.
– volume: 429
  start-page: 739
  year: 2004
  publication-title: Nature
– volume: 12
  start-page: 2715
  year: 2016
  publication-title: Small
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 16
  start-page: 1298
  year: 2014
  publication-title: Commun. Comput. Phys.
– volume: 347
  start-page: 159
  year: 2015
  publication-title: Science
– volume: 52
  start-page: 4828
  year: 2016
  publication-title: Chem. Commun.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 4232
  year: 2014
  publication-title: Nat. Commun.
– volume: 83
  start-page: 1
  year: 2014
  publication-title: Mater. Sci. Eng., R
– volume: 4
  start-page: 1575
  year: 2013
  publication-title: Nat. Commun.
– volume: 2
  start-page: 2352
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 732
  year: 2012
  publication-title: Nat. Commun.
– volume: 11
  start-page: 8962
  year: 2017
  publication-title: ACS Nano
– volume: 350
  start-page: 313
  year: 2015
  publication-title: Science
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 11
  start-page: 143
  year: 2010
  publication-title: Biomacromolecules
– volume: 26
  start-page: 5534
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 26
  start-page: 8978
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1613
  year: 1989
  publication-title: Biopolymers
– volume: 64
  start-page: 355
  year: 2002
  publication-title: Annu. Rev. Physiol.
– volume: 25
  start-page: 3825
  year: 2015
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.201606661
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201603403
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1260318
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mser.2014.06.002
– ident: e_1_2_7_15_1
  doi: 10.1039/C5NR04768D
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201301983
– ident: e_1_2_7_43_1
  doi: 10.1021/jz201032w
– ident: e_1_2_7_7_1
  doi: 10.1126/science.aaa9306
– ident: e_1_2_7_6_1
  doi: 10.1038/nnano.2014.38
– ident: e_1_2_7_45_1
  doi: 10.1038/ncomms5232
– ident: e_1_2_7_32_1
  doi: 10.1002/adhm.201600312
– ident: e_1_2_7_8_1
  doi: 10.1038/nature16492
– ident: e_1_2_7_13_1
  doi: 10.1039/C8CS00187A
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201700628
– ident: e_1_2_7_22_1
  doi: 10.1039/C3TB21602K
– ident: e_1_2_7_41_1
  doi: 10.1002/smll.200900726
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201705320
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201400249
– ident: e_1_2_7_52_1
  doi: 10.1021/bm900993n
– ident: e_1_2_7_3_1
  doi: 10.1038/nature25494
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201602908
– ident: e_1_2_7_18_1
  doi: 10.1038/s41928-018-0021-4
– volume-title: A Report from the Basic Energy Sciences Advisory Committee
  year: 2008
  ident: e_1_2_7_20_1
– ident: e_1_2_7_28_1
  doi: 10.1038/s41598-017-12209-6
– ident: e_1_2_7_14_1
  doi: 10.1002/smll.201502906
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201004071
– ident: e_1_2_7_48_1
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: e_1_2_7_47_1
  doi: 10.1021/nl904092h
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1206157
– ident: e_1_2_7_2_1
  doi: 10.1021/acsnano.7b03347
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201504276
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201501389
– ident: e_1_2_7_25_1
  doi: 10.1002/smll.201800288
– volume: 5
  start-page: 26
  year: 2011
  ident: e_1_2_7_50_1
  publication-title: Front. Neurosci.
– ident: e_1_2_7_26_1
  doi: 10.1016/j.mattod.2017.12.001
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201700906
– ident: e_1_2_7_38_1
  doi: 10.1103/PhysRevLett.93.077402
– ident: e_1_2_7_51_1
  doi: 10.1038/srep10150
– ident: e_1_2_7_46_1
  doi: 10.1038/ncomms1737
– ident: e_1_2_7_34_1
  doi: 10.1038/nature02630
– ident: e_1_2_7_49_1
  doi: 10.1146/annurev.physiol.64.092501.114547
– ident: e_1_2_7_42_1
  doi: 10.4208/cicp.040913.120514a
– ident: e_1_2_7_44_1
  doi: 10.1002/advs.201800714
– ident: e_1_2_7_10_1
  doi: 10.1038/ncomms2573
– ident: e_1_2_7_21_1
  doi: 10.1039/C5CS00074B
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.201600813
– ident: e_1_2_7_36_1
  doi: 10.1021/bi00713a027
– ident: e_1_2_7_37_1
  doi: 10.1002/bip.360280910
– ident: e_1_2_7_29_1
  doi: 10.1039/C6CC00989A
– ident: e_1_2_7_40_1
  doi: 10.1039/c2nr30729d
– ident: e_1_2_7_4_1
  doi: 10.1038/nature16521
– ident: e_1_2_7_35_1
  doi: 10.1021/ma961293c
SSID ssj0017734
Score 2.5736241
Snippet Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This work is to...
Abstract Functionalization of flexible materials based on mesoscopic reconstruction is a key strategy in fabricating biocompatible flexible electronics. This...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic force microscopy
Biocompatibility
Bioelectricity
Charge transport
Crystallization
Density functional theory
Electronics
Emulators
Flexible components
Materials science
Memristors
mesoscopic
Nanoclusters
nanoseeds
Performance enhancement
Serum albumin
Silk fibroin
Switching theory
synaptic emulators
Transport phenomena
Title Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201904777
https://www.proquest.com/docview/2305420018
https://www.osti.gov/biblio/1557005
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQucCBN6LssvIBiVN2U8exHW6FbVQhwoGyUm-W7bio2iZZNam03Rv_nJmkDS0SQoJbEo2VxJ7H52TmG0Leghoga5wPDISPgAOgDmwuosA7FQpmlOIxFgpnX8T0in-ax_ODKv6OH6L_4IaW0fprNHBj64tfpKEmX2AlOQQ0LiWWk2PCFqKirz1_1EjK7reyGGGC12i-Z20M2cXx8KOoNKjAuo4Q5yFubQNP-piY_SN3-SbX55vGnru739gc_-ednpBHO1RKx50aPSX3fPmMPDzgKnxOfsyWq2uaIn-mXXk66dvn1O9puq4K-qEq7PaWFtV6SVvZ8XcKvrtyqw2SMdR0usXqMJqZptN62lQ083WFhTFLB4dFy3MAkqbM6WxbGnBnjk4K7DAGl1-Qq3Ty7eM02PVvCFwEQS-IfeIAPboEvEqiPOzFYK9nosiLMDFJLJkyNgkdXyiRS49Ua0YJq2LpY2bDPIlekkFZlf4VoYnn0gDSinIruPEeXKNkOYu49UIyvxiSYL9-2u3IzbHHxkp3tMxM49TqfmqH5F0vf9PRevxR8gTVQQMgQVZdh-lHrtEjpC4L4yE53WuJ3hl_rWFXF3PMVVNDwtrl_ss99Pgyzfqz1_8y6IQ8wOMuzfCUDJr1xr8BuNTYM3J_fJl9np21pvETlnkM3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegHIAD34huA3xA4pQtdRzb4VagUYFlB7ZJu1m2407VmgS1qbRy4z_nvaQJKxJCgltiPSuJ_T6d936PkDfABoga5wMD5iPg4FAHNhdR4J0KBTNK8RgLhbMTMT3nny_iLpsQa2FafIj-wA0lo9HXKOB4IH30CzXU5DMsJQeLxqWUt8kdbOvdRFVfewSpkZTtj2UxwhSv0UWH2xiyo935O3ZpUIF87ficNz3XxvSkD4ntXrrNOLk6XNf20H3_Dc_xv77qEXmwdUzpuOWkx-SWL5-Q-zfgCp-SH6fzxRVNEULTLjyd9B10Vu9ouqwK-r4q7OaaFtVyThva8SUF9V25xRrxGFZ0usECMZqZumV8Wlc086sKa2PmDi6LBuoAKE2Z09NNaUCjOTopsMkYDD8j5-nk7MM02LZwCFwEdi-IfeLAgXQJKJZEeQjHINwzUeRFmJgklkwZm4SOz5TIpUe0NaOEVbH0MbNhnkTPyaCsSv-C0MRzacDZinIruPEetKNkOYu49UIyPxuSoNtA7bb45thmY6FbZGamcWl1v7RD8ran_9Yie_yRch_5QYNPgsC6DjOQXK1HiF4WxkNy0LGJ3sr_SkNgF3NMV1NDwpr9_ssz9PhjmvV3e_8y6TW5Oz3LjvXxp5Mv--QejrdZhwdkUC_X_iV4T7V91cjHT-ecD2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagSAgOvBFld8EHJE7ZTR3HdvZWaKPy6AqxrNSbZTsuqrZJVm0qUW77z5lJ2myLhJDglkRjJbHn8TmZ-YaQN6AGyBrnAwPhI-AAqAObiSjwToWCGaV4jIXC4zMxuuAfJ_Fkp4q_4YdoP7ihZdT-Gg38Kpue3JCGmmyKleQQ0LiU8ja5w0WoUK8HX1sCqZ6UzX9l0cMMr95kS9sYspP98XthqVOCee1Bzl3gWkee9CEx22duEk4uj1eVPXY_f6Nz_J-XekQebGAp7Td69Jjc8sUTcn-HrPApuT6fzS9pigSadu7psO2fszyl6aLM6bsyt-sfNC8XM1rL9r9TcN6lm6-QjWFJR2ssD6NjUzVqT6uSjv2yxMqYmYPDvCY6AElTZPR8XRjwZ44Oc2wxBpefkYt0-O39KNg0cAhcBFEviH3iAD66BNxKojxsxmCzZ6LIizAxSSyZMjYJHZ8qkUmPXGtGCati6WNmwyyJnpNOURb-BaGJ59IA1IoyK7jxHnyjZBmLuPVCMj_tkmC7ftpt2M2xycZcN7zMTOPU6nZqu-RtK3_V8Hr8UfIA1UEDIkFaXYf5R67SPeQuC-MuOdxqid5Y_1LDti7mmKymuoTVy_2Xe-j-IB23Zy__ZdBrcvfLINWfP5x9OiD38HKTcnhIOtVi5Y8AOlX2VW0dvwDCug4b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+Flexible+Electronics%3A+From+Bombyx+mori+Silk+Ag+Nanoclusters+Hybrid+Materials+to+Mesoscopic+Memristors+and+Synaptic+Emulators&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Chenyang&rft.au=Wang%2C+Jingjuan&rft.au=Sushko%2C+Maria+L.&rft.au=Qiu%2C+Wu&rft.date=2019-10-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=42&rft_id=info:doi/10.1002%2Fadfm.201904777&rft.externalDocID=1557005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon