Virtual signals of head rotation induce gravity‐dependent inferences of linear acceleration

Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents c...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 597; no. 21; pp. 5231 - 5246
Main Authors Khosravi‐Hashemi, Navid, Forbes, Patrick A., Dakin, Christopher J., Blouin, Jean‐Sébastien
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation‐induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation. Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self‐motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non‐zero central estimate of interaural or superior‐inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications. Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation‐induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation.
AbstractList Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation‐induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation. Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self‐motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non‐zero central estimate of interaural or superior‐inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications. Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation‐induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation.
Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self‐motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non‐zero central estimate of interaural or superior‐inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications.
Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation-induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation. Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self-motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non-zero central estimate of interaural or superior-inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications.
Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation-induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation.KEY POINTSConsiderable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation-induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation.Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self-motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non-zero central estimate of interaural or superior-inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications.ABSTRACTElectrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self-motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non-zero central estimate of interaural or superior-inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications.
Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation‐induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation.
Author Dakin, Christopher J.
Blouin, Jean‐Sébastien
Khosravi‐Hashemi, Navid
Forbes, Patrick A.
Author_xml – sequence: 1
  givenname: Navid
  orcidid: 0000-0001-6957-6567
  surname: Khosravi‐Hashemi
  fullname: Khosravi‐Hashemi, Navid
  organization: University of British Columbia
– sequence: 2
  givenname: Patrick A.
  orcidid: 0000-0002-0230-9971
  surname: Forbes
  fullname: Forbes, Patrick A.
  organization: University Medical Center Rotterdam
– sequence: 3
  givenname: Christopher J.
  orcidid: 0000-0002-6781-0281
  surname: Dakin
  fullname: Dakin, Christopher J.
  email: chris.dakin@usu.edu
  organization: Utah State University
– sequence: 4
  givenname: Jean‐Sébastien
  surname: Blouin
  fullname: Blouin, Jean‐Sébastien
  organization: University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31483492$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxTAQhoMoeryATyAFN26qmSRtkqWIt8MBXRzcSUnbiUZ60mPSKmfnI_iMPon1DoKuZjHf_8_MP-tk2bceCdkGug8A_GB8yaTKBVsiIxC5TqXUfJmMKGUs5TKDNbIe4x2lwKnWq2SNg1BcaDYi11cudL1pkuhuvGli0trkFk2dhLYznWt94nzdV5jcBPPgusXL03ONc_Q1-m5oWQzoK3yXNc6jCYmpKmwwvIs3yYodTHHrs26Q6cnx9OgsnVycnh8dTtKKK5GneU61sZniBmhpJQO0pUGptbA5FyJjmZW1EHlmtYKSlWCUZKhLCVIACr5B9j5s56G97zF2xczFYYvGeGz7WDCmRJapQTygu7_Qu7YPb5cXjANVVEjKB2rnk-rLGdbFPLiZCYviK7efiVVoYwxovxGgxdtLiq-XDOj-L7RyH9F2wbjmH8Gja3Dxp3ExHV8Clzrnrzx7mj8
CitedBy_id crossref_primary_10_3389_fneur_2019_01270
crossref_primary_10_1016_j_jneumeth_2022_109709
crossref_primary_10_3233_VES_220075
crossref_primary_10_1016_j_gaitpost_2024_12_026
crossref_primary_10_1089_neu_2020_7432
crossref_primary_10_1093_pnasnexus_pgac174
crossref_primary_10_1038_s41598_021_87485_4
crossref_primary_10_1152_jn_00276_2019
crossref_primary_10_3389_fnhum_2021_631782
crossref_primary_10_3389_fnsys_2022_886284
crossref_primary_10_1371_journal_pcbi_1012601
crossref_primary_10_1371_journal_pone_0231334
crossref_primary_10_1523_JNEUROSCI_0987_22_2023
crossref_primary_10_1007_s00221_024_06905_9
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_7554_eLife_65085
crossref_primary_10_1523_JNEUROSCI_1463_19_2020
crossref_primary_10_1097_WCO_0000000000001228
crossref_primary_10_1109_ACCESS_2022_3206047
crossref_primary_10_1152_jn_00171_2023
Cites_doi 10.1152/japplphysiol.00008.2004
10.1016/0006-8993(82)90990-8
10.3233/VES-1993-3203
10.3389/fneur.2012.00148
10.1007/s002210050533
10.1016/S0013-4694(98)00056-X
10.1145/3139131.3141219
10.1523/JNEUROSCI.19-01-00316.1999
10.1016/j.brainresbull.2004.07.008
10.3233/VES-2003-122-303
10.1152/jn.01029.2011
10.1523/JNEUROSCI.23-28-09265.2003
10.1007/s00221-011-2568-4
10.1007/978-3-540-79007-5_12
10.1088/1741-2560/2/3/S02
10.3389/fneur.2012.00117
10.1152/jn.00485.2001
10.1109/51.827403
10.1111/j.1469-7793.1999.0931s.x
10.1097/00001756-200212200-00001
10.1159/000046815
10.1145/1178823.1178881
10.3389/fneur.2012.00104
10.1016/j.jneumeth.2017.11.012
10.1007/s00221-012-3302-6
10.1038/19303
10.3389/fnint.2014.00004
10.1113/jphysiol.2010.195222
10.1007/s00221-002-1038-4
10.1007/s10162-005-0003-x
10.1007/s00422-006-0133-1
10.1016/j.neuropsychologia.2015.03.004
10.1152/jn.1976.39.5.970
10.1007/BF00279665
10.1007/s00221-002-1067-z
10.1007/s00221-009-2054-4
10.1152/jn.1984.51.6.1236
10.1152/jn.90677.2008
10.3389/fnint.2014.00094
10.1038/s41467-019-09738-1
10.1113/jphysiol.1997.sp022051
10.1111/j.1749-6632.2008.03732.x
10.1016/j.cub.2018.09.049
10.1152/jn.00114.2015
10.1523/JNEUROSCI.1902-16.2016
10.1038/nn.3530
10.1152/jn.00558.2001
10.1152/jn.1995.73.2.896
10.1152/jn.01234.2003
10.1007/s00221-006-0792-0
10.1113/jphysiol.2010.197053
10.1145/2967934.2968080
10.1038/nature02754
10.1113/jphysiol.2004.079525
10.1002/ana.410420616
10.1113/jphysiol.2005.092544
10.1101/087692
ContentType Journal Article
Copyright 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
Journal compilation © 2019 The Physiological Society
Copyright_xml – notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
– notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
– notice: Journal compilation © 2019 The Physiological Society
DBID AAYXX
CITATION
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
DOI 10.1113/JP278642
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 5246
ExternalDocumentID 31483492
10_1113_JP278642
TJP13796
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Netherlands Organization for Scientific Research
  funderid: NWO #016.Veni.188.049
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RGPIN: 356026‐13
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
31~
3EH
3O-
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
EJD
FA8
H13
HF~
H~9
LW6
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
1OB
IPNFZ
NPM
PKN
SAMSI
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3846-6609af583a10bf721efbae7994f6344525f7d4465f981b2b1a872e9b71741e43
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Fri Jul 11 05:14:43 EDT 2025
Fri Jul 25 12:19:21 EDT 2025
Wed Feb 19 02:29:57 EST 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 04:29:28 EDT 2025
Wed Jan 22 16:37:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords gravito-inertial ambiguity
internal model
spatial orientation
electrical vestibular stimulation
vestibular system
Language English
License 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3846-6609af583a10bf721efbae7994f6344525f7d4465f981b2b1a872e9b71741e43
Notes Edited by: Richard Carson & Janet Taylor
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0230-9971
0000-0001-6957-6567
0000-0002-6781-0281
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP278642
PMID 31483492
PQID 2310804703
PQPubID 1086388
PageCount 16
ParticipantIDs proquest_miscellaneous_2284558981
proquest_journals_2310804703
pubmed_primary_31483492
crossref_primary_10_1113_JP278642
crossref_citationtrail_10_1113_JP278642
wiley_primary_10_1113_JP278642_TJP13796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 1 November 2019
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 73
2004; 64
1997; 42
2019; 10
2002; 12
2002; 13
2010; 588
2015; 74
1988; 73
2008; 100
2009; 1164
2016; 36
1993; 3
1984; 51
1997; 500
2007; 179
2000; 19
2018; 294
2013; 16
1999; 19
2002; 144
2002; 87
2002; 145
1982; 252
1998; 122
1976; 39
2014; 8
2018; 28
2011; 2
2010; 200
2008
2013; 224
2006
2005
2007; 96
2015; 8
2011; 210
2012; 108
2011; 589
2004; 430
2004; 96
2012; 3
2004; 92
2001; 6
2005; 563
2015; 114
2005; 567
1995; 106
1998; 107
2005; 6
2017
2016
2005; 2
1999; 398
1999; 517
2003; 23
e_1_2_5_27_1
e_1_2_5_25_1
Merfeld DM (e_1_2_5_43_1) 1995; 106
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
Cohen B (e_1_2_5_6_1) 2011; 2
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
Merfeld DM (e_1_2_5_42_1) 1995; 106
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 28
  start-page: 3589
  year: 2018
  end-page: 3598.e3583
  article-title: Cerebellar degeneration increases visual influence on dynamic estimates of verticality
  publication-title: Curr Biol
– volume: 1164
  start-page: 116
  year: 2009
  end-page: 118
  article-title: Galvanic vestibular stimulation combines with Earth‐horizontal rotation in roll to induce the illusion of translation
  publication-title: Ann NY Acad Sci
– volume: 23
  start-page: 9265
  year: 2003
  end-page: 9275
  article-title: Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator
  publication-title: J Neurosci
– volume: 12
  start-page: 77
  year: 2002
  end-page: 85
  article-title: The effects of stochastic monopolar galvanic vestibular stimulation on human postural sway
  publication-title: J Vestib Res
– volume: 114
  start-page: 264
  year: 2015
  end-page: 273
  article-title: Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli
  publication-title: J Neurophysiol
– volume: 430
  start-page: 560
  year: 2004
  end-page: 564
  article-title: Neurons compute internal models of the physical laws of motion
  publication-title: Nature
– volume: 16
  start-page: 1701
  year: 2013
  end-page: 1708
  article-title: Computation of linear acceleration through an internal model in the macaque cerebellum
  publication-title: Nat Neurosci
– volume: 252
  start-page: 156
  year: 1982
  end-page: 160
  article-title: Responses of vestibular‐nerve afferents in the squirrel monkey to externally applied galvanic currents
  publication-title: Brain Res
– volume: 8
  start-page: 94
  year: 2015
  article-title: Task, muscle and frequency dependent vestibular control of posture
  publication-title: Front Integr Neurosci
– volume: 398
  start-page: 615
  year: 1999
  end-page: 618
  article-title: Humans use internal models to estimate gravity and linear acceleration
  publication-title: Nature
– start-page: 279
  year: 2008
  end-page: 300
– volume: 19
  start-page: 35
  year: 2000
  end-page: 42
  article-title: A spatial disorientation survey of experienced instructor pilots
  publication-title: IEEE Eng Med Biol Mag
– volume: 8
  start-page: 4
  year: 2014
  article-title: Galvanic vestibular stimulation in hemi‐spatial neglect
  publication-title: Front Integr Neurosci
– volume: 36
  start-page: 11510
  year: 2016
  end-page: 11520
  article-title: Transformation of vestibular signals for the control of standing in humans
  publication-title: J Neurosci
– volume: 6
  start-page: 191
  year: 2005
  end-page: 206
  article-title: Orientation of human semicircular canals measured by three‐dimensional multiplanar CT reconstruction
  publication-title: J Assoc Res Otolaryngol
– volume: 3
  start-page: 148
  year: 2012
  end-page: 148
  article-title: What does galvanic vestibular stimulation actually activate: response
  publication-title: Front Neurol
– volume: 122
  start-page: 453
  year: 1998
  end-page: 458
  article-title: Maintained ocular torsion produced by bilateral and unilateral galvanic (DC) vestibular stimulation in humans
  publication-title: Exp Brain Res
– volume: 200
  start-page: 197
  year: 2010
  end-page: 222
  article-title: Internal models and neural computation in the vestibular system
  publication-title: Exp Brain Res
– volume: 64
  start-page: 265
  year: 2004
  end-page: 271
  article-title: Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig
  publication-title: Brain Res Bull
– volume: 96
  start-page: 389
  year: 2007
  end-page: 404
  article-title: Bayesian processing of vestibular information
  publication-title: Biol Cybern
– volume: 10
  start-page: 1904
  year: 2019
  article-title: Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate
  publication-title: Nat Commun
– volume: 13
  start-page: 2379
  year: 2002
  end-page: 2383
  article-title: Galvanic vestibular stimulation evokes sensations of body rotation
  publication-title: Neuroreport
– volume: 92
  start-page: 905
  year: 2004
  end-page: 925
  article-title: An integrative neural network for detecting inertial motion and head orientation
  publication-title: J Neurophysiol
– volume: 106
  start-page: 111
  year: 1995
  end-page: 122
  article-title: The vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
  publication-title: Exp Brain Res
– volume: 3
  start-page: 117
  year: 2012
  end-page: 117
  article-title: What galvanic vestibular stimulation actually activates
  publication-title: Front Neurol
– volume: 144
  start-page: 69
  year: 2002
  end-page: 78
  article-title: Between‐subject variability and within‐subject reliability of the human eye‐movement response to bilateral galvanic (DC) vestibular stimulation
  publication-title: Exp Brain Res
– volume: 108
  start-page: 1511
  year: 2012
  end-page: 1520
  article-title: Spatial and temporal properties of eye movements produced by electrical stimulation of semicircular canal afferents
  publication-title: J Neurophysiol
– volume: 100
  start-page: 2981
  year: 2008
  end-page: 2996
  article-title: Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference
  publication-title: J Neurophysiol
– volume: 563
  start-page: 229
  year: 2005
  end-page: 234
  article-title: Otolith and canal reflexes in human standing
  publication-title: J Physiol
– volume: 107
  start-page: 200
  year: 1998
  end-page: 205
  article-title: Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 567
  start-page: 591
  year: 2005
  end-page: 597
  article-title: Virtual head rotation reveals a process of route reconstruction from human vestibular signals
  publication-title: J Physiol
– volume: 39
  start-page: 970
  year: 1976
  end-page: 984
  article-title: Physiology of peripheral neurons innervating otolith organs of squirrel‐monkey I. Response to static tilts and to long‐duration centrifugal force
  publication-title: J Neurophysiol
– volume: 51
  start-page: 1236
  year: 1984
  end-page: 1256
  article-title: Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel‐monkey
  publication-title: J Neurophysiol
– volume: 96
  start-page: 2301
  year: 2004
  end-page: 2316
  article-title: Probing the human vestibular system with galvanic stimulation
  publication-title: J Appl Physiol
– volume: 87
  start-page: 2064
  year: 2002
  end-page: 2073
  article-title: Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation
  publication-title: J Neurophysiol
– volume: 19
  start-page: 316
  year: 1999
  end-page: 327
  article-title: Computation of inertial motion: neural strategies to resolve ambiguous otolith information
  publication-title: J Neurosci
– volume: 500
  start-page: 661
  year: 1997
  end-page: 672
  article-title: Human body‐segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism
  publication-title: J Physiol
– volume: 589
  start-page: 843
  year: 2011
  end-page: 853
  article-title: Adaptation of vestibular signals for self‐motion perception
  publication-title: J Physiol
– volume: 517
  start-page: 931
  year: 1999
  end-page: 939
  article-title: Effects of galvanic vestibular stimulation during human walking
  publication-title: J Physiol
– volume: 294
  start-page: 116
  year: 2018
  end-page: 121
  article-title: Ocular torsion responses to sinusoidal electrical vestibular stimulation
  publication-title: J Neurosci Methods
– volume: 106
  start-page: 123
  year: 1995
  end-page: 134
  article-title: Modeling the vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
  publication-title: Exp Brain Res
– volume: 73
  start-page: 106
  year: 1988
  end-page: 114
  article-title: Motion perceptions induced by off‐vertical axis rotation (OVAR) at small angles of tilt
  publication-title: Exp Brain Res
– volume: 210
  start-page: 407
  year: 2011
  end-page: 422
  article-title: The functional significance of velocity storage and its dependence on gravity
  publication-title: Exp Brain Res
– volume: 2
  start-page: S164
  year: 2005
  end-page: 179
  article-title: Sensory vestibular contributions to constructing internal models of self‐motion
  publication-title: J Neural Eng
– volume: 588
  start-page: 4441
  year: 2010
  end-page: 4451
  article-title: Lack of otolith involvement in balance responses evoked by mastoid electrical stimulation
  publication-title: J Physiol
– start-page: 1
  year: 2017
  end-page: 2
– volume: 179
  start-page: 263
  year: 2007
  end-page: 290
  article-title: A Bayesian model of the disambiguation of gravitoinertial force by visual cues
  publication-title: Exp Brain Res
– volume: 87
  start-page: 819
  year: 2002
  end-page: 833
  article-title: Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses
  publication-title: J Neurophysiol
– year: 2016
– volume: 2
  start-page: 90
  year: 2011
  article-title: What does galvanic vestibular stimulation actually activate?
  publication-title: Front Neurol
– volume: 42
  start-page: 933
  year: 1997
  end-page: 950
  article-title: Spinocerebellar ataxia type 6: gaze‐evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset
  publication-title: Ann Neurol
– volume: 74
  start-page: 178
  year: 2015
  end-page: 183
  article-title: Subliminal galvanic‐vestibular stimulation recalibrates the distorted visual and tactile subjective vertical in right‐sided stroke
  publication-title: Neuropsychologia
– volume: 145
  start-page: 1
  year: 2002
  end-page: 27
  article-title: The vestibulo‐ocular reflex in three dimensions
  publication-title: Exp Brain Res
– volume: 224
  start-page: 233
  year: 2013
  end-page: 241
  article-title: Galvanic vestibular stimulation influences randomness of number generation
  publication-title: Exp Brain Res
– volume: 3
  start-page: 104
  year: 2012
  end-page: 104
  article-title: Galvanic vestibular stimulation produces sensations of rotation consistent with activation of semicircular canal afferents
  publication-title: Front Neurol
– volume: 6
  start-page: 98
  year: 2001
  end-page: 107
  article-title: Directional sensitivity of the human macula utriculi based on morphological characteristics
  publication-title: Audiol Neurootol
– start-page: 289
  year: 2005
  end-page: 290
– year: 2006
– volume: 3
  start-page: 123
  year: 1993
  end-page: 139
  article-title: Three dimensional eye movements of squirrel monkeys following postrotatory tilt
  publication-title: J Vestib Res
– volume: 73
  start-page: 896
  year: 1995
  end-page: 901
  article-title: Effect of galvanic vestibular stimulation on human postural responses during support surface translations
  publication-title: J Neurophysiol
– ident: e_1_2_5_16_1
  doi: 10.1152/japplphysiol.00008.2004
– ident: e_1_2_5_21_1
  doi: 10.1016/0006-8993(82)90990-8
– volume: 106
  start-page: 123
  year: 1995
  ident: e_1_2_5_42_1
  article-title: Modeling the vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
  publication-title: Exp Brain Res
– ident: e_1_2_5_46_1
  doi: 10.3233/VES-1993-3203
– ident: e_1_2_5_7_1
  doi: 10.3389/fneur.2012.00148
– ident: e_1_2_5_60_1
  doi: 10.1007/s002210050533
– ident: e_1_2_5_62_1
  doi: 10.1016/S0013-4694(98)00056-X
– ident: e_1_2_5_57_1
  doi: 10.1145/3139131.3141219
– ident: e_1_2_5_3_1
  doi: 10.1523/JNEUROSCI.19-01-00316.1999
– ident: e_1_2_5_29_1
  doi: 10.1016/j.brainresbull.2004.07.008
– ident: e_1_2_5_55_1
  doi: 10.3233/VES-2003-122-303
– ident: e_1_2_5_35_1
  doi: 10.1152/jn.01029.2011
– ident: e_1_2_5_24_1
  doi: 10.1523/JNEUROSCI.23-28-09265.2003
– ident: e_1_2_5_33_1
  doi: 10.1007/s00221-011-2568-4
– ident: e_1_2_5_32_1
  doi: 10.1007/978-3-540-79007-5_12
– ident: e_1_2_5_27_1
  doi: 10.1088/1741-2560/2/3/S02
– ident: e_1_2_5_8_1
  doi: 10.3389/fneur.2012.00117
– ident: e_1_2_5_44_1
  doi: 10.1152/jn.00485.2001
– ident: e_1_2_5_56_1
  doi: 10.1109/51.827403
– ident: e_1_2_5_17_1
  doi: 10.1111/j.1469-7793.1999.0931s.x
– ident: e_1_2_5_18_1
  doi: 10.1097/00001756-200212200-00001
– ident: e_1_2_5_59_1
  doi: 10.1159/000046815
– ident: e_1_2_5_48_1
  doi: 10.1145/1178823.1178881
– ident: e_1_2_5_52_1
  doi: 10.3389/fneur.2012.00104
– ident: e_1_2_5_37_1
  doi: 10.1016/j.jneumeth.2017.11.012
– ident: e_1_2_5_40_1
– ident: e_1_2_5_15_1
  doi: 10.1007/s00221-012-3302-6
– ident: e_1_2_5_45_1
  doi: 10.1038/19303
– ident: e_1_2_5_61_1
  doi: 10.3389/fnint.2014.00004
– ident: e_1_2_5_47_1
  doi: 10.1113/jphysiol.2010.195222
– ident: e_1_2_5_36_1
  doi: 10.1007/s00221-002-1038-4
– ident: e_1_2_5_12_1
  doi: 10.1007/s10162-005-0003-x
– volume: 2
  start-page: 90
  year: 2011
  ident: e_1_2_5_6_1
  article-title: What does galvanic vestibular stimulation actually activate?
  publication-title: Front Neurol
– ident: e_1_2_5_31_1
  doi: 10.1007/s00422-006-0133-1
– ident: e_1_2_5_49_1
  doi: 10.1016/j.neuropsychologia.2015.03.004
– ident: e_1_2_5_14_1
  doi: 10.1152/jn.1976.39.5.970
– ident: e_1_2_5_13_1
  doi: 10.1007/BF00279665
– ident: e_1_2_5_51_1
  doi: 10.1007/s00221-002-1067-z
– ident: e_1_2_5_26_1
  doi: 10.1007/s00221-009-2054-4
– ident: e_1_2_5_22_1
  doi: 10.1152/jn.1984.51.6.1236
– ident: e_1_2_5_38_1
  doi: 10.1152/jn.90677.2008
– ident: e_1_2_5_19_1
  doi: 10.3389/fnint.2014.00094
– ident: e_1_2_5_30_1
  doi: 10.1038/s41467-019-09738-1
– ident: e_1_2_5_11_1
  doi: 10.1113/jphysiol.1997.sp022051
– ident: e_1_2_5_54_1
  doi: 10.1111/j.1749-6632.2008.03732.x
– ident: e_1_2_5_9_1
  doi: 10.1016/j.cub.2018.09.049
– ident: e_1_2_5_50_1
  doi: 10.1152/jn.00114.2015
– ident: e_1_2_5_20_1
  doi: 10.1523/JNEUROSCI.1902-16.2016
– ident: e_1_2_5_34_1
  doi: 10.1038/nn.3530
– ident: e_1_2_5_53_1
  doi: 10.1152/jn.00558.2001
– ident: e_1_2_5_28_1
  doi: 10.1152/jn.1995.73.2.896
– volume: 106
  start-page: 111
  year: 1995
  ident: e_1_2_5_43_1
  article-title: The vestibulo‐ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
  publication-title: Exp Brain Res
– ident: e_1_2_5_25_1
  doi: 10.1152/jn.01234.2003
– ident: e_1_2_5_39_1
  doi: 10.1007/s00221-006-0792-0
– ident: e_1_2_5_58_1
  doi: 10.1113/jphysiol.2010.197053
– ident: e_1_2_5_4_1
  doi: 10.1145/2967934.2968080
– ident: e_1_2_5_2_1
  doi: 10.1038/nature02754
– ident: e_1_2_5_5_1
  doi: 10.1113/jphysiol.2004.079525
– ident: e_1_2_5_23_1
  doi: 10.1002/ana.410420616
– ident: e_1_2_5_10_1
  doi: 10.1113/jphysiol.2005.092544
– ident: e_1_2_5_41_1
  doi: 10.1101/087692
SSID ssj0013099
Score 2.4348397
Snippet Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear...
Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation...
Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5231
SubjectTerms electrical vestibular stimulation
gravito‐inertial ambiguity
internal model
Motion detection
Sensory neurons
spatial orientation
Vestibular system
Title Virtual signals of head rotation induce gravity‐dependent inferences of linear acceleration
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP278642
https://www.ncbi.nlm.nih.gov/pubmed/31483492
https://www.proquest.com/docview/2310804703
https://www.proquest.com/docview/2284558981
Volume 597
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbQnrhAKdBuochICE5Z4rWT2EeEukJ7QCu0ICSEIjuxpVXbbJXuHuDEI_CMfZLO2EmqpVSquEWKf-J4ZvyNPf6GkCOA0C4pVRKxNI0j4RLMBqiLSJSZYdylyGiO0RaX6cW1GN8mt01UJd6FCfwQ3YYbaoa316jg2jRZSBiSDYwnw0wCegbzi6FaiIeuhn8OEGKlOqLwLGEN7yxUPW0rrq5Ef8HLVbTql5vRJrlrPzREmXwdLBdmUDy-4HB820jekY0GhdKzIDZbZM1W78n2WQUe-PcHekx9XKjfcN8m9zezGi-ZUAz1AGGlc0fBgpe0nodjfApuPQgIxUxGgOl_PT23mXUXdNbeJ_TV8FN1TXVRwGIXRG-HTEdfpucXUZOUISo4YJUIplRpl0iuWWwc-I_WGW0zpYRLucBTUpeVyMLmFCDioWFaZkOrDLiNglnBd0mvmlf2I6HCSsB3GU-1MqIURhYeT8XwLAvJ4j45aecnLxrCcsyb8S0PjgvP2x_XJ4ddyR-BpOOVMvvtFOeNmv7MEdzKWIDVgya616BgeGqiKztfQhlYwJNEwmj65EMQja4TznAvVkHjJ36C_9l7Ph1PGM9U-um_S-6RdQBnKtx73Ce9Rb20nwEALcyBF_UDvzP1G6DC_t0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RemgvlEKBLbQ1UlVOgXjtJLY4oVK0XShC1bbi0CqyE1tCQBZtdw_l1EfoM_ZJOhMnQfRHQtwixT9xPOP5xmN_A_AaIbRPSp1EPE3jSPqEsgGaIpJlZrnwKTGa02mL43TwSQ5Pk9M52G3vwgR-iG7DjTSjXq9JwWlDutFyYhsYnvQzhfD5ATykhN5EnL__sX8TQoi17qjCs4Q3zLNYd6etedsW_QUwb-PV2uAcPIEv7aeGcybn27Op3S6u_2BxvOdYFmGhAaJsL0jOU5hz1RIs71XohF9-Z29YfTS03nNfhq-fzyZ0z4TRaQ-UVzb2DBfxkk3GIZLP0LNHGWGUzAhh_a8fP9vkulN21l4prKvRt5oJM0WB9i5I3zMYHbwbvR1ETV6GqBAIVyKcVW18ooThsfXoQjpvjcu0lj4VkgKlPiuJiM1rBMV9y43K-k5b9Bwld1KswHw1rtwaMOkUQrxMpEZbWUqrihpSxfisCsXjHmy1E5QXDWc5pc64yIPvIvL2x_Vgsyt5FXg6_lFmo53jvNHUbznhWxVLXPiwie416hgFTkzlxjMsgzY8SRSOpgerQTa6TgSn7ViNjW_VM_zf3vPR8ISLTKfP71zyFTwajD4c5Ufvjw_X4TFiNR2uQW7A_HQycy8QD03ty1rufwOKfAH4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB61VEK9FFr6s5QWV0JwCo3XTmIfUemKbiu0qhaEVKHITmxpBc2i7e4BTn2EPmOfhJk4SUUpUsUtUvwTxzP2N_bMNwBbCKF9Uuok4mkaR9InlA3QFJEsM8uFT4nRnLwtDtODIzk8SU4ar0qKhQn8EN2BG2lGvV6Tgl-UvlFyIhsYjvqZQvT8EB7JNNaUtmH_a__PDUKsdccUniW8IZ7Fuu_bmje3olv48iZcrfebwQp8a780uJmc7S7mdre4-ovE8X5DWYUnDQxle0FunsIDVz2Dtb0KTfDvl2yb1Y6h9Yn7GpweT2YUZcLI1wOllU09wyW8ZLNpuMdnaNejhDBKZYSg_vfPX21q3TmbtAGFdTX6VDNjpihwtwuy9xzGg4_jDwdRk5UhKgSClQjnVBufKGF4bD0akM5b4zKtpU-FpGtSn5VEw-Y1QuK-5UZlfact2o2SOylewFI1rdwrYNIpBHiZSI22spRWFTWgivFZFYrHPdhp5ycvGsZySpxxngfLReTtj-vBu67kRWDp-EeZjXaK80ZPf-SEblUscdnDJrrXqGF0bWIqN11gGdzBk0ThaHrwMohG14ngdBirsfGdeoLv7D0fD0dcZDpd_--Sm7A82h_kXz4dfn4NjxGo6RADuQFL89nCvUEwNLdva6m_BoDHAKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+signals+of+head+rotation+induce+gravity%E2%80%90dependent+inferences+of+linear+acceleration&rft.jtitle=The+Journal+of+physiology&rft.au=Navid+Khosravi%E2%80%90Hashemi&rft.au=bes%2C+Patrick+A&rft.au=Dakin%2C+Christopher+J&rft.au=Jean%E2%80%90S%C3%A9bastien+Blouin&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=597&rft.issue=21&rft.spage=5231&rft.epage=5246&rft_id=info:doi/10.1113%2FJP278642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon