Reducing thread divergence in GPU‐based bees swarm optimization applied to association rule mining

Summary The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional data...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 29; no. 9; pp. np - n/a
Main Authors Djenouri, Youcef, Bendjoudi, Ahcene, Habbas, Zineb, Mehdi, Malika, Djenouri, Djamel
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 10.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU‐based bees swarm optimization metaheuristic for ARM, respectively, named block‐based reordering, transactions‐based reordering, and transactions‐based reordering with median value. Theoretical and experimental studies have been carried out using well‐known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad‐core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Summary The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU-based bees swarm optimization metaheuristic for ARM, respectively, named block-based reordering, transactions-based reordering, and transactions-based reordering with median value. Theoretical and experimental studies have been carried out using well-known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad-core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster. Copyright © 2016 John Wiley & Sons, Ltd.
Summary The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU‐based bees swarm optimization metaheuristic for ARM, respectively, named block‐based reordering, transactions‐based reordering, and transactions‐based reordering with median value. Theoretical and experimental studies have been carried out using well‐known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad‐core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster. Copyright © 2016 John Wiley & Sons, Ltd.
The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU‐based bees swarm optimization metaheuristic for ARM, respectively, named block‐based reordering, transactions‐based reordering, and transactions‐based reordering with median value. Theoretical and experimental studies have been carried out using well‐known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad‐core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster. Copyright © 2016 John Wiley & Sons, Ltd.
The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules from transactional databases. It is CPU time intensive and requires a huge computing power when dealing with large transactional databases. To deal with this issue, Graphics Processing Units (GPUs) are a powerful tool to speed up the search process. However, their performance is closely subject to thread/branch divergence resulting from the single instruction multiple data parallel model of GPUs. In this paper, we propose three approaches based on database reorganization, aiming to reduce thread divergence in GPU-based bees swarm optimization metaheuristic for ARM, respectively, named block-based reordering, transactions-based reordering, and transactions-based reordering with median value. Theoretical and experimental studies have been carried out using well-known large ARM instances. The experiments have been performed on an Intel Xeon 64 bit quad-core processor E5520 coupled to Nvidia Tesla C2075 448 cores. The results show that the proposed approaches minimize considerably the number of thread divergence and improve the overall execution time. Indeed, the number of thread divergence occurrences has been reduced by up to eight times making the execution much faster.
Author Djenouri, Youcef
Djenouri, Djamel
Mehdi, Malika
Habbas, Zineb
Bendjoudi, Ahcene
Author_xml – sequence: 1
  givenname: Youcef
  surname: Djenouri
  fullname: Djenouri, Youcef
  organization: University of Saad Dahleb
– sequence: 2
  givenname: Ahcene
  surname: Bendjoudi
  fullname: Bendjoudi, Ahcene
  email: abendjoudi@cerist.dz
  organization: DTISI, CERIST Research Center
– sequence: 3
  givenname: Zineb
  surname: Habbas
  fullname: Habbas, Zineb
  organization: University of Lorraine Ile du Saulcy
– sequence: 4
  givenname: Malika
  surname: Mehdi
  fullname: Mehdi, Malika
  organization: USTHB
– sequence: 5
  givenname: Djamel
  surname: Djenouri
  fullname: Djenouri, Djamel
  organization: DTISI, CERIST Research Center
BookMark eNp10MtKxDAUBuAgCo4X8BECbtx0zKXpZSnDOAqCIrouaXqqkTapSauMKx_BZ_RJzExlBNFNEk6-HE7-PbRtrAGEjiiZUkLYqepgyjOebKEJFZxFJOHx9ubMkl205_0TIZQSTieouoVqUNo84P7RgaxwpV_APYBRgLXBi5v7z_ePUnqocAngsX-VrsW263Wr32SvrcGy6xod7nuLpfdW6bHshgZwq03ofYB2atl4OPze99H9-fxudhFdXS8uZ2dXkeJZnEQiFWmShyWt01SFCogykzkpGVFZyQlwqJgoOSiWB0K4yOuEVJJSxlMugO-jk7Fv5-zzAL4vWu0VNI00YAdf0JzEjMSEiUCPf9EnOzgTpguKsTgRIlup6aiUs947qAul-_X3eid1U1BSrEIvQujFKvSfCTYPOqdb6ZZ_0Wikr7qB5b-umN3M1_4LOYqSeQ
CitedBy_id crossref_primary_10_1145_3425867
crossref_primary_10_1007_s11227_020_03582_7
crossref_primary_10_1016_j_ins_2018_07_020
crossref_primary_10_1007_s42979_021_00819_x
crossref_primary_10_1007_s10619_018_7218_4
crossref_primary_10_1007_s10489_021_02682_y
crossref_primary_10_1186_s13677_020_00191_w
crossref_primary_10_3233_IDA_173785
crossref_primary_10_1145_3654987
crossref_primary_10_1016_j_ins_2018_05_031
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_1109_ACCESS_2019_2927261
crossref_primary_10_1016_j_ins_2018_06_060
crossref_primary_10_1109_TCBB_2022_3233803
crossref_primary_10_1002_cpe_4116
crossref_primary_10_1007_s10489_020_01664_w
crossref_primary_10_1145_3570638
Cites_doi 10.1109/ICDM.2002.1183921
10.1002/cpe.2931
10.1145/1810085.1810104
10.1145/170036.170072
10.1145/1964179.1964184
10.1109/CLUSTER.2011.61
10.1109/MICRO.2007.30
10.1109/SOCPAR.2014.7008040
10.1145/1816038.1815992
10.1109/ICET.2009.5353149
10.1007/s11227-010-0401-7
10.1007/s11227-014-1366-8
10.1109/PDP.2012.94
10.1504/IJBIC.2014.064990
10.1109/ICSMC.2010.5641778
10.1007/978-3-642-35567-7_27
10.1145/1565694.1565702
10.1109/69.553164
10.1007/s11227-014-1208-8
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.3836
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_3836
CPE3836
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3846-5757697577f77c846e5b8a90b20c8b30e3ed25b3ec297f70359f60da1123735e3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 11 05:24:45 EDT 2025
Wed Aug 13 03:18:13 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Thu Jul 03 08:23:42 EDT 2025
Wed Jan 22 16:46:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3846-5757697577f77c846e5b8a90b20c8b30e3ed25b3ec297f70359f60da1123735e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1922465585
PQPubID 2045170
PageCount 1
ParticipantIDs proquest_miscellaneous_1904204025
proquest_journals_1922465585
crossref_citationtrail_10_1002_cpe_3836
crossref_primary_10_1002_cpe_3836
wiley_primary_10_1002_cpe_3836_CPE3836
PublicationCentury 2000
PublicationDate 10 May 2017
PublicationDateYYYYMMDD 2017-05-10
PublicationDate_xml – month: 05
  year: 2017
  text: 10 May 2017
  day: 10
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 38
2013; 25
2012
2015; 71
2011
2010
1993; 22
2009
2014; 69
2007
2014
2002
2011; 58
2014; 6
1996; 6
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – start-page: 115
  year: 2010
  end-page: 126
– volume: 69
  start-page: 17
  issue: 1
  year: 2014
  end-page: 24
  article-title: GPU‐accelerated simulations of mass‐action kinetics models with cupSODA
  publication-title: The Journal of Supercomputing
– volume: 71
  start-page: 1318
  issue: 4
  year: 2015
  end-page: 1344
  article-title: GPU‐based bees swarm optimization for association rules mining
  publication-title: The Journal of Supercomputing
– start-page: 401
  year: 2014
  end-page: 405
– volume: 38
  start-page: 235
  issue: 3
  year: 2010
  end-page: 246
  article-title: Dynamic warp subdivision for integrated branch and memory divergence tolerance
  publication-title: ACM SIGARCH Computer Architecture News
– volume: 6
  start-page: 962
  year: 1996
  end-page: 969
  article-title: Parallel mining of association rules
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– start-page: 332
  year: 2009
  end-page: 336
– start-page: 416
  year: 2012
  end-page: 425
– start-page: 338
  year: 2002
  end-page: 345
– start-page: 34
  year: 2009
  end-page: 42
– start-page: 3
  year: 2011
– volume: 25
  start-page: 1121
  issue: 8
  year: 2013
  end-page: 1136
  article-title: Reducing thread divergence in a GPU‐accelerated branch‐and‐bound algorithm
  publication-title: Concurrency and Computation: Practice and Experience
– start-page: 407
  year: 2007
  end-page: 420
– volume: 58
  start-page: 244
  issue: 2
  year: 2011
  end-page: 252
  article-title: Genetic algorithm for Boolean minimization in an FPGA cluster
  publication-title: The Journal of Supercomputing
– start-page: 215
  year: 2012
  end-page: 222
– start-page: 435
  year: 2010
  end-page: 440
– volume: 6
  start-page: 239
  issue: 4
  year: 2014
  end-page: 249
  article-title: Bees swarm optimisation using multiple strategies for association rule mining
  publication-title: International Journal of Bio‐Inspired Computation
– start-page: 364
  year: 2014
  end-page: 73
– volume: 22
  start-page: 207
  issue: 2
  year: 1993
  end-page: 216
  article-title: Mining association rules between sets of items in large databases
  publication-title: ACM SIGMOD Record
– start-page: 590
  year: 2011
  end-page: 594
– ident: e_1_2_9_17_1
  doi: 10.1109/ICDM.2002.1183921
– ident: e_1_2_9_10_1
  doi: 10.1002/cpe.2931
– ident: e_1_2_9_13_1
  doi: 10.1145/1810085.1810104
– ident: e_1_2_9_15_1
  doi: 10.1145/170036.170072
– ident: e_1_2_9_14_1
  doi: 10.1145/1964179.1964184
– ident: e_1_2_9_18_1
  doi: 10.1109/CLUSTER.2011.61
– ident: e_1_2_9_11_1
  doi: 10.1109/MICRO.2007.30
– ident: e_1_2_9_6_1
  doi: 10.1109/SOCPAR.2014.7008040
– ident: e_1_2_9_12_1
  doi: 10.1145/1816038.1815992
– ident: e_1_2_9_2_1
  doi: 10.1109/ICET.2009.5353149
– ident: e_1_2_9_19_1
  doi: 10.1007/s11227-010-0401-7
– ident: e_1_2_9_21_1
  doi: 10.1007/s11227-014-1366-8
– ident: e_1_2_9_16_1
  doi: 10.1109/PDP.2012.94
– ident: e_1_2_9_8_1
– ident: e_1_2_9_20_1
– ident: e_1_2_9_23_1
  doi: 10.1504/IJBIC.2014.064990
– ident: e_1_2_9_22_1
– ident: e_1_2_9_5_1
  doi: 10.1109/ICSMC.2010.5641778
– ident: e_1_2_9_3_1
  doi: 10.1007/978-3-642-35567-7_27
– ident: e_1_2_9_4_1
  doi: 10.1145/1565694.1565702
– ident: e_1_2_9_7_1
  doi: 10.1109/69.553164
– ident: e_1_2_9_9_1
  doi: 10.1007/s11227-014-1208-8
SSID ssj0011031
Score 2.2410145
Snippet Summary The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant...
The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant association rules...
Summary The association rules mining (ARM) problem is one of the most important problems in the area of data mining. It aims at finding all relevant...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms association rules mining
Bees
bees swarm optimization
Central processing units
Computing time
Concurrency
CPUs
Data mining
Divergence
GPU computing
Graphics processing units
Heuristic methods
Microprocessors
Optimization
Search process
Swarm intelligence
thread divergence
Title Reducing thread divergence in GPU‐based bees swarm optimization applied to association rule mining
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.3836
https://www.proquest.com/docview/1922465585
https://www.proquest.com/docview/1904204025
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EkxffYrXKCqKntOlu8zqKqEVQpFgQPIR9TEC0SWlTBE_-BH-jv8SZPFoVBfGSQDLJJjs7M98ms98wdojzLVdb4Tlh2JVO17PWUSbpODbSvsUpSOR3aDXy1bXfG3Qv77y7KquS1sKU_BCzD25kGYW_JgNXetKek4aaEbRwekVs25SqRXioP2OO6lD1gpIqVTgugvaad9YV7frCr5FoDi8_g9QiypyvsPv6-crkksfWNNct8_KNuvF_L7DKlivwyU_K0bLGFiBdZyt1YQde2fkGs30idMWgxnNUtbLcUvZGQdvJH1J-cTN4f32j-Ge5BpjwybMaD3mG3mdYLevkqkS3PM-4mo8APp4-AR8WRSk22eD87Pa051TlGBwjEaU4COwCP8JNkASBwSPg6VBFrhauCbV0QQIqXUswIkIR4gZMfNcqRHQykB7ILbaYZilsM-6JIExQOhE26UoDiDIhUoBoQYfWk9Bgx7VqYlNxlVPJjKe4ZFkWMXZeTJ3XYAczyVHJz_GDTLPWblxZ6CRGZCuIOy708Baz02hb9MNEpZBNSQZdGno5gTJHhSp_bSM-vTmj_c5fBXfZkiCEUBDBNtliPp7CHuKbXO8XI_kDrlP4Xw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7MekgurpoEX9EWJDnNOtu98yKnIOomPhBxwUNg6EcNiO6s7M4i5JSf4G_0l6RqHrtJiBC8zMBMzaurq-qrnu6vAPYo3_KNk4EXxz3l9QLnPG2zrucSEzpKQZKwy6uRz87D_qD37Tq4XoDPzVqYih9iNuDGllH6azZwHpDen7OG2nvsUH4VvoJFLuhd5lOXM-6oLtcvqMhSpecTbG-YZ32531z5ZyyaA8zfYWoZZ47a8L15w2p6yW1nWpiO_fEXeeMLP2EZlmr8Kb5UHWYFFjBfhXZT20HUpv4W3CVzulJcEwVpWzvheAJHydwpbnJxfDF4-vnIIdAJgzgRkwc9HooROaBhvbJT6ArgimIk9LwTiPH0DsWwrEvxDgZHh1cHfa-uyOBZRUDFI2wXhQltoiyKLB3BwMQ68Y30bWyUjwpJ70ahlQmJMD1gFvpOE6hTkQpQvYdWPspxDUQgozgj6Uy6rKcsEtDERCMBBhO7QOE6fGp0k9qarpyrZtylFdGyTKnxUm68ddidSd5XFB3_kNlq1JvWRjpJCdxKpo-LA7rF7DSZF_8z0TmOpixDXo0cnSSZj6Uun31GenBxyPuN_xXcgdf9q7PT9PTr-ckmvJEMGEpe2C1oFeMpfiC4U5jtslv_Aia0_Ho
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-NAFB5cBdkX78t218sIok-p6Uyuj6JWd71QxILgQ5jLCSzatLQpC_vkT_A3-ks8J5dWRWHxJYHkJJPMuX2TzHyHsR0cb7naCt-JIk86nm-to0zacmysA4tDkDho0Wrki8vgtOv9vvFvqlmVtBam5IeYfHAjzyjiNTn4wKb7U9JQM4AmDq-CL2zOC9yILProakId1aLyBSVXqnBcRO018awr9usrX6eiKb58iVKLNNNeZLf1A5azS-6a41w3zb833I2fe4MltlChT35Qmssym4FshS3WlR145eirzF4RoytmNZ6jrpXllqZvFLyd_E_GTzrdp4dHSoCWa4ARH_1Vwx7vY_jpVes6uSrhLc_7XE1NgA_H98B7RVWKNdZtH18fnjpVPQbHSIQpDiK7MIhxE6ZhaPAI-DpSsauFayItXZCAWtcSjIhRhMgB08C1CiGdDKUP8hubzfoZfGfcF2GUonQqbOpJAwgzIVaAcEFH1pfQYHu1ahJTkZVTzYz7pKRZFgl2XkKd12DbE8lBSdDxjsx6rd2kctFRgtBWEHlc5OMtJqfRueiPicqgPyYZjGkY5gTK7Baq_LCN5LBzTPsf_yu4xeY7R-3k_Nfl2U_2VRBaKEhh19lsPhzDBmKdXG8WRv0MWF37Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+thread+divergence+in+GPU-based+bees+swarm+optimization+applied+to+association+rule+mining&rft.jtitle=Concurrency+and+computation&rft.au=Djenouri%2C+Youcef&rft.au=Bendjoudi%2C+Ahcene&rft.au=Habbas%2C+Zineb&rft.au=Mehdi%2C+Malika&rft.date=2017-05-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fcpe.3836&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon