MixFace: Improving face verification with a focus on fine‐grained conditions

The performance of face recognition (FR) has reached a plateau for public benchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal‐profile in the wild (CFP‐FP), and the first manually collected, in‐the‐wild age database (AgeDB), owing to the rapid advances in convolutional...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 46; no. 4; pp. 660 - 670
Main Authors Jung, Junuk, Son, Sungbin, Park, Joochan, Park, Yongjun, Lee, Seonhoon, Oh, Heung‐Seon
Format Journal Article
LanguageEnglish
Published Electronics and Telecommunications Research Institute (ETRI) 01.08.2024
한국전자통신연구원
Subjects
Online AccessGet full text
ISSN1225-6463
2233-7326
DOI10.4218/etrij.2023-0167

Cover

Loading…
Abstract The performance of face recognition (FR) has reached a plateau for public benchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal‐profile in the wild (CFP‐FP), and the first manually collected, in‐the‐wild age database (AgeDB), owing to the rapid advances in convolutional neural networks (CNNs). However, the effects of faces under various fine‐grained conditions on FR models have not been investigated, owing to the absence of relevant datasets. This paper analyzes their effects under different conditions and loss functions using K‐FACE, a recently introduced FR dataset with fine‐grained conditions. We propose a novel loss function called MixFace, which combines classification and metric losses. The superiority of MixFace in terms of effectiveness and robustness was experimentally demonstrated using various benchmark datasets.
AbstractList The performance of face recognition (FR) has reached a plateau for public benchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal‐profile in the wild (CFP‐FP), and the first manually collected, in‐the‐wild age database (AgeDB), owing to the rapid advances in convolutional neural networks (CNNs). However, the effects of faces under various fine‐grained conditions on FR models have not been investigated, owing to the absence of relevant datasets. This paper analyzes their effects under different conditions and loss functions using K‐FACE, a recently introduced FR dataset with fine‐grained conditions. We propose a novel loss function called MixFace, which combines classification and metric losses. The superiority of MixFace in terms of effectiveness and robustness was experimentally demonstrated using various benchmark datasets.
The performance of face recognition (FR) has reached a plateau for publicbenchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal-profile in the wild (CFP-FP), and the first manually collected, inthe-wild age database (AgeDB), owing to the rapid advances in convolutional neural networks (CNNs). However, the effects of faces under various finegrained conditions on FR models have not been investigated, owing to the absence of relevant datasets. This paper analyzes their effects under different conditions and loss functions using K-FACE, a recently introduced FR dataset with fine-grained conditions. We propose a novel loss function called MixFace, which combines classification and metric losses. The superiority of MixFace in terms of effectiveness and robustness was experimentally demonstrated using various benchmark datasets.
The performance of face recognition (FR) has reached a plateau for publicbenchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal-profile in the wild (CFP-FP), and the first manually collected, inthe-wild age database (AgeDB), owing to the rapid advances in convolutional neural networks (CNNs). However, the effects of faces under various finegrained conditions on FR models have not been investigated, owing to the absence of relevant datasets. This paper analyzes their effects under different conditions and loss functions using K-FACE, a recently introduced FR dataset with fine-grained conditions. We propose a novel loss function called MixFace, which combines classification and metric losses. The superiority of MixFace in terms of effectiveness and robustness was experimentally demonstrated using various benchmark datasets. KCI Citation Count: 0
Author Park, Joochan
Oh, Heung‐Seon
Park, Yongjun
Son, Sungbin
Lee, Seonhoon
Jung, Junuk
Author_xml – sequence: 1
  givenname: Junuk
  surname: Jung
  fullname: Jung, Junuk
  organization: Korea University of Technology and Education
– sequence: 2
  givenname: Sungbin
  orcidid: 0000-0001-6530-5735
  surname: Son
  fullname: Son, Sungbin
  organization: Korea University of Technology and Education
– sequence: 3
  givenname: Joochan
  surname: Park
  fullname: Park, Joochan
  organization: Korea University of Technology and Education
– sequence: 4
  givenname: Yongjun
  surname: Park
  fullname: Park, Yongjun
  organization: Korea University of Technology and Education
– sequence: 5
  givenname: Seonhoon
  surname: Lee
  fullname: Lee, Seonhoon
  organization: Korea University of Technology and Education
– sequence: 6
  givenname: Heung‐Seon
  orcidid: 0000-0002-9193-8998
  surname: Oh
  fullname: Oh, Heung‐Seon
  email: ohhs@koreatech.ac.kr
  organization: Korea University of Technology and Education
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003106932$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkctOwzAQRS0EEuWxZps1UsAeP5KwQ4hHJR5SVdbWxBkXtyVGTqGw4xP4Rr6EtEVsWd2Z0b1nFnePbbexJcaOBD9RIMpTWqQwPQEOMufCFFtsACBlXkgw22wgAHRulJG7bK_rppwDV7ocsPu78H6Fjs6y4fNLim-hnWS-37M3SsEHh4sQ22wZFk8ZZj661y7rdx9a-v78miTshyZzsW3CytgdsB2P844Of3WfPV5dji9u8tuH6-HF-W3uZKlUjsCl8VqJpuLkfe2aUmMNjS8qZ8gT1LWBuvS64KglaSEVGjKcuDaiAi_32fGG2yZvZy7YiGGtk2hnyZ6PxkMruC6NVFVvHm7MTcSpfUnhGdPHOrE-xDSxmBbBzcn2TypCcFhho1yDFThCUylyEgrlyp51umG5FLsukf_jCW5XPdh1D3bVg1310CfMJrEMc_r4z24vxyMQYLSSP-MAkDA
Cites_doi 10.1109/CVPR.2005.202
10.1109/CVPR.2006.100
10.1109/CVPR.2017.713
10.1109/ICCV.2017.307
10.1109/CVPRW.2017.250
10.1007/978-3-319-46478-7_31
10.1109/CVPR.2016.90
10.1109/CVPR.2014.220
10.1007/978-3-030-01231-1_17
10.1109/CVPR.2015.7298682
10.1109/CVPR42600.2020.00643
10.1007/978-3-030-01240-3_47
10.1109/WACV.2016.7477558
10.1109/CVPR.2015.7298594
10.1109/ICCV.2019.00659
10.1109/CVPR42600.2020.00525
10.1109/CVPR.2018.00552
10.1109/FG.2018.00020
10.1109/CVPR.2018.00745
10.1109/LSP.2018.2822810
10.1109/CVPR.2019.00482
10.1109/CVPR.2019.00516
10.1007/978-3-319-46487-9_6
10.1109/CVPR.2019.01108
10.5244/C.29.41
10.1109/CVPR.2018.00474
ContentType Journal Article
Copyright 1225‐6463/$ © 2024 ETRI
Copyright_xml – notice: 1225‐6463/$ © 2024 ETRI
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.4218/etrij.2023-0167
DatabaseName CrossRef
DOAJ Open Access Full Text
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 670
ExternalDocumentID oai_kci_go_kr_ARTI_10586349
oai_doaj_org_article_6e69ea2ca9ad4cda92cea694ec3274c8
10_4218_etrij_2023_0167
ETR212654
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: Korea government(MSIT)/NRF‐2019R1G1A1003312; Korea government(MSIT)/NRF‐2021R1I1A3052815
GroupedDBID -~X
.4S
.DC
0R~
29G
2WC
5GY
5VS
9ZL
AAKPC
AAMMB
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
ADMLS
AEFGJ
AENEX
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
OVT
RIG
RNS
TR2
TUS
WIN
XSB
AAYXX
CITATION
.UV
1OC
P5Y
ID FETCH-LOGICAL-c3844-a2036f541d90effbcd85ab2df79c6efe2bb62b8f570a53e5134a6e60e056192f3
IEDL.DBID DOA
ISSN 1225-6463
IngestDate Fri Aug 16 03:20:37 EDT 2024
Wed Aug 27 01:06:38 EDT 2025
Tue Jul 01 02:03:21 EDT 2025
Sun Jul 06 04:45:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3844-a2036f541d90effbcd85ab2df79c6efe2bb62b8f570a53e5134a6e60e056192f3
Notes https://doi.org/10.4218/etrij.2023-0167
ORCID 0000-0001-6530-5735
0000-0002-9193-8998
OpenAccessLink https://doaj.org/article/6e69ea2ca9ad4cda92cea694ec3274c8
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10586349
doaj_primary_oai_doaj_org_article_6e69ea2ca9ad4cda92cea694ec3274c8
crossref_primary_10_4218_etrij_2023_0167
wiley_primary_10_4218_etrij_2023_0167_ETR212654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-08-01
2024-08
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle ETRI journal
PublicationYear 2024
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 2021
2020
2019
2008
2018
2006
2017
2016
2005
2015
2014
2012; 13
2018; 25
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Bergstra J. (e_1_2_9_30_1) 2012; 13
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 4690
  year: 2019
  end-page: 4699
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 1735
  year: 2006
  end-page: 1742
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  end-page: 305
  article-title: Random search for hyper‐parameter optimization
  publication-title: J. Mach. Learn. Res.
– year: 2021
– start-page: 1701
  year: 2014
  end-page: 1708
– start-page: 765
  year: 2018
  end-page: 780
– start-page: 5022
  year: 2019
  end-page: 5030
– start-page: 539
  year: 2005
  end-page: 546
– start-page: 7132
  year: 2018
  end-page: 7141
– start-page: 6398
  year: 2020
  end-page: 6407
– year: 2014
– start-page: 1
  year: 2016
  end-page: 9
– start-page: 67
  year: 2018
  end-page: 74
– start-page: 815
  year: 2015
  end-page: 823
– start-page: 2821
  year: 2017
  end-page: 2829
– start-page: 1
  year: 2015
  end-page: 9
– year: 2008
– start-page: 87
  year: 2016
  end-page: 102
– start-page: 10823
  year: 2019
  end-page: 10832
– start-page: 499
  year: 2016
  end-page: 515
– start-page: 269
  year: 2018
  end-page: 285
– start-page: 6490
  year: 2019
  end-page: 6499
– start-page: 41.1
  year: 2015
  end-page: 41.12
– start-page: 212
  year: 2017
  end-page: 220
– start-page: 51
  year: 2017
  end-page: 59
– start-page: 5203
  year: 2020
  end-page: 5212
– start-page: 4510
  year: 2018
  end-page: 4520
– start-page: 5265
  year: 2018
  end-page: 5274
– start-page: 1857
  year: 2016
  end-page: 1865
– volume: 25
  start-page: 926
  issue: 7
  year: 2018
  end-page: 930
  article-title: Additive margin softmax for face verification
  publication-title: IEEE Sig. Process. Lett.
– ident: e_1_2_9_9_1
  doi: 10.1109/CVPR.2005.202
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: e_1_2_9_30_1
  article-title: Random search for hyper‐parameter optimization
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_10_1
  doi: 10.1109/CVPR.2006.100
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2017.713
– ident: e_1_2_9_22_1
  doi: 10.1109/ICCV.2017.307
– ident: e_1_2_9_28_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_27_1
  doi: 10.1109/CVPRW.2017.250
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-319-46478-7_31
– ident: e_1_2_9_2_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2014.220
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-030-01231-1_17
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR.2015.7298682
– ident: e_1_2_9_29_1
  doi: 10.1109/CVPR42600.2020.00643
– ident: e_1_2_9_6_1
  doi: 10.1007/978-3-030-01240-3_47
– ident: e_1_2_9_4_1
– ident: e_1_2_9_26_1
  doi: 10.1109/WACV.2016.7477558
– ident: e_1_2_9_5_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_9_23_1
  doi: 10.1109/ICCV.2019.00659
– ident: e_1_2_9_7_1
  doi: 10.1109/CVPR42600.2020.00525
– ident: e_1_2_9_20_1
  doi: 10.1109/CVPR.2018.00552
– ident: e_1_2_9_8_1
  doi: 10.1109/FG.2018.00020
– ident: e_1_2_9_3_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_9_19_1
  doi: 10.1109/LSP.2018.2822810
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR.2019.00482
– ident: e_1_2_9_15_1
– ident: e_1_2_9_16_1
  doi: 10.1109/CVPR.2019.00516
– ident: e_1_2_9_31_1
  doi: 10.1007/978-3-319-46487-9_6
– ident: e_1_2_9_24_1
  doi: 10.1109/CVPR.2019.01108
– ident: e_1_2_9_11_1
  doi: 10.5244/C.29.41
– ident: e_1_2_9_32_1
  doi: 10.1109/CVPR.2018.00474
SSID ssj0020458
Score 2.3565688
Snippet The performance of face recognition (FR) has reached a plateau for public benchmark datasets, such as labeled faces in the wild (LFW), celebrities in...
The performance of face recognition (FR) has reached a plateau for publicbenchmark datasets, such as labeled faces in the wild (LFW), celebrities in...
SourceID nrf
doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 660
SubjectTerms face recognition
face verification
전자/정보통신공학
Title MixFace: Improving face verification with a focus on fine‐grained conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2023-0167
https://doaj.org/article/6e69ea2ca9ad4cda92cea694ec3274c8
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003106932
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2024, 46(4), , pp.660-670
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLgB68xO5mk3TjTcWioh6kBW8hT6mFVmoL_nxnsm3Rkxcvu2TZTcI3gZkvmf2GkDPlVVGnIjJeesUEh4tzUTKhKhdkp-j4XD_l6Vnd9cXDq3z9UeoLc8IaeeAGuLaKSkfLvdU2CB-s5j5apUX0FRAqn3_zLXSxIFNzqoXHf0i1YLUyBeM2oj4C_FkbC1W9X2DVcIYp-L_8UZbtBy8zmqTfwWr2Nt1NsjEPE-lVM70tshJH22T9h3jgDnl8Gnx1rY-XdLkxQBO0KSxOzP_JkFPcZ6WWprGffVJoJ-iAvWFdiBgocOHQpGztkn73tndzx-a1EZivaiGYxQPEJEUZdBFTcj7U0joeUkd7FVPkzinu6gRwW1lFWVbCApRFRMagear2yOpoPIr7hDoVIKbhtXIFqgWWjtepDNCx7YCr0qJFzhcImY9GAsMAdUAwTQbTIJgGwWyRa0Rw-RpqV-cHYFEzt6j5y6Itcgr4m6Ef5O_x_jY2w4mBCP8eRpa1qoRukXa2z19TMre9F3DPSoqD_5jcIVmDrkWTAnhEVqeTWTyGsGTqTvIK_AaoUd17
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BegAOiKealoclOHBZuuu1nXVvBTVKockBJajiYvkZhUoJWlKpx_4EfmN_CTPeELVcEJddeWXPWt94dh6eHQO8VV6VTSpjwSuvCsHx4lyUhVC1C3JQDnw-P2U8UaOZ-HQmz278C9PVh9gG3Egy8veaBJwC0iTlAtUScXHdLr6_p-O_C8qlvws7ZNvwHuwcfZ19m23dLtoKJLcLV26hcA5dgR8icvAXiVu6KZfwR42zbNNtwzVrnuEjeLgxGdlRx-PHcCcun8CDG4UEn8JkvLgcWh8P2TZIwBK2GS5UygXK8DOKuTLL0spf_GTYTkjg-urXnE6JiIGhZxy6BK5nMBseTz-Ois1JCYWvGyEKS9uJSYoq6DKm5HxopHU8pIH2KqbInVPcNQnBt7KOsqqFVVGVkfwHzVP9HHrL1TLuAnMqoIXDG-VKqh1YOd6kKiBhO0DFpUUf3v3ByPzoCmIYdCQITpPhNASnITj78IEw3HajStb5waqdm41gGJyGjpZ7q20QPljNfbRKi-hrdJh904c3yAFz7hd5PN3nK3PeGrT3T_DNslG10H04yBz615TM8fQLKmslxd5_j3gN90bT8ak5PZl83of72EN0mYAvoLduL-JLtE7W7tVm-f0GzHreLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fTxQxEJ8gJEYejPgnHgg20QdfVna7bW_rGygXQLkYwxnjS9O_l5PkjixHwqMfwc_IJ2Gme1zEF8PLbrppZ5vfzOzMtLNTgLfKq7JJZSx45VUhOF6ci7IQqnZB9su-z-ennAzV4Ugc_5C32YT0L0xXH2K54Eaakb_XpODnIZGSC7RKxMR5O_n1nk7_LiiV_gGsUa08FPW1ve-jn6Nl1EU7gRR1oeAWCqfQ1fchIrv_kLhjmnIFfzQ40zbd9Vuz4Rk8gccLj5HtdSzegJU4fQrrf9URfAbDk8nVwPr4gS3XCFjCNkM5pVSgjD6jJVdmWZr5ywuG7YQErn__GdMhETEwDIxDl7_1HEaDg9OPh8XioITC140QhaXdxCRFFXQZU3I-NNI6HlJfexVT5M4p7pqE2FtZR1nVwqqoykjhg-apfgGr09k0vgTmVEAHhzfKlVQ6sHK8SVVAwraPdkuLHry7xcicd_UwDMYRBKfJcBqC0xCcPdgnDJfdqJB1fjBrx2ahFwanoaPl3mobhA9Wcx-t0iL6GuNl3_TgDXLAnPlJHk_38cyctQbd_SN8s2xULXQPdjOH_jclc3D6DW21kmLz3iNew8Ovnwbmy9Hw8xY8wg6iywN8Bavz9jJuo28ydzsL6bsBhhPdVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MixFace%3A+Improving+face+verification+with+a+focus+on+fine%E2%80%90grained+conditions&rft.jtitle=ETRI+journal&rft.au=Jung%2C+Junuk&rft.au=Son%2C+Sungbin&rft.au=Park%2C+Joochan&rft.au=Park%2C+Yongjun&rft.date=2024-08-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=46&rft.issue=4&rft.spage=660&rft.epage=670&rft_id=info:doi/10.4218%2Fetrij.2023-0167&rft.externalDBID=10.4218%252Fetrij.2023-0167&rft.externalDocID=ETR212654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon