Acute effects of increased gut microbial fermentation on the hypoxic ventilatory response in humans

New Findings What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the main finding and its importance? Increased gut microbial fermentation is associated with augmented ventilatory (but not haemody...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 106; no. 3; pp. 748 - 758
Main Authors Seredyński, Rafał, Pawłowska‐Seredyńska, Katarzyna, Ponikowska, Beata, Paleczny, Bartłomiej
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.03.2021
Subjects
Online AccessGet full text
ISSN0958-0670
1469-445X
1469-445X
DOI10.1113/EP089113

Cover

Loading…
Abstract New Findings What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the main finding and its importance? Increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to transient hypoxia. These findings imply a capacity for gut microbiota to modulate the peripheral chemoreflex response to hypoxia in humans. Recent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a similar association between gut microbiota and peripheral chemoreceptor responsiveness to hypoxia in humans has not been reported to date. Therefore, we performed a within subject, placebo‐controlled study in a group of 16 healthy individuals (eight men; mean ± SD age 25.9 ± 5.2 years). Participants underwent two tests (in a random order), receiving lactulose, which stimulates gut fermentation, or placebo. Ventilatory and haemodynamic responses to transient hypoxia were evaluated before and 2 h after the test meal. The magnitude of these responses was related to the net hydrogen content in the exhaled air, reflecting gut fermentation intensity. A lactulose meal, compared to placebo, caused an increase in the minute ventilation (Hyp‐VI; l/min/SpO2) and breathing rate (Hyp‐BR; breaths/min/SpO2) responses to hypoxia (for Hyp‐VI, mean ± SD −0.03 ± 0.059 in placebo test vs. 0.05 ± 0.116 in lactulose test, P = 0.03; for Hyp‐BR, −0.015 ± 0.046 vs. 0.034 ± 0.054, P = 0.01). The magnitude of these responses was positively correlated with the lactulose‐induced hydrogen excretion (for Hyp‐VI, r = 0.62, P = 0.01; for Hyp‐BR, r = 0.73, P = 0.001). Changes in the resting parameters during normoxia did not differ significantly between the tests. Our results demonstrate that the increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to the transient hypoxia, which implies a capacity for gut microbiota to modulate the peripheral chemoreflex in humans.
AbstractList What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the main finding and its importance? Increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to transient hypoxia. These findings imply a capacity for gut microbiota to modulate the peripheral chemoreflex response to hypoxia in humans.NEW FINDINGSWhat is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the main finding and its importance? Increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to transient hypoxia. These findings imply a capacity for gut microbiota to modulate the peripheral chemoreflex response to hypoxia in humans.Recent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a similar association between gut microbiota and peripheral chemoreceptor responsiveness to hypoxia in humans has not been reported to date. Therefore, we performed a within subject, placebo-controlled study in a group of 16 healthy individuals (eight men; mean ± SD age 25.9 ± 5.2 years). Participants underwent two tests (in a random order), receiving lactulose, which stimulates gut fermentation, or placebo. Ventilatory and haemodynamic responses to transient hypoxia were evaluated before and 2 h after the test meal. The magnitude of these responses was related to the net hydrogen content in the exhaled air, reflecting gut fermentation intensity. A lactulose meal, compared to placebo, caused an increase in the minute ventilation (Hyp-VI; l/min/ SpO2 ) and breathing rate (Hyp-BR; breaths/min/ SpO2 ) responses to hypoxia (for Hyp-VI, mean ± SD -0.03 ± 0.059 in placebo test vs. 0.05 ± 0.116 in lactulose test, P = 0.03; for Hyp-BR, -0.015 ± 0.046 vs. 0.034 ± 0.054, P = 0.01). The magnitude of these responses was positively correlated with the lactulose-induced hydrogen excretion (for Hyp-VI, r = 0.62, P = 0.01; for Hyp-BR, r = 0.73, P = 0.001). Changes in the resting parameters during normoxia did not differ significantly between the tests. Our results demonstrate that the increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to the transient hypoxia, which implies a capacity for gut microbiota to modulate the peripheral chemoreflex in humans.ABSTRACTRecent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a similar association between gut microbiota and peripheral chemoreceptor responsiveness to hypoxia in humans has not been reported to date. Therefore, we performed a within subject, placebo-controlled study in a group of 16 healthy individuals (eight men; mean ± SD age 25.9 ± 5.2 years). Participants underwent two tests (in a random order), receiving lactulose, which stimulates gut fermentation, or placebo. Ventilatory and haemodynamic responses to transient hypoxia were evaluated before and 2 h after the test meal. The magnitude of these responses was related to the net hydrogen content in the exhaled air, reflecting gut fermentation intensity. A lactulose meal, compared to placebo, caused an increase in the minute ventilation (Hyp-VI; l/min/ SpO2 ) and breathing rate (Hyp-BR; breaths/min/ SpO2 ) responses to hypoxia (for Hyp-VI, mean ± SD -0.03 ± 0.059 in placebo test vs. 0.05 ± 0.116 in lactulose test, P = 0.03; for Hyp-BR, -0.015 ± 0.046 vs. 0.034 ± 0.054, P = 0.01). The magnitude of these responses was positively correlated with the lactulose-induced hydrogen excretion (for Hyp-VI, r = 0.62, P = 0.01; for Hyp-BR, r = 0.73, P = 0.001). Changes in the resting parameters during normoxia did not differ significantly between the tests. Our results demonstrate that the increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to the transient hypoxia, which implies a capacity for gut microbiota to modulate the peripheral chemoreflex in humans.
Recent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a similar association between gut microbiota and peripheral chemoreceptor responsiveness to hypoxia in humans has not been reported to date. Therefore, we performed a within subject, placebo‐controlled study in a group of 16 healthy individuals (eight men; mean ± SD age 25.9 ± 5.2 years). Participants underwent two tests (in a random order), receiving lactulose, which stimulates gut fermentation, or placebo. Ventilatory and haemodynamic responses to transient hypoxia were evaluated before and 2 h after the test meal. The magnitude of these responses was related to the net hydrogen content in the exhaled air, reflecting gut fermentation intensity. A lactulose meal, compared to placebo, caused an increase in the minute ventilation (Hyp‐VI; l/min/SpO2) and breathing rate (Hyp‐BR; breaths/min/SpO2) responses to hypoxia (for Hyp‐VI, mean ± SD −0.03 ± 0.059 in placebo test vs. 0.05 ± 0.116 in lactulose test, P = 0.03; for Hyp‐BR, −0.015 ± 0.046 vs. 0.034 ± 0.054, P = 0.01). The magnitude of these responses was positively correlated with the lactulose‐induced hydrogen excretion (for Hyp‐VI, r = 0.62, P = 0.01; for Hyp‐BR, r = 0.73, P = 0.001). Changes in the resting parameters during normoxia did not differ significantly between the tests. Our results demonstrate that the increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to the transient hypoxia, which implies a capacity for gut microbiota to modulate the peripheral chemoreflex in humans.
New Findings What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the main finding and its importance? Increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to transient hypoxia. These findings imply a capacity for gut microbiota to modulate the peripheral chemoreflex response to hypoxia in humans. Recent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a similar association between gut microbiota and peripheral chemoreceptor responsiveness to hypoxia in humans has not been reported to date. Therefore, we performed a within subject, placebo‐controlled study in a group of 16 healthy individuals (eight men; mean ± SD age 25.9 ± 5.2 years). Participants underwent two tests (in a random order), receiving lactulose, which stimulates gut fermentation, or placebo. Ventilatory and haemodynamic responses to transient hypoxia were evaluated before and 2 h after the test meal. The magnitude of these responses was related to the net hydrogen content in the exhaled air, reflecting gut fermentation intensity. A lactulose meal, compared to placebo, caused an increase in the minute ventilation (Hyp‐VI; l/min/SpO2) and breathing rate (Hyp‐BR; breaths/min/SpO2) responses to hypoxia (for Hyp‐VI, mean ± SD −0.03 ± 0.059 in placebo test vs. 0.05 ± 0.116 in lactulose test, P = 0.03; for Hyp‐BR, −0.015 ± 0.046 vs. 0.034 ± 0.054, P = 0.01). The magnitude of these responses was positively correlated with the lactulose‐induced hydrogen excretion (for Hyp‐VI, r = 0.62, P = 0.01; for Hyp‐BR, r = 0.73, P = 0.001). Changes in the resting parameters during normoxia did not differ significantly between the tests. Our results demonstrate that the increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to the transient hypoxia, which implies a capacity for gut microbiota to modulate the peripheral chemoreflex in humans.
What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the main finding and its importance? Increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to transient hypoxia. These findings imply a capacity for gut microbiota to modulate the peripheral chemoreflex response to hypoxia in humans. Recent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a similar association between gut microbiota and peripheral chemoreceptor responsiveness to hypoxia in humans has not been reported to date. Therefore, we performed a within subject, placebo-controlled study in a group of 16 healthy individuals (eight men; mean ± SD age 25.9 ± 5.2 years). Participants underwent two tests (in a random order), receiving lactulose, which stimulates gut fermentation, or placebo. Ventilatory and haemodynamic responses to transient hypoxia were evaluated before and 2 h after the test meal. The magnitude of these responses was related to the net hydrogen content in the exhaled air, reflecting gut fermentation intensity. A lactulose meal, compared to placebo, caused an increase in the minute ventilation (Hyp-VI; l/min/ ) and breathing rate (Hyp-BR; breaths/min/ ) responses to hypoxia (for Hyp-VI, mean ± SD -0.03 ± 0.059 in placebo test vs. 0.05 ± 0.116 in lactulose test, P = 0.03; for Hyp-BR, -0.015 ± 0.046 vs. 0.034 ± 0.054, P = 0.01). The magnitude of these responses was positively correlated with the lactulose-induced hydrogen excretion (for Hyp-VI, r = 0.62, P = 0.01; for Hyp-BR, r = 0.73, P = 0.001). Changes in the resting parameters during normoxia did not differ significantly between the tests. Our results demonstrate that the increased gut microbial fermentation is associated with augmented ventilatory (but not haemodynamic) responses to the transient hypoxia, which implies a capacity for gut microbiota to modulate the peripheral chemoreflex in humans.
Author Ponikowska, Beata
Seredyński, Rafał
Pawłowska‐Seredyńska, Katarzyna
Paleczny, Bartłomiej
Author_xml – sequence: 1
  givenname: Rafał
  orcidid: 0000-0002-5811-3759
  surname: Seredyński
  fullname: Seredyński, Rafał
  email: rafal.seredynski@umed.wroc.pl
  organization: Wrocław Medical University
– sequence: 2
  givenname: Katarzyna
  surname: Pawłowska‐Seredyńska
  fullname: Pawłowska‐Seredyńska, Katarzyna
  organization: University of Wrocław
– sequence: 3
  givenname: Beata
  surname: Ponikowska
  fullname: Ponikowska, Beata
  organization: Wrocław Medical University
– sequence: 4
  givenname: Bartłomiej
  orcidid: 0000-0001-9180-9259
  surname: Paleczny
  fullname: Paleczny, Bartłomiej
  organization: Wrocław Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33476048$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LHDEUxYNYdLWFfoIS6Isvs72ZZGaSRxH_gdA-tNC3IZu56UZmkm2SUffbG3FVENpL4B7IL-eGc4_Ivg8eCfnMYMkY49_Of4BUReyRBROtqoRofu-TBahGVtB2cEiOUroFYBykOCCHnIuuBSEXxJyaOSNFa9HkRIOlzpuIOuFA_8yZTs7EsHJ6pBbjhD7r7IKn5eQ10vV2Ex6coXflwo06h7ilEdMm-ITFiK7nSfv0kXywekz4adePya-L859nV9XN98vrs9ObynApRCW40QrFoAUw2WroaoudNRZaOQyNFE3dNQ22CmtlO6awlOG2KZhZKTCKH5OTZ99NDH9nTLmfXDI4jtpjmFNfi051DLiEgn59h96GOfryu0IpAU2Jri7Ulx01ryYc-k10k47b_iW-t4klpJQi2leEQf-0mf5lMwVdvkONew4zR-3G_zy4dyNu_2lcxBWrFRf8Ee2DnMw
CitedBy_id crossref_primary_10_1113_EP089406
crossref_primary_10_1097_MCO_0000000000000782
crossref_primary_10_3390_biomedicines12122829
Cites_doi 10.1111/j.1525-1594.1982.tb04130.x
10.1038/s41586-018-0545-9
10.1016/0034-5687(73)90005-4
10.1371/journal.pone.0168930
10.1056/NEJM197710202971607
10.1113/JP280515
10.1161/HYPERTENSIONAHA.115.05315
10.1161/HYPERTENSIONAHA.114.03469
10.1038/ajg.2017.46
10.3390/nu9070767
10.1016/0016-5085(88)90250-8
10.1038/nature15721
10.1161/CIRCULATIONAHA.116.024545
10.1016/j.nut.2017.12.007
10.1038/nrgastro.2012.85
10.1016/j.cmpb.2012.09.007
10.1186/s40168-016-0222-x
10.1099/00221287-128-2-319
10.1088/1752-7155/7/2/024001
10.1113/JP277691
10.1113/EP085498
10.1016/j.ebiom.2018.11.010
10.1113/JP280279
10.1016/j.ebiom.2019.03.029
10.1126/scisignal.2005846
10.1371/journal.pone.0113864
10.1152/jappl.1987.62.6.2154
10.1530/EJE-19-0976
10.1152/jn.00075.2020
10.1113/EP087233
10.1073/pnas.1215927110
ContentType Journal Article
Copyright 2021 The Authors. Experimental Physiology © 2021 The Physiological Society
2021 The Authors. Experimental Physiology © 2021 The Physiological Society.
2021 The Physiological Society
Copyright_xml – notice: 2021 The Authors. Experimental Physiology © 2021 The Physiological Society
– notice: 2021 The Authors. Experimental Physiology © 2021 The Physiological Society.
– notice: 2021 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TS
7X8
DOI 10.1113/EP089113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Calcium & Calcified Tissue Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
EndPage 758
ExternalDocumentID 33476048
10_1113_EP089113
EPH12934
Genre article
Research Support, Non-U.S. Gov't
Controlled Clinical Trial
Journal Article
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
18M
1OC
24P
29G
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABVKB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFZJQ
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EMB
EMOBN
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RCA
ROL
RX1
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8F
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3O-
53G
AASGY
AAYXX
ABUWG
ACCMX
ACQPF
AFKRA
BBNVY
BENPR
BHPHI
C1A
CAG
CCPQU
CHEAL
CITATION
COF
EJD
GROUPED_DOAJ
H13
HCIFZ
HF~
L98
LW6
M7P
MVM
PGMZT
PHGZM
PHGZT
RIG
RPM
X7M
ZXP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QP
7TK
7TS
7X8
ID FETCH-LOGICAL-c3844-43ca9e4da40186a072fe7fcf068dd58452755e69e29f719eeeec3f572fcb90c93
IEDL.DBID DR2
ISSN 0958-0670
1469-445X
IngestDate Fri Jul 11 10:47:49 EDT 2025
Fri Jul 25 19:30:24 EDT 2025
Mon Jul 21 06:05:49 EDT 2025
Tue Jul 01 02:04:28 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Wed Jan 22 16:31:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords transient hypoxia
hydrogen breath test
peripheral chemoreflex
gut microbiota
Language English
License 2021 The Authors. Experimental Physiology © 2021 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3844-43ca9e4da40186a072fe7fcf068dd58452755e69e29f719eeeec3f572fcb90c93
Notes Funding information
This research was financially supported by the Ministry of Science and Higher Education (Poland)/Wrocław Medical University, Internal number: SUB.A090.19.035.
Edited by: Ken O'Halloran
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9180-9259
0000-0002-5811-3759
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/EP089113
PMID 33476048
PQID 2494050952
PQPubID 37290
PageCount 11
ParticipantIDs proquest_miscellaneous_2479710380
proquest_journals_2494050952
pubmed_primary_33476048
crossref_primary_10_1113_EP089113
crossref_citationtrail_10_1113_EP089113
wiley_primary_10_1113_EP089113_EPH12934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 1 March 2021
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2018; 561
2018; 51–52
1982; 128
1974; 109
2020; 182
1973; 17
2019; 104
2016; 101
2015; 527
1988; 94
2020; 123
2013; 7
2017; 112
2017; 135
2015; 8
2017; 9
2014; 64
1987; 62
2019; 44
1982; 6
2017; 12
2015; 65
2019; 597
2013; 110
2020; 598
1992; 49
2014; 9
2018; 38
1977; 297
2012; 9
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Wanic‐Kossowska M. (e_1_2_9_32_1) 1992; 49
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Rebuck A. S. (e_1_2_9_28_1) 1974; 109
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
33507575 - Exp Physiol. 2021 Mar;106(3):583-584
References_xml – volume: 17
  start-page: 302
  year: 1973
  end-page: 314
  article-title: Ventilatory responses to transient hypoxia and hypercapnia in man
  publication-title: Respiration Physiology
– volume: 109
  start-page: 345
  year: 1974
  end-page: 350
  article-title: A clinical method for assessing the ventilatory response to hypoxia
  publication-title: American Review of Respiratory Disease
– volume: 104
  start-page: 476
  year: 2019
  end-page: 489
  article-title: Hypoxic tachycardia is not a result of increased respiratory activity in healthy subjects
  publication-title: Experimental Physiology
– volume: 123
  start-page: 1886
  year: 2020
  end-page: 1895
  article-title: Olfactory receptor 78 participates in carotid body response to a wide range of low O levels but not severe hypoxia
  publication-title: Journal of Neurophysiology
– volume: 94
  start-page: 750
  year: 1988
  end-page: 754
  article-title: Lactulose detoxifies in vitro short‐chain fatty acid production in colonic contents induced by blood: implications for hepatic coma
  publication-title: Gastroenterology
– volume: 9
  start-page: 504
  year: 2012
  end-page: 518
  article-title: Contributions of the microbial hydrogen economy to colonic homeostasis
  publication-title: Nature Reviews. Gastroenterology and Hepatology
– volume: 38
  start-page: 191
  year: 2018
  end-page: 205
  article-title: Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea‐pigs
  publication-title: EBioMedicine
– volume: 561
  start-page: E33
  year: 2018
  article-title: The role of Olfr78 in the breathing circuit of mice
  publication-title: Nature
– volume: 297
  start-page: 871
  year: 1977
  end-page: 873
  article-title: Arterial oxygenation during hemodialysis
  publication-title: New England Journal of Medicine
– volume: 135
  start-page: 964
  year: 2017
  end-page: 977
  article-title: High‐fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice
  publication-title: Circulation
– volume: 62
  start-page: 2154
  year: 1987
  end-page: 2159
  article-title: Central vs. peripheral chemoreceptors in ventilatory stimulation by H‐acetate
  publication-title: Journal of Applied Physiology
– volume: 65
  start-page: 1331
  year: 2015
  end-page: 1340
  article-title: Gut dysbiosis is linked to hypertension
  publication-title: Hypertension
– volume: 64
  start-page: 897
  year: 2014
  end-page: 903
  article-title: Effect of probiotics on blood pressure: a systematic review and meta‐analysis of randomized, controlled trials
  publication-title: Hypertension
– volume: 44
  start-page: 618
  year: 2019
  end-page: 638
  article-title: Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats
  publication-title: EBioMedicine
– volume: 597
  start-page: 3281
  year: 2019
  end-page: 3296
  article-title: Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men
  publication-title: Journal of Physiology
– volume: 49
  start-page: 159
  year: 1992
  end-page: 159
  article-title: Influence of carbon dioxide (CO ) on minute ventilation, breathing patterns and blood gases during hemodialysis (HD) against acetate and bicarbonate‐containing dialysing fluid
  publication-title: Przeglad Lekarski
– volume: 182
  start-page: 549
  year: 2020
  end-page: 557
  article-title: Carotid body chemosensitivity: early biomarker of dysmetabolism in humans
  publication-title: European Journal of Endocrinology
– volume: 598
  start-page: 4803
  year: 2020
  end-page: 4819
  article-title: The need for specificity in quantifying neurocirculatory vs. respiratory effects of eucapnic hypoxia and transient hyperoxia
  publication-title: Journal of Physiology
– volume: 598
  start-page: 4159
  year: 2020
  end-page: 4179
  article-title: Bugs, breathing and blood pressure: microbiota‐gut‐brain axis signalling in cardiorespiratory control in health and disease
  publication-title: Journal of Physiology
– volume: 110
  start-page: 4410
  year: 2013
  end-page: 4415
  article-title: Olfactory receptor responding to gut microbiota‐derived signals plays a role in renin secretion and blood pressure regulation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 110
  start-page: 58
  year: 2013
  end-page: 65
  article-title: A computerized integrated system for the assessment of central and peripheral chemoreflex sensitivity
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 9
  year: 2014
  article-title: In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects
  publication-title: PLoS One
– volume: 8
  start-page: ra37
  year: 2015
  article-title: Protein kinase G‐regulated production of H S governs oxygen sensing
  publication-title: Science Signaling
– volume: 6
  start-page: 378
  year: 1982
  end-page: 384
  article-title: The role of acetate in the etiology of symptomatic hypotension
  publication-title: Artificial Organs
– volume: 51–52
  start-page: 66
  year: 2018
  end-page: 72
  article-title: The benefits of soluble non‐bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin‐converting enzyme activity
  publication-title: Nutrition
– volume: 5
  start-page: 14
  year: 2017
  article-title: Gut microbiota dysbiosis contributes to the development of hypertension
  publication-title: Microbiome
– volume: 527
  start-page: 240
  year: 2015
  end-page: 244
  article-title: Oxygen regulation of breathing through an olfactory receptor activated by lactate
  publication-title: Nature
– volume: 101
  start-page: 432
  year: 2016
  end-page: 447
  article-title: Comparing and characterizing transient and steady‐state tests of the peripheral chemoreflex in humans
  publication-title: Experimental Physiology
– volume: 128
  start-page: 319
  year: 1982
  end-page: 325
  article-title: The fermentation of lactulose by colonic bacteria
  publication-title: Microbiology
– volume: 112
  start-page: 775
  year: 2017
  end-page: 784
  article-title: Hydrogen and methane‐based breath testing in gastrointestinal disorders: The North American Consensus
  publication-title: American Journal of Gastroenterology
– volume: 9
  start-page: 767
  year: 2017
  article-title: Dose‐dependent prebiotic effect of lactulose in a computer‐controlled in vitro model of the human large intestine
  publication-title: Nutrients
– volume: 7
  year: 2013
  article-title: The importance of methane breath testing: a review
  publication-title: Journal of Breathing Research
– volume: 12
  year: 2017
  article-title: Analysis of hypoxic and hypercapnic ventilatory response in healthy volunteers
  publication-title: PLoS One
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1525-1594.1982.tb04130.x
– ident: e_1_2_9_31_1
  doi: 10.1038/s41586-018-0545-9
– ident: e_1_2_9_10_1
  doi: 10.1016/0034-5687(73)90005-4
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0168930
– ident: e_1_2_9_3_1
  doi: 10.1056/NEJM197710202971607
– ident: e_1_2_9_27_1
  doi: 10.1113/JP280515
– ident: e_1_2_9_33_1
  doi: 10.1161/HYPERTENSIONAHA.115.05315
– ident: e_1_2_9_14_1
  doi: 10.1161/HYPERTENSIONAHA.114.03469
– ident: e_1_2_9_29_1
  doi: 10.1038/ajg.2017.46
– ident: e_1_2_9_4_1
  doi: 10.3390/nu9070767
– ident: e_1_2_9_19_1
  doi: 10.1016/0016-5085(88)90250-8
– ident: e_1_2_9_7_1
  doi: 10.1038/nature15721
– ident: e_1_2_9_18_1
  doi: 10.1161/CIRCULATIONAHA.116.024545
– ident: e_1_2_9_5_1
  doi: 10.1016/j.nut.2017.12.007
– ident: e_1_2_9_6_1
  doi: 10.1038/nrgastro.2012.85
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cmpb.2012.09.007
– ident: e_1_2_9_15_1
  doi: 10.1186/s40168-016-0222-x
– ident: e_1_2_9_30_1
  doi: 10.1099/00221287-128-2-319
– ident: e_1_2_9_9_1
  doi: 10.1088/1752-7155/7/2/024001
– ident: e_1_2_9_12_1
  doi: 10.1113/JP277691
– ident: e_1_2_9_25_1
  doi: 10.1113/EP085498
– volume: 109
  start-page: 345
  year: 1974
  ident: e_1_2_9_28_1
  article-title: A clinical method for assessing the ventilatory response to hypoxia
  publication-title: American Review of Respiratory Disease
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ebiom.2018.11.010
– ident: e_1_2_9_21_1
  doi: 10.1113/JP280279
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ebiom.2019.03.029
– ident: e_1_2_9_34_1
  doi: 10.1126/scisignal.2005846
– ident: e_1_2_9_2_1
  doi: 10.1371/journal.pone.0113864
– ident: e_1_2_9_20_1
  doi: 10.1152/jappl.1987.62.6.2154
– ident: e_1_2_9_8_1
  doi: 10.1530/EJE-19-0976
– volume: 49
  start-page: 159
  year: 1992
  ident: e_1_2_9_32_1
  article-title: Influence of carbon dioxide (CO2) on minute ventilation, breathing patterns and blood gases during hemodialysis (HD) against acetate and bicarbonate‐containing dialysing fluid
  publication-title: Przeglad Lekarski
– ident: e_1_2_9_24_1
  doi: 10.1152/jn.00075.2020
– ident: e_1_2_9_23_1
  doi: 10.1113/EP087233
– ident: e_1_2_9_26_1
  doi: 10.1073/pnas.1215927110
– reference: 33507575 - Exp Physiol. 2021 Mar;106(3):583-584
SSID ssj0013084
Score 2.3266106
Snippet New Findings What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in...
What is the central question of this study? Is there a link between gut microbial fermentation and ventilatory responsiveness to hypoxia in humans? What is the...
Recent animal data indicate the presence of a bidirectional link between gut microbial activity and respiratory control. Nevertheless, the presence of a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 748
SubjectTerms Acute effects
Adult
Chemoreception (internal)
Chemoreceptor Cells - physiology
Female
Fermentation
Gastrointestinal Microbiome
gut microbiota
Hemodynamics
Humans
hydrogen breath test
Hypoxia
Intestinal microflora
Lactulose
Male
Microbiota
peripheral chemoreflex
Placebos
Respiration
transient hypoxia
Ventilatory behavior
Young Adult
Title Acute effects of increased gut microbial fermentation on the hypoxic ventilatory response in humans
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FEP089113
https://www.ncbi.nlm.nih.gov/pubmed/33476048
https://www.proquest.com/docview/2494050952
https://www.proquest.com/docview/2479710380
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA66J1-8zct0jgiiT9VekrZ5HLIxfJAhDgY-lDZNdLh1Y2vB-es9SdPJvIBY9lDoWdItOcl3ki_fQeiCp6HkkkkLZm8BAQqjVsyFY6UBgA0u3Yptce_3BuRuSIeGVanOwpT6EKsFN-UZerxWDh4nJguJo8QGOn07BE9VQp-KqqXw0IP7uYFg62TDUHdoqaMoRncW7G-qL67PRN_g5Tpa1dNNdwc9VS9askxer4s8uebvXzQc__dLdtG2QaG4XXabPbQhsn1Ub2cQgU-W-BJrXqhecK8j3uZFLrAhfuCpxKNMQc2FSPFzkePJSGs5QXESRnlzlCnD8AFsiV-Ws-nbiGNNqxzrLX08L3m5AgrCOkfg4gANup3H255lUjNY3AsJsYjHYyZIGkN4FvqxHbhSBNDoth-mKWAa6gaUCp8Jl8nAYQIu7kkKZjxhNmfeIapl00wcI0xiyr2UCsdmkgAcYSGPBbWTMPWdhCVOA11VzRRxo1uu0meMozJ-8aLq_2ug85XlrNTq-MGmWbV0ZLx1EUEISpQODnWhiNVj8DO1eRJnYlooG-i9Sk3ebqCjsoesKvE8EvgwFMKr6nb-tXa46SmARU7-bHmKtlxFo9G0tyaq5fNCnAEOypMW2nRJv6X7_QfqZwKK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-67GF7abt1a9OPTYOxPTm1Lcm26FMoKdmWlTESyMPA2LLUhjZ2SGxo-9f3JNsp7TYYM34w-PRhSyf9Tjr9DuCjzCIttdAOzt4KDRTBnUQqz8lCBBtS-623xXkwnLCvUz7dgJP2LEzND7FecDOaYcdro-BmQbrRcsM2MPjhRqiq9Bk8NwG9rT3103_YQnBtuGEsPXLMYZSGeRYTHLcpH89FvwHMx3jVTjhnW_CrrWrtZ3LVq8q0J--esDj-57dsw2YDREm_7jmvYEPlr2Gnn6MRPr8ln4h1DbVr7jsg-7IqFWl8P0ihySw3aHOlMnJRlWQ-s3ROmJ3Ggb45zZQTvBFeksvbRXEzk8R6Vl7bXX2yrF1zFWZEbJjA1RuYnA3Gp0Onic7gSBox5jAqE6FYlqCFFgWJG_pahdjubhBlGcIa7oecq0AoX-jQEwovSTVHMZkKVwr6Fjp5kas9ICzhkmZcea7QDBGJiGSiuJtGWeClIvW68Lltp1g21OUmgsZ1XJswNG7_Xxc-rCUXNV3HH2QO26aOG4VdxWiFMkOFw33MYv0aVc3snyS5Kiojgx3YEMq7Xditu8i6EEpZGOBoiFW1Df3X0vFhaDAW2_9nyffwYjj-PopHX86_HcBL33jVWC-4Q-iUy0odISwq03e2-98D9IoFzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QXwR706nRhB9KrZN0jaPQzfmBfHByfCltLnoYOvGLqD_3pM0nYgKlj4UepqUnJzkO8nJdxA6EzLRQnPtweytwEHhzMuECjwZA9gQOqyiLR6iTpfe9ljPRVWaszAlP8Riwc1Yhh2vjYGPpXZGbsgGWo9-ApZKltGKIcmDHr3SfO6-dL_2EHybbxiqTzxzGsVRz8Inl9W33yejHwjzO2C1M057A607qIibpW430ZIqttB2swA3efiBz7EN3rSr4ttINMV8prCLzsAjjfuFwYNTJfHrfIaHfUu4BMVpGIrdeaMCww0AEL99jEfvfYFt7OPA7rvjSRk8q6AgbBP5TXdQt916uup4Ln-CJ0hCqUeJyLiiMgMfKokyPw61ikEzfpRICcCDhTFjKuIq5DoOuIJLEM1ATOTcF5zsoloxKtQ-wjRjgkimAp9rCpiBJyJTzM8TGQU5z4M6uqgaMhWOXNzkuBikpZNB0qrJ6-h0ITkuCTV-kWlUukidSU1T8BOpIathIRSxeA3GYHY4skKN5kYGupihfPfraK_U4aISQmgcwXgFv2qV-mft8NAxKIge_FvyBK0-XrfT-5uHu0O0FpqwFxum1kC12WSujgC3zPJj10E_ATik5qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+effects+of+increased+gut+microbial+fermentation+on+the+hypoxic+ventilatory+response+in+humans&rft.jtitle=Experimental+physiology&rft.au=Seredy%C5%84ski%2C+Rafa%C5%82&rft.au=Paw%C5%82owska%E2%80%90Seredy%C5%84ska%2C+Katarzyna&rft.au=Ponikowska%2C+Beata&rft.au=Paleczny%2C+Bart%C5%82omiej&rft.date=2021-03-01&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=106&rft.issue=3&rft.spage=748&rft.epage=758&rft_id=info:doi/10.1113%2FEP089113&rft.externalDBID=10.1113%252FEP089113&rft.externalDocID=EPH12934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon