Precision Measurements of Temperature‐Dependent and Nonequilibrium Thermal Emitters
Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measure...
Saved in:
Published in | Laser & photonics reviews Vol. 14; no. 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2020
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters.
Thermal‐emission measurements can be challenging because of the presence of background emission from the surrounding environment and the instrument. This is especially the case for temperature‐dependent and nonequilibrium thermal emitters. This paper describes and demonstrates procedures for measurement and analysis that can accommodate such unconventional thermal emitters. |
---|---|
AbstractList | Abstract
Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters. Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters. Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters. Thermal‐emission measurements can be challenging because of the presence of background emission from the surrounding environment and the instrument. This is especially the case for temperature‐dependent and nonequilibrium thermal emitters. This paper describes and demonstrates procedures for measurement and analysis that can accommodate such unconventional thermal emitters. Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters. |
Author | Perez, Bryan E. Rubio Wan, Chenghao Shahsafi, Alireza Salman, Jad Mei, Hongyan Yao, Chunhui Kats, Mikhail A. Yu, Zhaoning Xiao, Yuzhe Wambold, Raymond Derdeyn, William |
Author_xml | – sequence: 1 givenname: Yuzhe orcidid: 0000-0002-0971-2480 surname: Xiao fullname: Xiao, Yuzhe organization: University of Wisconsin‐Madison – sequence: 2 givenname: Chenghao surname: Wan fullname: Wan, Chenghao organization: University of Wisconsin‐Madison – sequence: 3 givenname: Alireza surname: Shahsafi fullname: Shahsafi, Alireza organization: University of Wisconsin‐Madison – sequence: 4 givenname: Jad surname: Salman fullname: Salman, Jad organization: University of Wisconsin‐Madison – sequence: 5 givenname: Zhaoning surname: Yu fullname: Yu, Zhaoning organization: University of Wisconsin‐Madison – sequence: 6 givenname: Raymond surname: Wambold fullname: Wambold, Raymond organization: University of Wisconsin‐Madison – sequence: 7 givenname: Hongyan surname: Mei fullname: Mei, Hongyan organization: University of Wisconsin‐Madison – sequence: 8 givenname: Bryan E. Rubio surname: Perez fullname: Perez, Bryan E. Rubio organization: University of Wisconsin‐Madison – sequence: 9 givenname: William surname: Derdeyn fullname: Derdeyn, William organization: University of Wisconsin‐Madison – sequence: 10 givenname: Chunhui surname: Yao fullname: Yao, Chunhui organization: University of Wisconsin‐Madison – sequence: 11 givenname: Mikhail A. surname: Kats fullname: Kats, Mikhail A. email: mkats@wisc.edu organization: University of Wisconsin‐Madison |
BackLink | https://www.osti.gov/biblio/1633479$$D View this record in Osti.gov |
BookMark | eNqFkM9OwzAMxiM0JLbBlXMF542kadPkiMb4Iw02oe0cdamnZWqTLmmFduMReEaehExF44gvtuzfZyffAPWMNYDQNcFjgnF8V9bWjWNMBMZJQs9Qn3BGR5wL0TvVHF-ggfc7jNMQrI9WCwdKe21N9Aq5bx1UYBof2U20hKoGlzeh9_359QA1mCLMotwU0Vs4vW91qddOt1W03IKr8jKaVrppwPlLdL7JSw9Xv3mIVo_T5eR5NJs_vUzuZyNFeUJHmzgtVMFxlnFViESwdUEwYxkWIuMprOOUMLrOSZFjimOu4oxQmrKMsYSEvxR0iG66vdY3WnqlG1BbZY0B1cigpUkmAnTbQbWz-xZ8I3e2dSa8S8YJpTFhJMWBGneUctZ7BxtZO13l7iAJlkd_5dFfefI3CEQn-NAlHP6h5Wwxf__T_gCT8oEA |
CitedBy_id | crossref_primary_10_1002_adfm_202406424 crossref_primary_10_1088_1742_6596_2002_1_012056 crossref_primary_10_1039_D1TC01272J crossref_primary_10_1007_s10854_022_09452_7 crossref_primary_10_1038_s41377_021_00677_5 crossref_primary_10_1063_5_0116880 crossref_primary_10_1021_acs_nanolett_1c02296 crossref_primary_10_1364_OME_437838 crossref_primary_10_1016_j_matlet_2023_134108 crossref_primary_10_1002_lpor_202200018 crossref_primary_10_1016_j_molliq_2023_121936 crossref_primary_10_1002_adts_202000176 crossref_primary_10_1063_5_0055418 crossref_primary_10_1021_acs_nanolett_2c01579 crossref_primary_10_1021_acs_chemrev_2c00762 crossref_primary_10_1002_adom_202200059 crossref_primary_10_1364_OE_466102 crossref_primary_10_1103_PhysRevApplied_19_034040 crossref_primary_10_1002_lpor_202100121 crossref_primary_10_1021_acsphotonics_2c00500 crossref_primary_10_1515_nanoph_2022_0047 crossref_primary_10_1515_nanoph_2024_0040 crossref_primary_10_1039_D2TC02478K crossref_primary_10_1364_OE_416670 crossref_primary_10_1021_acsami_3c11338 crossref_primary_10_1016_j_jqsrt_2020_107500 crossref_primary_10_1016_j_apsusc_2022_155522 |
Cites_doi | 10.1073/pnas.0900155106 10.1364/AO.38.000571 10.1002/lpor.201900162 10.1103/PhysRevLett.107.045901 10.1038/nenergy.2016.68 10.1029/97JB00593 10.1029/93JB00135 10.1103/PhysRevLett.108.256402 10.1002/adma.201502023 10.1073/pnas.1517363113 10.1021/acsphotonics.9b01588 10.1039/C6EE01372D 10.1038/s41377-019-0158-6 10.1103/PhysRevB.62.R2243 10.1209/0295-5075/127/44001 10.1007/978-3-663-13885-3_10 10.1038/nphoton.2012.146 10.1038/s41377-018-0038-5 10.1134/S0021364015090039 10.1364/AO.27.003210 10.1016/S1350-4495(02)00140-8 10.1103/PhysRevApplied.11.014026 10.1063/1.2927484 10.1364/JOSA.41.000336 10.1063/1.321571 10.1364/OPTICA.4.000430 10.1073/pnas.1120149109 10.1021/acs.nanolett.8b01746 10.1038/nature13883 10.1103/PhysRevApplied.12.014053 10.1364/AO.49.002728 10.1038/s41563-019-0363-y 10.1002/lpor.201700091 10.1364/AO.35.005683 10.1002/andp.201900188 10.1364/AO.32.005462 10.1364/AO.31.004527 10.1021/ed064pA269 10.1364/OL.43.001295 10.1103/PhysRevApplied.10.021001 10.1103/PhysRevB.90.220301 10.1038/nnano.2015.309 10.1002/andp.19013090310 10.1002/047010631X 10.1364/OE.27.011537 10.1029/94JE03330 10.1029/95JB02400 10.1038/lsa.2016.194 10.1103/PhysRevApplied.10.034019 10.1073/pnas.1911244116 10.1063/1.2393157 10.1038/ncomms11809 10.1063/1.1150028 10.1364/OE.18.00A314 10.1103/PhysRevLett.105.127404 10.1103/PhysRevB.61.8187 10.1016/0022-3115(94)90996-2 10.1021/acsnano.8b08913 10.1063/1.5096363 10.1063/1.5010805 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M OTOTI |
DOI | 10.1002/lpor.201900443 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 1633479 10_1002_lpor_201900443 LPOR201900443 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: ECCS‐1750341 – fundername: Office of Naval Research funderid: N00014‐16‐1‐2556; N00014‐20‐1‐2297 – fundername: Department of Energy funderid: DE‐NE0008680 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SP 7U5 8FD L7M ACXME OTOTI |
ID | FETCH-LOGICAL-c3843-f25dcd80778cd9496bd10667099785eb25163ba1da03028c271335676641888d3 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Mon Aug 12 05:49:23 EDT 2024 Thu Oct 10 19:52:17 EDT 2024 Wed Aug 14 12:33:53 EDT 2024 Sat Aug 24 01:05:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3843-f25dcd80778cd9496bd10667099785eb25163ba1da03028c271335676641888d3 |
Notes | USDOE DE‐NE0008680 |
ORCID | 0000-0002-0971-2480 0000000209712480 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/lpor.201900443 |
PQID | 2433216150 |
PQPubID | 1016358 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_1633479 proquest_journals_2433216150 crossref_primary_10_1002_lpor_201900443 wiley_primary_10_1002_lpor_201900443_LPOR201900443 |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 6 2019; 90 2013; 3 2017; 4 2010; 105 2019; 11 2010; 18 2006; 77 2019; 12 2015; 101 2019; 127 2019; 18 2020; 14 1996; 35 2018; 43 1994; 212‐215 1978 1997; 102 2018; 7 2020; 7 1993; 32 2002; 43 1975; 46 2016; 113 2000; 61 2019; 116 2000; 62 2019; 27 1983 2019; 8 2014; 515 2014; 90 2007 1993 1992; 31 2008; 92 1901; 309 1951; 41 2012; 108 2012; 109 2016; 11 2018; 18 2016; 7 1987; 64 2010; 49 2003; 108 2016; 1 2015; 27 2011; 107 2017; 11 1993; 98 2018; 112 1999; 38 1988; 27 2019 2019; 531 1995; 100 2013 2012; 6 1999; 70 2018; 10 2016; 9 2009; 106 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_64_1 Kats M. A. (e_1_2_13_7_1) 2013; 3 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_6_1 Christensen P. R. (e_1_2_13_62_1) 2003; 108 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_70_1 Zhou M. (e_1_2_13_47_1) 2019 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_61_1 Boyd R. (e_1_2_13_13_1) 1983 Lyu J. (e_1_2_13_55_1) 2019 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_1_1 e_1_2_13_5_1 e_1_2_13_3_1 Burmeister L. C. (e_1_2_13_67_1) 1993 Bansal N. P. (e_1_2_13_68_1) 2013 e_1_2_13_28_1 |
References_xml | – volume: 90 year: 2019 publication-title: Rev. Sci. Instrum. – start-page: 131 year: 1978 end-page: 151 – volume: 27 start-page: 4597 year: 2015 publication-title: Adv. Mater. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 515 start-page: 540 year: 2014 publication-title: Nature – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 116 year: 2019 publication-title: Proceedings of the National Academy of Sciences – volume: 98 year: 1993 publication-title: J. Geophys. Res.: Solid Earth – volume: 18 start-page: A314 year: 2010 publication-title: Opt. Express – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 4 start-page: 430 year: 2017 publication-title: Optica – volume: 77 year: 2006 publication-title: Rev. Sci. Instrum. – volume: 62 year: 2000 publication-title: Phys. Rev. B – volume: 14 year: 2020 publication-title: Laser Photonics Rev. – start-page: 2236 year: 2019 publication-title: ACS Nano – volume: 10 year: 2018 publication-title: Phys. Rev. Appl. – volume: 7 start-page: 1 year: 2018 publication-title: Light: Sci. Appl. – volume: 108 year: 2003 publication-title: J. Geophys. Res.: Planets – volume: 109 start-page: 2280 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 920 year: 2019 publication-title: Nat. Mater. – volume: 212‐215 start-page: 1065 year: 1994 publication-title: J. Nucl. Mater. – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – year: 2019 – year: 1993 – volume: 18 start-page: 4541 year: 2018 publication-title: Nano Lett. – volume: 531 year: 2019 publication-title: Ann. Phys. – volume: 27 year: 2019 publication-title: Opt. Express – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – year: 1983 – volume: 41 start-page: 336 year: 1951 publication-title: J. Opt. Soc. Am. – volume: 27 start-page: 3210 year: 1988 publication-title: Appl. Opt. – volume: 61 start-page: 8187 year: 2000 publication-title: Phys. Rev. B – year: 2007 – volume: 309 start-page: 553 year: 1901 publication-title: Ann. Phys. – volume: 127 year: 2019 publication-title: Europhys. Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 51 year: 2019 publication-title: Light: Sci. Appl. – volume: 43 start-page: 1295 year: 2018 publication-title: Opt. Lett. – volume: 32 start-page: 5462 year: 1993 publication-title: Appl. Opt – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 35 start-page: 5683 year: 1996 publication-title: Appl. Opt. – volume: 101 start-page: 598 year: 2015 publication-title: JETP Lett. – volume: 113 start-page: 3471 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 4527 year: 1992 publication-title: Appl. Opt. – volume: 43 start-page: 187 year: 2002 publication-title: Infrared Phys. Technol. – volume: 64 start-page: A269 year: 1987 publication-title: J. Chem. Educ. – volume: 7 start-page: 853 year: 2020 publication-title: ACS Photonics – volume: 100 start-page: 7465 year: 1995 publication-title: J. Geophys. Res. – volume: 49 start-page: 2728 year: 2010 publication-title: Appl. Opt. – volume: 106 start-page: 6044 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 year: 2017 publication-title: Light: Sci. Appl. – volume: 46 start-page: 5127 year: 1975 publication-title: J. Appl. Phys. – volume: 38 start-page: 571 year: 1999 publication-title: Appl. Opt. – volume: 11 year: 2017 publication-title: Laser Photonics Rev. – volume: 11 start-page: 320 year: 2016 publication-title: Nat. Nanotechnol. – volume: 100 year: 1995 publication-title: J. Geophys. Res.: Solid Earth – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 2654 year: 2016 publication-title: Energy Environ. Sci. – volume: 70 start-page: 4020 year: 1999 publication-title: Rev. Sci. Instrum. – volume: 6 start-page: 535 year: 2012 publication-title: Nat. Photonics – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 102 year: 1997 publication-title: J. Geophys. Res.: Solid Earth – volume: 3 year: 2013 publication-title: Phys. Rev. X – year: 2013 – ident: e_1_2_13_44_1 doi: 10.1073/pnas.0900155106 – ident: e_1_2_13_45_1 doi: 10.1364/AO.38.000571 – ident: e_1_2_13_58_1 doi: 10.1002/lpor.201900162 – ident: e_1_2_13_27_1 doi: 10.1103/PhysRevLett.107.045901 – ident: e_1_2_13_4_1 doi: 10.1038/nenergy.2016.68 – ident: e_1_2_13_38_1 doi: 10.1029/97JB00593 – ident: e_1_2_13_37_1 doi: 10.1029/93JB00135 – ident: e_1_2_13_40_1 doi: 10.1103/PhysRevLett.108.256402 – ident: e_1_2_13_41_1 doi: 10.1002/adma.201502023 – ident: e_1_2_13_18_1 doi: 10.1073/pnas.1517363113 – ident: e_1_2_13_64_1 doi: 10.1021/acsphotonics.9b01588 – volume-title: Handbook of Glass Properties year: 2013 ident: e_1_2_13_68_1 contributor: fullname: Bansal N. P. – ident: e_1_2_13_34_1 doi: 10.1039/C6EE01372D – ident: e_1_2_13_16_1 doi: 10.1038/s41377-019-0158-6 – ident: e_1_2_13_26_1 doi: 10.1103/PhysRevB.62.R2243 – ident: e_1_2_13_20_1 doi: 10.1209/0295-5075/127/44001 – ident: e_1_2_13_2_1 doi: 10.1007/978-3-663-13885-3_10 – ident: e_1_2_13_28_1 doi: 10.1038/nphoton.2012.146 – ident: e_1_2_13_54_1 doi: 10.1038/s41377-018-0038-5 – volume: 3 start-page: 041004 year: 2013 ident: e_1_2_13_7_1 publication-title: Phys. Rev. X contributor: fullname: Kats M. A. – volume-title: Convective Heat Transfer year: 1993 ident: e_1_2_13_67_1 contributor: fullname: Burmeister L. C. – volume: 108 year: 2003 ident: e_1_2_13_62_1 publication-title: J. Geophys. Res.: Planets contributor: fullname: Christensen P. R. – ident: e_1_2_13_63_1 doi: 10.1134/S0021364015090039 – ident: e_1_2_13_23_1 doi: 10.1364/AO.27.003210 – ident: e_1_2_13_33_1 doi: 10.1016/S1350-4495(02)00140-8 – ident: e_1_2_13_22_1 doi: 10.1103/PhysRevApplied.11.014026 – ident: e_1_2_13_9_1 doi: 10.1063/1.2927484 – ident: e_1_2_13_12_1 doi: 10.1364/JOSA.41.000336 – ident: e_1_2_13_14_1 doi: 10.1063/1.321571 – ident: e_1_2_13_46_1 doi: 10.1364/OPTICA.4.000430 – ident: e_1_2_13_60_1 – ident: e_1_2_13_29_1 doi: 10.1073/pnas.1120149109 – ident: e_1_2_13_49_1 doi: 10.1021/acs.nanolett.8b01746 – ident: e_1_2_13_6_1 doi: 10.1038/nature13883 – ident: e_1_2_13_21_1 – ident: e_1_2_13_17_1 doi: 10.1103/PhysRevApplied.12.014053 – ident: e_1_2_13_51_1 doi: 10.1364/AO.49.002728 – ident: e_1_2_13_36_1 doi: 10.1073/pnas.1120149109 – ident: e_1_2_13_3_1 doi: 10.1038/s41563-019-0363-y – ident: e_1_2_13_57_1 doi: 10.1002/lpor.201700091 – ident: e_1_2_13_25_1 doi: 10.1364/AO.35.005683 – ident: e_1_2_13_59_1 doi: 10.1002/andp.201900188 – ident: e_1_2_13_70_1 doi: 10.1364/AO.32.005462 – ident: e_1_2_13_24_1 doi: 10.1364/AO.31.004527 – ident: e_1_2_13_31_1 doi: 10.1021/ed064pA269 – ident: e_1_2_13_42_1 doi: 10.1364/OL.43.001295 – ident: e_1_2_13_48_1 doi: 10.1103/PhysRevApplied.10.021001 – ident: e_1_2_13_19_1 doi: 10.1103/PhysRevB.90.220301 – ident: e_1_2_13_5_1 doi: 10.1038/nnano.2015.309 – ident: e_1_2_13_1_1 doi: 10.1002/andp.19013090310 – ident: e_1_2_13_32_1 doi: 10.1002/047010631X – volume-title: New Concepts in Solar and Thermal Radiation Conversion II year: 2019 ident: e_1_2_13_47_1 contributor: fullname: Zhou M. – ident: e_1_2_13_56_1 doi: 10.1364/OE.27.011537 – ident: e_1_2_13_65_1 doi: 10.1029/94JE03330 – ident: e_1_2_13_66_1 doi: 10.1029/95JB02400 – ident: e_1_2_13_30_1 doi: 10.1038/lsa.2016.194 – ident: e_1_2_13_52_1 doi: 10.1103/PhysRevApplied.10.034019 – ident: e_1_2_13_8_1 doi: 10.1073/pnas.1911244116 – ident: e_1_2_13_61_1 doi: 10.1063/1.2393157 – ident: e_1_2_13_11_1 doi: 10.1029/94JE03330 – ident: e_1_2_13_10_1 doi: 10.1038/ncomms11809 – volume-title: Radiometry and the Detection of Optical Radiation year: 1983 ident: e_1_2_13_13_1 contributor: fullname: Boyd R. – ident: e_1_2_13_50_1 doi: 10.1063/1.1150028 – ident: e_1_2_13_35_1 doi: 10.1364/OE.18.00A314 – ident: e_1_2_13_15_1 doi: 10.1103/PhysRevLett.105.127404 – ident: e_1_2_13_53_1 doi: 10.1103/PhysRevB.61.8187 – ident: e_1_2_13_69_1 doi: 10.1016/0022-3115(94)90996-2 – start-page: 2236 year: 2019 ident: e_1_2_13_55_1 publication-title: ACS Nano doi: 10.1021/acsnano.8b08913 contributor: fullname: Lyu J. – ident: e_1_2_13_39_1 doi: 10.1063/1.5096363 – ident: e_1_2_13_43_1 doi: 10.1063/1.5010805 |
SSID | ssj0055556 |
Score | 2.485671 |
Snippet | Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting,... Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy... Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Camouflage Electromagnetic radiation Emitters Energy harvesting FTIR infrared spectroscopy Low temperature Temperature dependence Thermal emission thermal‐emission measurement |
Title | Precision Measurements of Temperature‐Dependent and Nonequilibrium Thermal Emitters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900443 https://www.proquest.com/docview/2433216150 https://www.osti.gov/biblio/1633479 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxbeiPKSBySmlNSJE2dEtFWFaEFVK3WzYjuRELSFNlmY-An8Rn4Jd06aUhYkyJbB8uPufN_Zd58JuVAxuJFQgH27iju-Fr4TcaMcnYYs5WkcxTY3p9cPuiP_dszH36r4C36I6sANLcPu12jgsVpcrUhDnwGfYmpWhHeSSPfZ9ELM6WoNKv4oDp8tLxKB50Co5y5ZG112td58zSvVZmBda4jzO261jqezTeLlkIt8k6dGnqmGfvvB5vifOe2QrRKV0utCjXbJRjLdI9slQqWl_S_2yehhXr7JQ3urw8UFnaV0mAAALwiaP98_WuXbuhmNp4b2Z9PkNX-05QX5hIJqgjt4pu3JoyX3PCCjTnt403XKhxkc7Qnfc1LGjTbCDUOhTeRHgTJNTJbFKlzBIVbngPJAC0wMWwgTmmEkzIMwCPwmiMF4h6Q2hZ6PCFWaixAZfaJE-DoBgGJc5cH8TcICEfA6uVwKRr4U_BuyYFpmEldLVqtVJycoNwnIAelvNeYJ6UzCSLBYtk5Ol-KUpZUuJEPyNoS8bp0wK5df-pB3D_eD6u_4L41OyCbDkN3mEJ6SWjbPkzPANZk6t7r7BUhG71c |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5BOMClKbRV06RlD0g9Gczaa6-PiCRKSxIQSiRuK--uLSEgaRPn0lMfoc_YJ-nM2k6aXiqBbz5Y-zMzO9-sZ74BONEpupFYon37WnihkaGXCKs9k8c8F3mapC43ZzSOBtPw652oswmpFqbkh1hfuJFluPOaDJwupM82rKGPCFApNyuhn5LBLuyhzQfUvaF7u2aQEvi4AiMZBR4Ge37N2-jzs-3vt_xSY472tYU5_0auzvX0m6DrSZcZJw-nq0Kfmh__8Dm-aFWv4VUFTNlFqUmHsJPNjqBZgVRWHQHLNzC9WVRtedhoc7-4ZPOcTTLE4CVH8--fv7pVe92CpTPLxvNZ9n117yoMVk8MtRM9wiPrPd07fs-3MO33JpcDr-rN4JlAhoGXc2GNlX4cS2OTMIm0Pad8WSrElQLDdYFADxXBpniKcGk4BcMiiqMoPEc52OAdNGY48ntg2ggZE6lPksnQZIhRrK8DXL_NeCQj0YLPtWTUt5KCQ5Vky1zRbqn1brWgTYJTCB6IAddQqpApFM6E6mVb0KnlqSpDXSpO_G2Eev0WcCeY_4yhhjfXt-u3D8_56Bj2B5PRUA2_jK_acMApgncphR1oFItV9hFhTqE_OUX-Az7w828 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRALb0R5ekBiCgQndpwRARXPUiEqsVmJnUgV0AJNFyZ-Ar-RX8KdkxbKggTZMlh-3J3vO_vuM8BOmqAbiRTat58KLzQq9GJhU8_kEc9FnsSJy825asrTdnh-J-6-VfGX_BCjAzeyDLdfk4E_2Xz_izT0AfEppWbFdCcZTMJUKBH-Eiy6GRFICfxcfZGSgYexnj-kbfT5_nj7MbdU66F5jUHO78DVeZ7GHCTDMZcJJ_d7gyLdM68_6Bz_M6l5mK1gKTss9WgBJrLuIsxVEJVVG0B_Cdqtl-pRHnb1dbrYZ72c3WaIwEuG5o-39-Pqcd2CJV3Lmr1u9jzouPqCwSND3UR_8MBOHjuO3XMZ2o2T26NTr3qZwTOBCgMv58Iaq_woUsbGYSxTe0DZslSGqwQG6wJhHqqBTXAP4cpwCoWFjKQMD1AMNliBWhd7XgWWGqEiovSJMxWaDBGK9dMA528zLpUUddgdCkY_lQQcuqRa5ppWS49Wqw7rJDeN0IH4bw0lCplC40ioWrYOG0Nx6spM-5oTexthXr8O3Mnllz70Zev6ZvS39pdG2zDdOm7oy7PmxTrMcArfXT7hBtSKl0G2iRinSLecGn8CazHyHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+Measurements+of+Temperature%E2%80%90Dependent+and+Nonequilibrium+Thermal+Emitters&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Xiao%2C+Yuzhe&rft.au=Wan%2C+Chenghao&rft.au=Shahsafi%2C+Alireza&rft.au=Salman%2C+Jad&rft.date=2020-08-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.201900443&rft.externalDBID=10.1002%252Flpor.201900443&rft.externalDocID=LPOR201900443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |