Precision Measurements of Temperature‐Dependent and Nonequilibrium Thermal Emitters

Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measure...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 14; no. 8
Main Authors Xiao, Yuzhe, Wan, Chenghao, Shahsafi, Alireza, Salman, Jad, Yu, Zhaoning, Wambold, Raymond, Mei, Hongyan, Perez, Bryan E. Rubio, Derdeyn, William, Yao, Chunhui, Kats, Mikhail A.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2020
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters. Thermal‐emission measurements can be challenging because of the presence of background emission from the surrounding environment and the instrument. This is especially the case for temperature‐dependent and nonequilibrium thermal emitters. This paper describes and demonstrates procedures for measurement and analysis that can accommodate such unconventional thermal emitters.
AbstractList Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters.
Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters.
Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters. Thermal‐emission measurements can be challenging because of the presence of background emission from the surrounding environment and the instrument. This is especially the case for temperature‐dependent and nonequilibrium thermal emitters. This paper describes and demonstrates procedures for measurement and analysis that can accommodate such unconventional thermal emitters.
Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters.
Author Perez, Bryan E. Rubio
Wan, Chenghao
Shahsafi, Alireza
Salman, Jad
Mei, Hongyan
Yao, Chunhui
Kats, Mikhail A.
Yu, Zhaoning
Xiao, Yuzhe
Wambold, Raymond
Derdeyn, William
Author_xml – sequence: 1
  givenname: Yuzhe
  orcidid: 0000-0002-0971-2480
  surname: Xiao
  fullname: Xiao, Yuzhe
  organization: University of Wisconsin‐Madison
– sequence: 2
  givenname: Chenghao
  surname: Wan
  fullname: Wan, Chenghao
  organization: University of Wisconsin‐Madison
– sequence: 3
  givenname: Alireza
  surname: Shahsafi
  fullname: Shahsafi, Alireza
  organization: University of Wisconsin‐Madison
– sequence: 4
  givenname: Jad
  surname: Salman
  fullname: Salman, Jad
  organization: University of Wisconsin‐Madison
– sequence: 5
  givenname: Zhaoning
  surname: Yu
  fullname: Yu, Zhaoning
  organization: University of Wisconsin‐Madison
– sequence: 6
  givenname: Raymond
  surname: Wambold
  fullname: Wambold, Raymond
  organization: University of Wisconsin‐Madison
– sequence: 7
  givenname: Hongyan
  surname: Mei
  fullname: Mei, Hongyan
  organization: University of Wisconsin‐Madison
– sequence: 8
  givenname: Bryan E. Rubio
  surname: Perez
  fullname: Perez, Bryan E. Rubio
  organization: University of Wisconsin‐Madison
– sequence: 9
  givenname: William
  surname: Derdeyn
  fullname: Derdeyn, William
  organization: University of Wisconsin‐Madison
– sequence: 10
  givenname: Chunhui
  surname: Yao
  fullname: Yao, Chunhui
  organization: University of Wisconsin‐Madison
– sequence: 11
  givenname: Mikhail A.
  surname: Kats
  fullname: Kats, Mikhail A.
  email: mkats@wisc.edu
  organization: University of Wisconsin‐Madison
BackLink https://www.osti.gov/biblio/1633479$$D View this record in Osti.gov
BookMark eNqFkM9OwzAMxiM0JLbBlXMF542kadPkiMb4Iw02oe0cdamnZWqTLmmFduMReEaehExF44gvtuzfZyffAPWMNYDQNcFjgnF8V9bWjWNMBMZJQs9Qn3BGR5wL0TvVHF-ggfc7jNMQrI9WCwdKe21N9Aq5bx1UYBof2U20hKoGlzeh9_359QA1mCLMotwU0Vs4vW91qddOt1W03IKr8jKaVrppwPlLdL7JSw9Xv3mIVo_T5eR5NJs_vUzuZyNFeUJHmzgtVMFxlnFViESwdUEwYxkWIuMprOOUMLrOSZFjimOu4oxQmrKMsYSEvxR0iG66vdY3WnqlG1BbZY0B1cigpUkmAnTbQbWz-xZ8I3e2dSa8S8YJpTFhJMWBGneUctZ7BxtZO13l7iAJlkd_5dFfefI3CEQn-NAlHP6h5Wwxf__T_gCT8oEA
CitedBy_id crossref_primary_10_1002_adfm_202406424
crossref_primary_10_1088_1742_6596_2002_1_012056
crossref_primary_10_1039_D1TC01272J
crossref_primary_10_1007_s10854_022_09452_7
crossref_primary_10_1038_s41377_021_00677_5
crossref_primary_10_1063_5_0116880
crossref_primary_10_1021_acs_nanolett_1c02296
crossref_primary_10_1364_OME_437838
crossref_primary_10_1016_j_matlet_2023_134108
crossref_primary_10_1002_lpor_202200018
crossref_primary_10_1016_j_molliq_2023_121936
crossref_primary_10_1002_adts_202000176
crossref_primary_10_1063_5_0055418
crossref_primary_10_1021_acs_nanolett_2c01579
crossref_primary_10_1021_acs_chemrev_2c00762
crossref_primary_10_1002_adom_202200059
crossref_primary_10_1364_OE_466102
crossref_primary_10_1103_PhysRevApplied_19_034040
crossref_primary_10_1002_lpor_202100121
crossref_primary_10_1021_acsphotonics_2c00500
crossref_primary_10_1515_nanoph_2022_0047
crossref_primary_10_1515_nanoph_2024_0040
crossref_primary_10_1039_D2TC02478K
crossref_primary_10_1364_OE_416670
crossref_primary_10_1021_acsami_3c11338
crossref_primary_10_1016_j_jqsrt_2020_107500
crossref_primary_10_1016_j_apsusc_2022_155522
Cites_doi 10.1073/pnas.0900155106
10.1364/AO.38.000571
10.1002/lpor.201900162
10.1103/PhysRevLett.107.045901
10.1038/nenergy.2016.68
10.1029/97JB00593
10.1029/93JB00135
10.1103/PhysRevLett.108.256402
10.1002/adma.201502023
10.1073/pnas.1517363113
10.1021/acsphotonics.9b01588
10.1039/C6EE01372D
10.1038/s41377-019-0158-6
10.1103/PhysRevB.62.R2243
10.1209/0295-5075/127/44001
10.1007/978-3-663-13885-3_10
10.1038/nphoton.2012.146
10.1038/s41377-018-0038-5
10.1134/S0021364015090039
10.1364/AO.27.003210
10.1016/S1350-4495(02)00140-8
10.1103/PhysRevApplied.11.014026
10.1063/1.2927484
10.1364/JOSA.41.000336
10.1063/1.321571
10.1364/OPTICA.4.000430
10.1073/pnas.1120149109
10.1021/acs.nanolett.8b01746
10.1038/nature13883
10.1103/PhysRevApplied.12.014053
10.1364/AO.49.002728
10.1038/s41563-019-0363-y
10.1002/lpor.201700091
10.1364/AO.35.005683
10.1002/andp.201900188
10.1364/AO.32.005462
10.1364/AO.31.004527
10.1021/ed064pA269
10.1364/OL.43.001295
10.1103/PhysRevApplied.10.021001
10.1103/PhysRevB.90.220301
10.1038/nnano.2015.309
10.1002/andp.19013090310
10.1002/047010631X
10.1364/OE.27.011537
10.1029/94JE03330
10.1029/95JB02400
10.1038/lsa.2016.194
10.1103/PhysRevApplied.10.034019
10.1073/pnas.1911244116
10.1063/1.2393157
10.1038/ncomms11809
10.1063/1.1150028
10.1364/OE.18.00A314
10.1103/PhysRevLett.105.127404
10.1103/PhysRevB.61.8187
10.1016/0022-3115(94)90996-2
10.1021/acsnano.8b08913
10.1063/1.5096363
10.1063/1.5010805
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
OTOTI
DOI 10.1002/lpor.201900443
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 1633479
10_1002_lpor_201900443
LPOR201900443
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: ECCS‐1750341
– fundername: Office of Naval Research
  funderid: N00014‐16‐1‐2556; N00014‐20‐1‐2297
– fundername: Department of Energy
  funderid: DE‐NE0008680
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ACXME
OTOTI
ID FETCH-LOGICAL-c3843-f25dcd80778cd9496bd10667099785eb25163ba1da03028c271335676641888d3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Mon Aug 12 05:49:23 EDT 2024
Thu Oct 10 19:52:17 EDT 2024
Wed Aug 14 12:33:53 EDT 2024
Sat Aug 24 01:05:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3843-f25dcd80778cd9496bd10667099785eb25163ba1da03028c271335676641888d3
Notes USDOE
DE‐NE0008680
ORCID 0000-0002-0971-2480
0000000209712480
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/lpor.201900443
PQID 2433216150
PQPubID 1016358
PageCount 17
ParticipantIDs osti_scitechconnect_1633479
proquest_journals_2433216150
crossref_primary_10_1002_lpor_201900443
wiley_primary_10_1002_lpor_201900443_LPOR201900443
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Laser & photonics reviews
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 6
2019; 90
2013; 3
2017; 4
2010; 105
2019; 11
2010; 18
2006; 77
2019; 12
2015; 101
2019; 127
2019; 18
2020; 14
1996; 35
2018; 43
1994; 212‐215
1978
1997; 102
2018; 7
2020; 7
1993; 32
2002; 43
1975; 46
2016; 113
2000; 61
2019; 116
2000; 62
2019; 27
1983
2019; 8
2014; 515
2014; 90
2007
1993
1992; 31
2008; 92
1901; 309
1951; 41
2012; 108
2012; 109
2016; 11
2018; 18
2016; 7
1987; 64
2010; 49
2003; 108
2016; 1
2015; 27
2011; 107
2017; 11
1993; 98
2018; 112
1999; 38
1988; 27
2019
2019; 531
1995; 100
2013
2012; 6
1999; 70
2018; 10
2016; 9
2009; 106
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_64_1
Kats M. A. (e_1_2_13_7_1) 2013; 3
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_6_1
Christensen P. R. (e_1_2_13_62_1) 2003; 108
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_70_1
Zhou M. (e_1_2_13_47_1) 2019
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_61_1
Boyd R. (e_1_2_13_13_1) 1983
Lyu J. (e_1_2_13_55_1) 2019
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_1_1
e_1_2_13_5_1
e_1_2_13_3_1
Burmeister L. C. (e_1_2_13_67_1) 1993
Bansal N. P. (e_1_2_13_68_1) 2013
e_1_2_13_28_1
References_xml – volume: 90
  year: 2019
  publication-title: Rev. Sci. Instrum.
– start-page: 131
  year: 1978
  end-page: 151
– volume: 27
  start-page: 4597
  year: 2015
  publication-title: Adv. Mater.
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 515
  start-page: 540
  year: 2014
  publication-title: Nature
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 116
  year: 2019
  publication-title: Proceedings of the National Academy of Sciences
– volume: 98
  year: 1993
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 18
  start-page: A314
  year: 2010
  publication-title: Opt. Express
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 4
  start-page: 430
  year: 2017
  publication-title: Optica
– volume: 77
  year: 2006
  publication-title: Rev. Sci. Instrum.
– volume: 62
  year: 2000
  publication-title: Phys. Rev. B
– volume: 14
  year: 2020
  publication-title: Laser Photonics Rev.
– start-page: 2236
  year: 2019
  publication-title: ACS Nano
– volume: 10
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 7
  start-page: 1
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 108
  year: 2003
  publication-title: J. Geophys. Res.: Planets
– volume: 109
  start-page: 2280
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 920
  year: 2019
  publication-title: Nat. Mater.
– volume: 212‐215
  start-page: 1065
  year: 1994
  publication-title: J. Nucl. Mater.
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– year: 2019
– year: 1993
– volume: 18
  start-page: 4541
  year: 2018
  publication-title: Nano Lett.
– volume: 531
  year: 2019
  publication-title: Ann. Phys.
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– year: 1983
– volume: 41
  start-page: 336
  year: 1951
  publication-title: J. Opt. Soc. Am.
– volume: 27
  start-page: 3210
  year: 1988
  publication-title: Appl. Opt.
– volume: 61
  start-page: 8187
  year: 2000
  publication-title: Phys. Rev. B
– year: 2007
– volume: 309
  start-page: 553
  year: 1901
  publication-title: Ann. Phys.
– volume: 127
  year: 2019
  publication-title: Europhys. Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 51
  year: 2019
  publication-title: Light: Sci. Appl.
– volume: 43
  start-page: 1295
  year: 2018
  publication-title: Opt. Lett.
– volume: 32
  start-page: 5462
  year: 1993
  publication-title: Appl. Opt
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 35
  start-page: 5683
  year: 1996
  publication-title: Appl. Opt.
– volume: 101
  start-page: 598
  year: 2015
  publication-title: JETP Lett.
– volume: 113
  start-page: 3471
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 4527
  year: 1992
  publication-title: Appl. Opt.
– volume: 43
  start-page: 187
  year: 2002
  publication-title: Infrared Phys. Technol.
– volume: 64
  start-page: A269
  year: 1987
  publication-title: J. Chem. Educ.
– volume: 7
  start-page: 853
  year: 2020
  publication-title: ACS Photonics
– volume: 100
  start-page: 7465
  year: 1995
  publication-title: J. Geophys. Res.
– volume: 49
  start-page: 2728
  year: 2010
  publication-title: Appl. Opt.
– volume: 106
  start-page: 6044
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  year: 2017
  publication-title: Light: Sci. Appl.
– volume: 46
  start-page: 5127
  year: 1975
  publication-title: J. Appl. Phys.
– volume: 38
  start-page: 571
  year: 1999
  publication-title: Appl. Opt.
– volume: 11
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 11
  start-page: 320
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 100
  year: 1995
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 2654
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 70
  start-page: 4020
  year: 1999
  publication-title: Rev. Sci. Instrum.
– volume: 6
  start-page: 535
  year: 2012
  publication-title: Nat. Photonics
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 102
  year: 1997
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 3
  year: 2013
  publication-title: Phys. Rev. X
– year: 2013
– ident: e_1_2_13_44_1
  doi: 10.1073/pnas.0900155106
– ident: e_1_2_13_45_1
  doi: 10.1364/AO.38.000571
– ident: e_1_2_13_58_1
  doi: 10.1002/lpor.201900162
– ident: e_1_2_13_27_1
  doi: 10.1103/PhysRevLett.107.045901
– ident: e_1_2_13_4_1
  doi: 10.1038/nenergy.2016.68
– ident: e_1_2_13_38_1
  doi: 10.1029/97JB00593
– ident: e_1_2_13_37_1
  doi: 10.1029/93JB00135
– ident: e_1_2_13_40_1
  doi: 10.1103/PhysRevLett.108.256402
– ident: e_1_2_13_41_1
  doi: 10.1002/adma.201502023
– ident: e_1_2_13_18_1
  doi: 10.1073/pnas.1517363113
– ident: e_1_2_13_64_1
  doi: 10.1021/acsphotonics.9b01588
– volume-title: Handbook of Glass Properties
  year: 2013
  ident: e_1_2_13_68_1
  contributor:
    fullname: Bansal N. P.
– ident: e_1_2_13_34_1
  doi: 10.1039/C6EE01372D
– ident: e_1_2_13_16_1
  doi: 10.1038/s41377-019-0158-6
– ident: e_1_2_13_26_1
  doi: 10.1103/PhysRevB.62.R2243
– ident: e_1_2_13_20_1
  doi: 10.1209/0295-5075/127/44001
– ident: e_1_2_13_2_1
  doi: 10.1007/978-3-663-13885-3_10
– ident: e_1_2_13_28_1
  doi: 10.1038/nphoton.2012.146
– ident: e_1_2_13_54_1
  doi: 10.1038/s41377-018-0038-5
– volume: 3
  start-page: 041004
  year: 2013
  ident: e_1_2_13_7_1
  publication-title: Phys. Rev. X
  contributor:
    fullname: Kats M. A.
– volume-title: Convective Heat Transfer
  year: 1993
  ident: e_1_2_13_67_1
  contributor:
    fullname: Burmeister L. C.
– volume: 108
  year: 2003
  ident: e_1_2_13_62_1
  publication-title: J. Geophys. Res.: Planets
  contributor:
    fullname: Christensen P. R.
– ident: e_1_2_13_63_1
  doi: 10.1134/S0021364015090039
– ident: e_1_2_13_23_1
  doi: 10.1364/AO.27.003210
– ident: e_1_2_13_33_1
  doi: 10.1016/S1350-4495(02)00140-8
– ident: e_1_2_13_22_1
  doi: 10.1103/PhysRevApplied.11.014026
– ident: e_1_2_13_9_1
  doi: 10.1063/1.2927484
– ident: e_1_2_13_12_1
  doi: 10.1364/JOSA.41.000336
– ident: e_1_2_13_14_1
  doi: 10.1063/1.321571
– ident: e_1_2_13_46_1
  doi: 10.1364/OPTICA.4.000430
– ident: e_1_2_13_60_1
– ident: e_1_2_13_29_1
  doi: 10.1073/pnas.1120149109
– ident: e_1_2_13_49_1
  doi: 10.1021/acs.nanolett.8b01746
– ident: e_1_2_13_6_1
  doi: 10.1038/nature13883
– ident: e_1_2_13_21_1
– ident: e_1_2_13_17_1
  doi: 10.1103/PhysRevApplied.12.014053
– ident: e_1_2_13_51_1
  doi: 10.1364/AO.49.002728
– ident: e_1_2_13_36_1
  doi: 10.1073/pnas.1120149109
– ident: e_1_2_13_3_1
  doi: 10.1038/s41563-019-0363-y
– ident: e_1_2_13_57_1
  doi: 10.1002/lpor.201700091
– ident: e_1_2_13_25_1
  doi: 10.1364/AO.35.005683
– ident: e_1_2_13_59_1
  doi: 10.1002/andp.201900188
– ident: e_1_2_13_70_1
  doi: 10.1364/AO.32.005462
– ident: e_1_2_13_24_1
  doi: 10.1364/AO.31.004527
– ident: e_1_2_13_31_1
  doi: 10.1021/ed064pA269
– ident: e_1_2_13_42_1
  doi: 10.1364/OL.43.001295
– ident: e_1_2_13_48_1
  doi: 10.1103/PhysRevApplied.10.021001
– ident: e_1_2_13_19_1
  doi: 10.1103/PhysRevB.90.220301
– ident: e_1_2_13_5_1
  doi: 10.1038/nnano.2015.309
– ident: e_1_2_13_1_1
  doi: 10.1002/andp.19013090310
– ident: e_1_2_13_32_1
  doi: 10.1002/047010631X
– volume-title: New Concepts in Solar and Thermal Radiation Conversion II
  year: 2019
  ident: e_1_2_13_47_1
  contributor:
    fullname: Zhou M.
– ident: e_1_2_13_56_1
  doi: 10.1364/OE.27.011537
– ident: e_1_2_13_65_1
  doi: 10.1029/94JE03330
– ident: e_1_2_13_66_1
  doi: 10.1029/95JB02400
– ident: e_1_2_13_30_1
  doi: 10.1038/lsa.2016.194
– ident: e_1_2_13_52_1
  doi: 10.1103/PhysRevApplied.10.034019
– ident: e_1_2_13_8_1
  doi: 10.1073/pnas.1911244116
– ident: e_1_2_13_61_1
  doi: 10.1063/1.2393157
– ident: e_1_2_13_11_1
  doi: 10.1029/94JE03330
– ident: e_1_2_13_10_1
  doi: 10.1038/ncomms11809
– volume-title: Radiometry and the Detection of Optical Radiation
  year: 1983
  ident: e_1_2_13_13_1
  contributor:
    fullname: Boyd R.
– ident: e_1_2_13_50_1
  doi: 10.1063/1.1150028
– ident: e_1_2_13_35_1
  doi: 10.1364/OE.18.00A314
– ident: e_1_2_13_15_1
  doi: 10.1103/PhysRevLett.105.127404
– ident: e_1_2_13_53_1
  doi: 10.1103/PhysRevB.61.8187
– ident: e_1_2_13_69_1
  doi: 10.1016/0022-3115(94)90996-2
– start-page: 2236
  year: 2019
  ident: e_1_2_13_55_1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08913
  contributor:
    fullname: Lyu J.
– ident: e_1_2_13_39_1
  doi: 10.1063/1.5096363
– ident: e_1_2_13_43_1
  doi: 10.1063/1.5010805
SSID ssj0055556
Score 2.485671
Snippet Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting,...
Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy...
Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Camouflage
Electromagnetic radiation
Emitters
Energy harvesting
FTIR
infrared spectroscopy
Low temperature
Temperature dependence
Thermal emission
thermal‐emission measurement
Title Precision Measurements of Temperature‐Dependent and Nonequilibrium Thermal Emitters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900443
https://www.proquest.com/docview/2433216150
https://www.osti.gov/biblio/1633479
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxbeiPKSBySmlNSJE2dEtFWFaEFVK3WzYjuRELSFNlmY-An8Rn4Jd06aUhYkyJbB8uPufN_Zd58JuVAxuJFQgH27iju-Fr4TcaMcnYYs5WkcxTY3p9cPuiP_dszH36r4C36I6sANLcPu12jgsVpcrUhDnwGfYmpWhHeSSPfZ9ELM6WoNKv4oDp8tLxKB50Co5y5ZG112td58zSvVZmBda4jzO261jqezTeLlkIt8k6dGnqmGfvvB5vifOe2QrRKV0utCjXbJRjLdI9slQqWl_S_2yehhXr7JQ3urw8UFnaV0mAAALwiaP98_WuXbuhmNp4b2Z9PkNX-05QX5hIJqgjt4pu3JoyX3PCCjTnt403XKhxkc7Qnfc1LGjTbCDUOhTeRHgTJNTJbFKlzBIVbngPJAC0wMWwgTmmEkzIMwCPwmiMF4h6Q2hZ6PCFWaixAZfaJE-DoBgGJc5cH8TcICEfA6uVwKRr4U_BuyYFpmEldLVqtVJycoNwnIAelvNeYJ6UzCSLBYtk5Ol-KUpZUuJEPyNoS8bp0wK5df-pB3D_eD6u_4L41OyCbDkN3mEJ6SWjbPkzPANZk6t7r7BUhG71c
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5BOMClKbRV06RlD0g9Gczaa6-PiCRKSxIQSiRuK--uLSEgaRPn0lMfoc_YJ-nM2k6aXiqBbz5Y-zMzO9-sZ74BONEpupFYon37WnihkaGXCKs9k8c8F3mapC43ZzSOBtPw652oswmpFqbkh1hfuJFluPOaDJwupM82rKGPCFApNyuhn5LBLuyhzQfUvaF7u2aQEvi4AiMZBR4Ge37N2-jzs-3vt_xSY472tYU5_0auzvX0m6DrSZcZJw-nq0Kfmh__8Dm-aFWv4VUFTNlFqUmHsJPNjqBZgVRWHQHLNzC9WVRtedhoc7-4ZPOcTTLE4CVH8--fv7pVe92CpTPLxvNZ9n117yoMVk8MtRM9wiPrPd07fs-3MO33JpcDr-rN4JlAhoGXc2GNlX4cS2OTMIm0Pad8WSrElQLDdYFADxXBpniKcGk4BcMiiqMoPEc52OAdNGY48ntg2ggZE6lPksnQZIhRrK8DXL_NeCQj0YLPtWTUt5KCQ5Vky1zRbqn1brWgTYJTCB6IAddQqpApFM6E6mVb0KnlqSpDXSpO_G2Eev0WcCeY_4yhhjfXt-u3D8_56Bj2B5PRUA2_jK_acMApgncphR1oFItV9hFhTqE_OUX-Az7w828
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRALb0R5ekBiCgQndpwRARXPUiEqsVmJnUgV0AJNFyZ-Ar-RX8KdkxbKggTZMlh-3J3vO_vuM8BOmqAbiRTat58KLzQq9GJhU8_kEc9FnsSJy825asrTdnh-J-6-VfGX_BCjAzeyDLdfk4E_2Xz_izT0AfEppWbFdCcZTMJUKBH-Eiy6GRFICfxcfZGSgYexnj-kbfT5_nj7MbdU66F5jUHO78DVeZ7GHCTDMZcJJ_d7gyLdM68_6Bz_M6l5mK1gKTss9WgBJrLuIsxVEJVVG0B_Cdqtl-pRHnb1dbrYZ72c3WaIwEuG5o-39-Pqcd2CJV3Lmr1u9jzouPqCwSND3UR_8MBOHjuO3XMZ2o2T26NTr3qZwTOBCgMv58Iaq_woUsbGYSxTe0DZslSGqwQG6wJhHqqBTXAP4cpwCoWFjKQMD1AMNliBWhd7XgWWGqEiovSJMxWaDBGK9dMA528zLpUUddgdCkY_lQQcuqRa5ppWS49Wqw7rJDeN0IH4bw0lCplC40ioWrYOG0Nx6spM-5oTexthXr8O3Mnllz70Zev6ZvS39pdG2zDdOm7oy7PmxTrMcArfXT7hBtSKl0G2iRinSLecGn8CazHyHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+Measurements+of+Temperature%E2%80%90Dependent+and+Nonequilibrium+Thermal+Emitters&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Xiao%2C+Yuzhe&rft.au=Wan%2C+Chenghao&rft.au=Shahsafi%2C+Alireza&rft.au=Salman%2C+Jad&rft.date=2020-08-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.201900443&rft.externalDBID=10.1002%252Flpor.201900443&rft.externalDocID=LPOR201900443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon