1.8 and 1.9 Å resolution structures of the ­Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes

Glucose oxidase is a flavin‐dependent enzyme which catalyses the oxidation of β‐d‐glucose by molecular oxygen to δ‐­gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 Å resolution, has been refined at 1.9 Å resolution to an R value of...

Full description

Saved in:
Bibliographic Details
Published inActa crystallographica. Section D, Biological crystallography. Vol. 55; no. 5; pp. 969 - 977
Main Authors Wohlfahrt, Gerd, Witt, Susanne, Hendle, Jörg, Schomburg, Dietmar, Kalisz, Henryk M., Hecht, Hans-Jürgen
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.05.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glucose oxidase is a flavin‐dependent enzyme which catalyses the oxidation of β‐d‐glucose by molecular oxygen to δ‐­gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 Å resolution, has been refined at 1.9 Å resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 Å resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 Å for main‐chain atoms and show four N‐glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force‐field methods. The resulting model is consistent with results from site‐directed mutagenesis experiments and shows the β‐d‐glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as α‐­d‐­glucose, mannose and galactose, which are poor substrates for the enzyme, and 2‐deoxy‐d‐glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, δ‐gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.
AbstractList Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 A resolution, has been refined at 1.9 A resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 A resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 A for main-chain atoms and show four N-glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force-field methods. The resulting model is consistent with results from site-directed mutagenesis experiments and shows the beta-D-glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as alpha-D-glucose, mannose and galactose, which are poor substrates for the enzyme, and 2-deoxy-D-glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, delta-gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 A resolution, has been refined at 1.9 A resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 A resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 A for main-chain atoms and show four N-glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force-field methods. The resulting model is consistent with results from site-directed mutagenesis experiments and shows the beta-D-glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as alpha-D-glucose, mannose and galactose, which are poor substrates for the enzyme, and 2-deoxy-D-glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, delta-gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.
Glucose oxidase is a flavin‐dependent enzyme which catalyses the oxidation of β‐d‐glucose by molecular oxygen to δ‐­gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 Å resolution, has been refined at 1.9 Å resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 Å resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 Å for main‐chain atoms and show four N‐glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force‐field methods. The resulting model is consistent with results from site‐directed mutagenesis experiments and shows the β‐d‐glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as α‐­d‐­glucose, mannose and galactose, which are poor substrates for the enzyme, and 2‐deoxy‐d‐glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, δ‐gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.
Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 A resolution, has been refined at 1.9 A resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 A resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 A for main-chain atoms and show four N-glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force-field methods. The resulting model is consistent with results from site-directed mutagenesis experiments and shows the beta-D-glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as alpha-D-glucose, mannose and galactose, which are poor substrates for the enzyme, and 2-deoxy-D-glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, delta-gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.
Author Hecht, Hans-Jürgen
Schomburg, Dietmar
Kalisz, Henryk M.
Witt, Susanne
Wohlfahrt, Gerd
Hendle, Jörg
Author_xml – sequence: 1
  givenname: Gerd
  surname: Wohlfahrt
  fullname: Wohlfahrt, Gerd
– sequence: 2
  givenname: Susanne
  surname: Witt
  fullname: Witt, Susanne
– sequence: 3
  givenname: Jörg
  surname: Hendle
  fullname: Hendle, Jörg
– sequence: 4
  givenname: Dietmar
  surname: Schomburg
  fullname: Schomburg, Dietmar
– sequence: 5
  givenname: Henryk M.
  surname: Kalisz
  fullname: Kalisz, Henryk M.
– sequence: 6
  givenname: Hans-Jürgen
  surname: Hecht
  fullname: Hecht, Hans-Jürgen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10216293$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhiNURC_wAGyQV-wy-DZxvBxKmSIVqFQQgo3l2MfBNIkHOxHTXTd9DB6Bl4A34UnwMOUiEEKydCyf__t9LvvFzhAGKIq7BM8IweLBGZZYcM6llBgzzsiNYo8wKUuMudj57b5b7Kf0DmNMKRO3il2CKamoZHvFRzKrkR4sIjP59fLqyxWKkEI3jT4MKI1xMuOUX1BwaHwL6POnUxi88V3npx7pXrc66XMPQ4LvLou0gtjm9JTQ4FuIqO0mE3I2rL3VKTvpfFCjk0_IhYj6YCG7DS1KU5M_1CMgE_pVB2tIt4ubTncJ7lzHg-Ll46MXh8flyfPlk8PFSWlYzVkpJLWM8gbrmkqrLRjiqHNasNoK7ijoqmJaU-L43Nm6pq5hFAsrqqrGpiHsoLi_9V3F8H6CNKreJ5Pr0gOEKalKCsIpY1l471o4NT1YtYq-1_FC_RhoFoitwMSQUgSnjB_1Zpq5Nd9lodqsTv21ukySP8hf5v9m6i3zwXdw8X9ALV4_OjvCtNoUWm5Rn0ZY_0R1PFeVYGKuXj1bKrx885SfPqzUnH0DOd-9qQ
CitedBy_id crossref_primary_10_1016_j_bios_2013_06_029
crossref_primary_10_1016_j_jmb_2004_06_033
crossref_primary_10_1002_anie_202413633
crossref_primary_10_1021_ja047050e
crossref_primary_10_1088_1758_5082_5_3_035009
crossref_primary_10_1016_S1570_9639_03_00188_2
crossref_primary_10_1016_j_ijhydene_2019_09_037
crossref_primary_10_1016_S1016_8478_23_17037_3
crossref_primary_10_1007_s11244_012_9903_2
crossref_primary_10_1016_j_tet_2005_05_095
crossref_primary_10_1039_C9NR06045F
crossref_primary_10_18596_jotcsa_1088587
crossref_primary_10_1016_j_bios_2017_11_053
crossref_primary_10_1007_s00253_011_3836_8
crossref_primary_10_1021_acs_iecr_9b01341
crossref_primary_10_1073_pnas_211440398
crossref_primary_10_1002_anie_200902191
crossref_primary_10_1039_C8CP07233G
crossref_primary_10_1186_s13068_019_1457_0
crossref_primary_10_3390_s100908248
crossref_primary_10_1007_s00249_017_1245_3
crossref_primary_10_1021_acsami_5b08610
crossref_primary_10_1021_acs_jpclett_2c02183
crossref_primary_10_1039_C5RA06454F
crossref_primary_10_1007_s00894_009_0541_y
crossref_primary_10_3390_ijms23179841
crossref_primary_10_1016_j_abb_2013_07_018
crossref_primary_10_1110_ps_12801
crossref_primary_10_1002_bab_2165
crossref_primary_10_1016_j_abb_2019_07_023
crossref_primary_10_1016_j_procbio_2020_02_025
crossref_primary_10_1016_j_jelechem_2016_01_004
crossref_primary_10_1021_acsomega_9b00060
crossref_primary_10_1016_j_crbiot_2023_100148
crossref_primary_10_1080_10826068_2010_534223
crossref_primary_10_1021_am507801x
crossref_primary_10_1371_journal_pone_0159476
crossref_primary_10_1371_journal_pone_0053567
crossref_primary_10_1021_bi1005865
crossref_primary_10_1021_acscatal_6b02470
crossref_primary_10_1021_acssensors_9b00228
crossref_primary_10_1042_BJ20041903
crossref_primary_10_1016_j_electacta_2024_144271
crossref_primary_10_1016_j_jmb_2009_12_009
crossref_primary_10_1016_j_electacta_2012_03_014
crossref_primary_10_1016_j_enzmictec_2011_03_004
crossref_primary_10_1039_C7AY02922E
crossref_primary_10_1016_j_bios_2015_03_070
crossref_primary_10_1021_acs_biomac_4c01220
crossref_primary_10_1080_10408398_2010_500528
crossref_primary_10_14710_jksa_25_5_169_178
crossref_primary_10_5650_jos_ess20222
crossref_primary_10_1016_j_chroma_2005_07_027
crossref_primary_10_1021_acscatal_7b00272
crossref_primary_10_1016_j_ijbiomac_2018_01_211
crossref_primary_10_1186_s13068_024_02491_8
crossref_primary_10_1007_s00253_018_8784_0
crossref_primary_10_1074_jbc_M210961200
crossref_primary_10_1016_j_bios_2018_09_094
crossref_primary_10_1002_cbic_202200227
crossref_primary_10_1016_j_jmb_2007_01_029
crossref_primary_10_1002_celc_201402141
crossref_primary_10_1021_jacs_8b12072
crossref_primary_10_1007_s12221_023_00037_7
crossref_primary_10_1016_j_foodchem_2018_12_099
crossref_primary_10_1016_j_pep_2020_105717
crossref_primary_10_1016_j_foodchem_2019_125970
crossref_primary_10_1042_BJ20102090
crossref_primary_10_1016_j_jbiotec_2010_10_077
crossref_primary_10_1371_journal_pone_0103410
crossref_primary_10_1016_j_bioelechem_2009_03_006
crossref_primary_10_1016_j_jelechem_2018_10_027
crossref_primary_10_1038_srep13498
crossref_primary_10_1039_C4RA16852F
crossref_primary_10_1039_D2NA00092J
crossref_primary_10_1246_cl_131218
crossref_primary_10_1021_bc015509d
crossref_primary_10_1016_j_gene_2004_04_025
crossref_primary_10_1063_5_0084917
crossref_primary_10_1016_j_molcatb_2016_09_008
crossref_primary_10_1016_j_snb_2013_08_100
crossref_primary_10_1016_S0167_4838_00_00127_8
crossref_primary_10_1006_bbrc_1999_1330
crossref_primary_10_1002_ange_200902191
crossref_primary_10_1002_1520_636X_2001_13_1_34__AID_CHIR7_3_0_CO_2_O
crossref_primary_10_1016_j_biocel_2004_10_014
crossref_primary_10_1016_j_bioelechem_2018_04_007
crossref_primary_10_1016_j_jmb_2007_06_017
crossref_primary_10_1126_sciadv_abl5576
crossref_primary_10_3390_catal7010031
crossref_primary_10_1007_s00253_014_5891_4
crossref_primary_10_1006_jmbi_2001_5246
crossref_primary_10_3390_biom12030472
crossref_primary_10_1016_j_jmb_2005_03_008
crossref_primary_10_1021_bi200388g
crossref_primary_10_1002_pola_10845
crossref_primary_10_1016_j_jpowsour_2018_04_104
crossref_primary_10_3390_catal14040267
crossref_primary_10_1007_s10529_015_1774_8
crossref_primary_10_1128_AEM_71_12_8881_8887_2005
crossref_primary_10_1021_bi800650w
crossref_primary_10_1021_acs_jpcb_3c04857
crossref_primary_10_1016_S0022_2836_03_00054_8
crossref_primary_10_1021_jp507566u
crossref_primary_10_1021_bi801994c
crossref_primary_10_1073_pnas_252644599
crossref_primary_10_1016_j_biochi_2023_12_004
crossref_primary_10_1039_C3AY42032A
crossref_primary_10_1039_C8NA00177D
crossref_primary_10_1021_acsbiomedchemau_4c00108
crossref_primary_10_3390_bios9010018
crossref_primary_10_1016_j_jelechem_2012_11_023
crossref_primary_10_1021_acs_langmuir_4c03661
crossref_primary_10_1002_aenm_201200422
crossref_primary_10_1016_j_mtla_2022_101464
crossref_primary_10_1016_j_snb_2011_03_053
crossref_primary_10_1016_j_str_2015_03_023
crossref_primary_10_1002_celc_202101597
crossref_primary_10_1021_cr0680639
crossref_primary_10_1371_journal_pone_0144289
crossref_primary_10_1021_jp207916d
crossref_primary_10_1107_S1744309111048688
crossref_primary_10_1021_ac902038d
crossref_primary_10_1016_j_jbiosc_2015_03_012
crossref_primary_10_1073_pnas_2118924119
crossref_primary_10_1098_rsif_2018_0330
crossref_primary_10_1021_bi035435o
crossref_primary_10_1016_j_indcrop_2015_07_038
crossref_primary_10_1021_bi300505z
crossref_primary_10_1002_cbic_201100564
crossref_primary_10_1042_BJ20050498
crossref_primary_10_1002_cjoc_201180479
crossref_primary_10_1002_bit_23149
crossref_primary_10_3390_jof7100873
crossref_primary_10_1110_ps_38102
crossref_primary_10_1016_j_gene_2016_07_032
crossref_primary_10_2139_ssrn_4141276
crossref_primary_10_1111_j_1742_4658_2006_05488_x
crossref_primary_10_1021_acs_analchem_4c06519
crossref_primary_10_1177_193229681100500507
crossref_primary_10_1016_j_elecom_2009_11_027
crossref_primary_10_1016_j_fmre_2024_04_009
crossref_primary_10_1002_bit_26785
crossref_primary_10_1039_c3dt53504e
crossref_primary_10_1074_jbc_M506078200
crossref_primary_10_1107_S1744309110028605
crossref_primary_10_1021_acs_chemrev_0c01062
crossref_primary_10_1002_bip_20956
crossref_primary_10_1039_D4DT01534G
crossref_primary_10_1107_S2059798319010878
crossref_primary_10_1039_D2CP01165D
crossref_primary_10_1007_s00253_008_1407_4
crossref_primary_10_1089_15209150050194242
crossref_primary_10_1007_s00604_016_2049_3
crossref_primary_10_1042_BSR20240102
crossref_primary_10_1021_acsbiomaterials_9b01763
crossref_primary_10_1002_ange_202413633
crossref_primary_10_1039_D3GC04981G
crossref_primary_10_1016_S0969_2126_01_00639_6
crossref_primary_10_1016_j_pep_2015_11_003
crossref_primary_10_3390_s110403483
crossref_primary_10_1021_ct5007482
crossref_primary_10_1007_s44211_023_00455_w
crossref_primary_10_1002_jmr_2294
crossref_primary_10_1107_S2059798321003533
crossref_primary_10_1039_C5RA25895B
crossref_primary_10_1063_5_0131071
crossref_primary_10_1002_elan_201800773
crossref_primary_10_31857_S0207401X24020099
crossref_primary_10_3390_bios12050335
crossref_primary_10_1016_j_ijbiomac_2019_06_094
crossref_primary_10_1007_s11814_018_0163_0
crossref_primary_10_1002_prot_24596
crossref_primary_10_1002_chem_201604348
crossref_primary_10_1021_la3022003
crossref_primary_10_1039_D0RA04339G
crossref_primary_10_1016_j_jcat_2018_09_005
crossref_primary_10_1021_acscatal_7b01575
crossref_primary_10_1016_j_foodchem_2018_09_114
crossref_primary_10_1021_bi027092k
crossref_primary_10_1002_app_25928
crossref_primary_10_1038_srep40517
crossref_primary_10_1557_opl_2015_163
crossref_primary_10_1039_D1CP02966E
crossref_primary_10_3390_bios12110938
crossref_primary_10_1002_asia_201800927
crossref_primary_10_1021_ac3022899
crossref_primary_10_3390_catal11010079
crossref_primary_10_1021_acscatal_2c01956
crossref_primary_10_1002_cphc_201900329
crossref_primary_10_1016_j_bios_2016_06_078
crossref_primary_10_1016_j_procbio_2024_11_019
crossref_primary_10_1021_acs_jpcb_6b00661
crossref_primary_10_1021_ar6000507
crossref_primary_10_3390_nano14131073
crossref_primary_10_1016_j_biomaterials_2014_10_002
crossref_primary_10_1021_acs_jpcc_5b02796
crossref_primary_10_1016_j_elecom_2017_07_001
crossref_primary_10_1021_la900799m
crossref_primary_10_1021_acs_chemrev_7b00650
crossref_primary_10_1021_ac4008557
crossref_primary_10_1080_07388551_2022_2057275
crossref_primary_10_1021_jp0272320
crossref_primary_10_1016_j_jelechem_2020_114358
crossref_primary_10_1080_00032719_2023_2174131
crossref_primary_10_3390_ijms19020425
crossref_primary_10_1107_S2053230X15010742
crossref_primary_10_1021_jp109763t
crossref_primary_10_1016_j_bioelechem_2019_107414
crossref_primary_10_1002_pola_26554
crossref_primary_10_1002_ange_202012089
crossref_primary_10_1002_qua_24390
crossref_primary_10_1016_j_apsusc_2013_12_016
crossref_primary_10_1016_j_foodchem_2020_127229
crossref_primary_10_1021_jp071122h
crossref_primary_10_15407_ujpe57_7_700
crossref_primary_10_1039_C6PY00179C
crossref_primary_10_1021_jp807047s
crossref_primary_10_1039_D2CP03502B
crossref_primary_10_1007_s00253_010_3073_6
crossref_primary_10_1007_s10800_012_0489_y
crossref_primary_10_1107_S139900471402286X
crossref_primary_10_1016_S0141_0229_01_00477_X
crossref_primary_10_1002_slct_202003536
crossref_primary_10_1002_smll_200701041
crossref_primary_10_1016_S0006_291X_03_00383_8
crossref_primary_10_1002_anie_202012089
crossref_primary_10_1021_acs_biomac_3c00698
crossref_primary_10_1007_s43393_025_00343_6
crossref_primary_10_1021_acssuschemeng_3c06112
crossref_primary_10_1186_s13068_021_02003_y
crossref_primary_10_5483_BMBRep_2007_40_6_875
crossref_primary_10_1110_ps_0213502
crossref_primary_10_1021_ja056025l
crossref_primary_10_1021_jp077170j
crossref_primary_10_1128_AEM_70_10_5794_5800_2004
crossref_primary_10_1134_S0003683809030028
crossref_primary_10_1039_D0CY00819B
crossref_primary_10_1016_j_jbiotec_2006_02_003
crossref_primary_10_1016_j_sbi_2018_08_004
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1107/S0907444999003431
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1399-0047
EndPage 977
ExternalDocumentID 10216293
10_1107_S0907444999003431
AYDSE0263
ark_67375_WNG_0GZM4PB6_5
Genre miscellaneous
Journal Article
GroupedDBID ---
-ET
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1OC
1Y6
23M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADMGS
ADOZA
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBC
EBS
EJD
EMB
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GX1
H.T
H.X
HGLYW
HH5
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCJ
RNS
RX1
SJN
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XG1
ZCG
ZZTAW
~02
~IA
~WT
1OB
2WC
6TJ
AANHP
AAYCA
ABDBF
ABEML
ACRPL
ACUHS
ACYXJ
ADNMO
AEUQT
AFWVQ
AJXKR
BTSUX
EAD
EAP
EBD
EMK
EMOBN
EST
ESX
HF~
I-F
LH4
PALCI
RIWAO
RJQFR
ROL
SV3
TUS
AAYXX
AEYWJ
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3843-792d324b0a829dadec1f2ffa738d74f2ea663aa21f45fd882fb3207d76680cb13
IEDL.DBID DR2
ISSN 1399-0047
0907-4449
IngestDate Thu Jul 10 23:48:57 EDT 2025
Wed Feb 19 02:34:56 EST 2025
Tue Jul 01 01:27:35 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Wed Jan 22 16:39:14 EST 2025
Wed Oct 30 09:51:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3843-792d324b0a829dadec1f2ffa738d74f2ea663aa21f45fd882fb3207d76680cb13
Notes istex:55CD04C6082CB443FD66470E111F9D4F9F99E9F1
ark:/67375/WNG-0GZM4PB6-5
ArticleID:AYDSE0263
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10216293
PQID 69714233
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_69714233
pubmed_primary_10216293
crossref_citationtrail_10_1107_S0907444999003431
crossref_primary_10_1107_S0907444999003431
wiley_primary_10_1107_S0907444999003431_AYDSE0263
istex_primary_ark_67375_WNG_0GZM4PB6_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-05-01
May 1999
1999-May
19990501
PublicationDateYYYYMMDD 1999-05-01
PublicationDate_xml – month: 05
  year: 1999
  text: 1999-05-01
  day: 01
PublicationDecade 1990
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
PublicationTitle Acta crystallographica. Section D, Biological crystallography.
PublicationTitleAlternate Acta Cryst. D
PublicationYear 1999
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
SSID ssj0002237
Score 2.1020665
Snippet Glucose oxidase is a flavin‐dependent enzyme which catalyses the oxidation of β‐d‐glucose by molecular oxygen to δ‐­gluconolactone and hydrogen peroxide. The...
Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 969
SubjectTerms Amino Acid Sequence
Aspergillus niger - enzymology
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Crystallography, X-Ray
Flavin-Adenine Dinucleotide - chemistry
Flavin-Adenine Dinucleotide - metabolism
Glucose oxidase
Glucose Oxidase - chemistry
Glucose Oxidase - metabolism
Kinetics
Models, Molecular
Molecular Sequence Data
Monosaccharides - chemistry
Monosaccharides - metabolism
Oxidation-Reduction
Oxidoreductases
Penicillium - enzymology
Protein Conformation
Substrate Specificity
Substrate-complex modelling
Title 1.8 and 1.9 Å resolution structures of the ­Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes
URI https://api.istex.fr/ark:/67375/WNG-0GZM4PB6-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0907444999003431
https://www.ncbi.nlm.nih.gov/pubmed/10216293
https://www.proquest.com/docview/69714233
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG1F4QAcWCYsZq0DygHJg-1uu-3jMGQRUqIIiAhcrF5HozAeFMfSwIlLPoNP4CfgT_gSqtv2kBAEEkg-2e329tr1qrvqFSGPikxGXKcitIqlITPKhk52K0xNRGWmNLfSZSPv7Gbb--z5QXqwQsZ9LkyrD7GccHMjw_-v3QAXsqtCErXLjM6vY46xO5EVn0vtYrYcMXrxU0IKzZ8vsEJdtn3EeLeyiX08OdfDGdt0wb3mxe-I51ke6w3R5lWi-0do408Oh82xHKqPv6g7_uczXiNXOqIKoxZZ18mKqQZkbVShkz77AOvgQ0f9nPyAXBz3ZeMG5PIphcM18jke5iAqDfGw-P7p5NsJoHvfoR1a7doG98DcAjJR-Pplz1RT5eaAmhmImZiIGikuutrG9zJyuuYTPNzUUE0n5gi6kHuYL6YaDXINAjdA2zytAfk4-Eo_LuUeavxFeile8GH0ZmHqG2R_c-PVeDvsKkKEiuaMhrxINDJAGYk8KbTQRsU2sVZwmmvObGIEEighktiy1Gp0HqykCWKRZ1keKRnTm2S1mlfmNoE0UoYVMrbUGKZSKTgXjKtCqlhJltmARD0WStXJpbuqHe9K7zZFvDz3cQLyeHnK-1Yr5E-N1z3Ali3F0aELsuNp-Xp3q4y23u6wvadZmQbkYY_AEj-lW88RlZk3dZkVPEY2TANyqwXmqasmcYZELiCxh9ffb6ccvXn2cgMdcnrnH865Sy61chYuEPQeWUX4mPtI1o7lAz8afwBcvzRu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL2q2kVhwSPlEV69C9QFkoMfY0-8DE3bAE1UQStKN9bMeCaKShxUN1JgxaafwSfwE_AnfAl3xk5oKQIJJK_s8fh1xvfcmXvPBXicJtLneSw8o1jsMa2MZ2W3vFj7kUxUzo202cj9QdI7YC8O48Ml6M5zYSp9iMWEmx0Z7n9tB7idkK5GuV-tM1rHjlnKblVWbDL1iq3sbRX0u69-ikiRAXQlViKbb-8zXq9tUidPL3VxwTqt2Bc9-x31vMhknSnavg56_hBVBMpxa3oqW-rjL_qO__uUN-BazVWxU4HrJizpogFrnYL89PEH3EAXPeqm5RuwujmvHNeAq-dEDtfgc9BqoyhyDFrp909n386QPPwa8FjJ105pD04MEhnFr1_2dDFSdhpoOkYxFkNREsslb1u7XjpW2nxIh6clFqOhPsE66h4ns1FONrlEQRuSeR6VSJQcXbEfm3WPJf0lnRovukh6PdPlLTjY3trf7Hl1UQhPRW0WeTwNcyKB0hftMM1FrlVgQmMEj9o5ZybUgjiUEGFgWGxy8h-MjEKCI0-Stq9kEN2G5WJS6LuAsa80S2VgIq2ZiqXgXDCuUqkCJVlimuDPwZCpWjHdFu54lznPyefZpY_ThCeLU95XciF_arzhELZoKU6ObZwdj7M3g53M3znqs71nSRY3YX0OwYw-pV3SEYWeTMssSXlAhDhqwp0KmeeuGgYJcbkmBA5ff7-drPO2-3qLfPLo3j-csw6rvf3-brb7fPDyPlyp1C1sXOgDWCYo6YfE3U7lIzc0fwCUtziK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1VrcRjwSMFGl69C9QFkoMfY4-9DGnT8mgUARWFjTXPKGrjVHUtBVZs-hl8Aj8Bf8KXcGfshJYikEDyyh6PX2d8z52591xCHmWJ8JmKuWckjT2qpfGs7JYXaz8SiVTMCJuNvDtIdvbo8_14f4n05rkwtT7EYsLNjgz3v7YD_EiZepD79TKj9euoZexWZMXmUq_QBHdaZvTqp4YU2j9XYSWy6fY-Zc3SJnby5EIX54zTin3Ps98xz_NE1lmi_nWi5s9QB6AcdKoT0ZEff5F3_M-HvEGuNUwVujW0bpIlXbTIardAL33yATbAxY66SfkWudyb141rkatnJA5XyeegkwIvFASd7Pun02-ngP59A3eoxWsr3ANTA0hF4euXoS7G0k4CVRPgEz7iJXJc9LW166Vrhc1HeLgqoRiP9DE0MfcwnY0VWuQSOG6AxnlcAhJycKV-bM49lPiPdFq84OLo9UyXt8hef-tNb8drSkJ4Mkpp5LEsVEgBhc_TMFNcaRmY0BjOolQxakLNkUFxHgaGxkah92BEFCIYWZKkvhRBdJssF9NCrxGIfalpJgITaU1lLDhjnDKZCRlIQRPTJv4cC7ls9NJt2Y7D3PlNPssvfJw2ebw45agWC_lT4w0HsEVLfnxgo-xYnL8dbOf-9vtdOnya5HGbrM8RmOOntAs6vNDTqsyTjAVIh6M2uVMD88xVwyBBJtcmgYPX328n777bfL2FHnl09x_OWSeXhpv9_OWzwYt75EotbWGDQu-TZUSSfoDE7UQ8dAPzB7PhNzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1.8+and+1.9%E2%80%85%C3%85+resolution+structures+of+the+%C2%ADPenicillium+amagasakiense+and+Aspergillus+niger+glucose+oxidases+as+a+basis+for+modelling+substrate+complexes&rft.jtitle=Acta+crystallographica.+Section+D%2C+Biological+crystallography.&rft.au=Wohlfahrt%2C+Gerd&rft.au=Witt%2C+Susanne&rft.au=Hendle%2C+J%C3%B6rg&rft.au=Schomburg%2C+Dietmar&rft.date=1999-05-01&rft.pub=International+Union+of+Crystallography&rft.issn=1399-0047&rft.eissn=1399-0047&rft.volume=55&rft.issue=5&rft.spage=969&rft.epage=977&rft_id=info:doi/10.1107%2FS0907444999003431&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0GZM4PB6_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-0047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-0047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-0047&client=summon