Regression analysis of overdispersed correlated count data with subject specific covariates

A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the es...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 24; no. 16; pp. 2557 - 2575
Main Authors Solis-Trapala, I. L., Farewell, V. T.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.08.2005
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.2121

Cover

Loading…
Abstract A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within‐ and between‐cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross‐sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. Copyright © 2005 John Wiley & Sons, Ltd.
AbstractList A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints.
A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. [PUBLICATION ABSTRACT]
A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints.A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints.
A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within‐ and between‐cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross‐sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. Copyright © 2005 John Wiley & Sons, Ltd.
Author Solis-Trapala, I. L.
Farewell, V. T.
Author_xml – sequence: 1
  givenname: I. L.
  surname: Solis-Trapala
  fullname: Solis-Trapala, I. L.
  organization: Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas, Guanajuato, Gto., México
– sequence: 2
  givenname: V. T.
  surname: Farewell
  fullname: Farewell, V. T.
  email: vern.farewell@mrc-bsu.cam.ac.uk
  organization: MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Cambridge CB2 2SR, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15977293$$D View this record in MEDLINE/PubMed
BookMark eNp10d9PFDEQB_CGYOBAE_4Cs_HB8LJH293-2EdBOUkOTAQDCQ9Nt9tqz73t2emC999bPCQR49PMw2cmmfnuoe0hDBahA4KnBGN6BH45pYSSLTQhuBElpkxuowmmQpRcELaL9gAWGBPCqNhBu4Q1QtCmmqDbz_ZrtAA-DIUedL8GD0VwRbizsfOwshFsV5gQo-11-t2OQyo6nXRx79O3AsZ2YU0qMjXeeZPBnY4-W3iJXjjdg331WPfRl9MPVycfy_mn2dnJu3lpKlmTkjW6lQ1ra9cRyoXoHONG1lJLLqRhuq4NaaTTwvGat4yRjjMmJXVGcNnQttpHbzd7VzH8GC0ktfRgbN_rwYYRFJdYcoZFhm-ewUUYY74aFKUVqUVVk4xeP6KxXdpOraJf6rhWf36WwXQDTAwA0TplfNIpfzBF7XtFsHoIReVQ1EMoeeDw2cDTzn9puaH3vrfr_zp1eXb-t_eQ7M8nr-N3xUUlmLq-mKmbm_Pr93NxrGbVLyyOqc8
CODEN SMEDDA
CitedBy_id crossref_primary_10_1080_10543406_2017_1333999
crossref_primary_10_3390_d14050320
crossref_primary_10_1007_s00180_015_0599_1
crossref_primary_10_1093_biostatistics_kxs050
crossref_primary_10_1080_00949655_2014_996151
crossref_primary_10_1111_biom_13435
crossref_primary_10_1111_biom_13457
crossref_primary_10_1002_sim_5529
crossref_primary_10_1038_s41393_020_0517_4
crossref_primary_10_1093_biostatistics_kxr005
crossref_primary_10_1002_sim_8676
crossref_primary_10_1016_j_electstud_2024_102849
crossref_primary_10_1016_j_cct_2013_02_003
crossref_primary_10_1146_annurev_statistics_060116_054131
crossref_primary_10_46292_sci21_00062
crossref_primary_10_1007_s00180_015_0589_3
crossref_primary_10_1007_s00184_022_00890_1
crossref_primary_10_1002_sim_3619
crossref_primary_10_1111_biom_13147
crossref_primary_10_1002_ett_3732
crossref_primary_10_1002_bimj_201000076
crossref_primary_10_1002_sim_3032
crossref_primary_10_1002_sim_7074
crossref_primary_10_1016_j_appet_2013_07_012
crossref_primary_10_1080_03610926_2021_1939380
crossref_primary_10_1088_1742_6596_1397_1_012077
Cites_doi 10.1016/S0378-3758(96)00203-0
10.1007/b97287
10.2307/3315717
10.1093/biomet/73.1.13
10.1093/biomet/80.1.141
10.2307/2532086
10.1214/ss/1177010899
10.1007/978-1-4899-3033-0
10.2307/2532642
10.1080/01621459.1993.10594284
10.2307/3109770
10.1080/01621459.1982.10477897
10.1093/biomet/88.1.287
10.1093/biomet/90.1.29
10.2307/2531733
10.2307/2531907
10.1007/978-1-4612-0699-6_7
10.1016/S0378-3758(98)00180-3
10.1016/S0277-9536(99)00308-1
10.1111/j.0006-341X.1999.00688.x
10.1093/biomet/78.1.153
10.1111/j.2517-6161.1992.tb01862.x
10.1093/biomet/87.3.491
10.1016/S0140-6736(02)07810-8
10.1080/00949659308811554
10.1080/03610919408813210
10.1111/1467-9868.00275
10.2307/2533967
10.1093/biomet/51.1-2.241
10.1093/biomet/82.2.407
10.2307/3001656
10.1093/oso/9780198524847.001.0001
10.1002/sim.4780132104
10.1093/biomet/77.3.642
10.1093/biomet/75.4.621
ContentType Journal Article
Copyright Copyright © 2005 John Wiley & Sons, Ltd.
Copyright 2005 John Wiley & Sons, Ltd
Copyright John Wiley and Sons, Limited Aug 30, 2005
Copyright_xml – notice: Copyright © 2005 John Wiley & Sons, Ltd.
– notice: Copyright 2005 John Wiley & Sons, Ltd
– notice: Copyright John Wiley and Sons, Limited Aug 30, 2005
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.2121
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2575
ExternalDocumentID 883572881
15977293
10_1002_sim_2121
SIM2121
ark_67375_WNG_XXMWDL7B_G
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
YHZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3841-59ab895b4fd12677df56c848a8678c5a44c198fa7f646b551d655882fc76892b3
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Fri Jul 11 05:28:08 EDT 2025
Fri Jul 25 03:59:45 EDT 2025
Thu May 22 04:21:10 EDT 2025
Tue Jul 01 04:32:58 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Wed Jan 22 16:59:07 EST 2025
Wed Oct 30 09:51:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
Copyright 2005 John Wiley & Sons, Ltd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3841-59ab895b4fd12677df56c848a8678c5a44c198fa7f646b551d655882fc76892b3
Notes ArticleID:SIM2121
istex:529984EDB91B774DF5C742999F54FF12525D78C7
ark:/67375/WNG-XXMWDL7B-G
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 15977293
PQID 223147341
PQPubID 48361
PageCount 19
ParticipantIDs proquest_miscellaneous_68086507
proquest_journals_223147341
pubmed_primary_15977293
crossref_citationtrail_10_1002_sim_2121
crossref_primary_10_1002_sim_2121
wiley_primary_10_1002_sim_2121_SIM2121
istex_primary_ark_67375_WNG_XXMWDL7B_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-08-30
30 August 2005
2005-Aug-30
20050830
PublicationDateYYYYMMDD 2005-08-30
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-30
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2005
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002.
Liang KY, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B 1992; 54:3-40.
Lipsitz SR, Laird NM, Harrington DP. Generalized estimating equations for correlated binary data: using the odds ratios as a measure of association. Biometrika 1991; 78(1):153-160.
Chao W, Palta M, Young T. Effect of omitted confounders on the analysis of correlated binary data. Biometrics 1997; 53:678-689.
Fitzmaurice GM, Laird NM. A likelihood based method for analysing longitudinal binary responses. Biometrika 1993; 80:141-151.
Crowder M. On repeated measures analysis with misspecified covariance structure. Journal of the Royal Statistical Society, Series B 2001; 63:55-62.
Arbous AG, Kerrich JE. Accident statistics and the concept of accident proneness. Biometrics 1951; 7:340-432.
Lawless JF, Zhan M. Analysis of interval-grouped recurrent event data using piecewise constant rate functions. The Canadian Journal of Statistics 1998; 26:549-565.
Shen L, Palta M, Shao J, Park S. Model misspecification and different between- and within-cluster covariate effects in the analysis of correlated data. Proceedings of the Biometrics Section of the American Statistical Association 1999; 219-224.
Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048.
Hand DJ, Crowder MJ. Practical Longitudinal Data Analysis. Chapman & Hall: London, 1996.
Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of cluster data. Biometrics 1998; 54:638-645.
Fallowfield L, Jenkins V, Farewell V, Saul J, Duffy A, Eves R. Efficacy of a cancer research UK communication skills training model for oncologists: a randomised controlled trial. The Lancet 2002; 359:650-656.
Zeger SL. A regression model for time series of counts. Biometrika 1998; 75(4):621-629.
Heagerty PJ. Marginally specified logistic-normal models for longitudinal binary data. Biometrics 1999; 55:688-698.
Ford S, Hall A, Ratcliffe D, Fallowfield L. The medical interaction process system (MIPS): an instrument for analysing interviews of oncologists and patients with cancer. Social Science and Medicine 2000; 50:553-566.
Scott AJ, Holt D. The effect of two-stage sampling on ordinary least squares methods. Journal of the American Statistical Association 1982; 77(380):848-854.
Aguirre-Hernández R, Farewell VT. Handbook of Statistics, vol. 23, Appraisal of Models for the Study of Disease Progression in Psoriatic Arthritis. Elsevier: New York, 2004.
Palta M, Yao TJ, Velu R. Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 1994; 13:2219-2231.
Fitzmaurice GM, Laird NM, Rotnitzky AG. Regression models for discrete longitudinal responses. Statistical Science 1993; 8:284-309.
Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410.
Chaganty RN, Shults J. On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter. Journal of Statistical Planning and Inference 1999; 76:145-161.
Zhao LP, Prentice RL. Correlated binary regression using a quadratic exponential model. Biometrika 1990; 77:642-648.
Thall PF, Vail SC. Some covariance models for longitudinal count data with overdispersion. Biometrics 1990; 46:657-671.
Breslow N, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 1993; 88:9-25.
Prentice RL, Zhao LP. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 1991; 47:825-839.
Oman SD, Zucker DM. Modelling and generating correlated binary variables. Biometrika 2000; 88:287-290.
Wolfinger R, O'Connell M. Generalized linear models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation 1993; 48:233-243.
Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communication in Statistics, Part B: Simulation and computation 1994; 23:939-951.
Chaganty RN. An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference 1997; 63:39-54.
Thall PF. Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 1998; 44:197-209.
Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
Davis CS. Statistical Methods for the Analysis of Repeated Measurements. Springer: New York, 2002.
Holgate P. Estimation for the bivariate poisson distribution. Biometrika 1964; 51:241-245.
Cox DR. The analysis of multivariate binary data. Journal of the Royal Statistical Society, Series C 1972; 21:113-120.
Davis RA, Dunsmuir WTM, Wang Y. On autocorrelation in a Poisson regression model. Biometrika 2000; 87(3):491-505.
Wang YG, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29-41.
Bates GE, Neyman J. Contributions to the theory of accident proneness: I. An optimistic model of the correlation between light and severe accidents. University of California Publications in Statistics 1952; 1:215-253.
1993; 48
1993; 8
1998; 26
1990; 77
1986; 73
1991; 78
1997; 63
2000; 87
1993; 88
2000; 88
2004; 23
1982; 77
2002; 359
2000; 50
1994; 23
1997
1996
1972; 21
2002
1991
1992; 54
1951; 7
2001; 63
1998; 44
1999
1995; 82
2003; 90
1991; 47
1990; 46
1997; 53
1961; 1
1988; 44
1999; 55
1999; 76
1994; 13
1961
1993; 80
1998; 54
1998; 75
1964; 51
1952; 1
Liang (10.1002/sim.2121-BIB6) 1992; 54
Dean (10.1002/sim.2121-BIB35) 1991
Crowder (10.1002/sim.2121-BIB15) 2001; 63
Davis (10.1002/sim.2121-BIB17) 2002
Zeger (10.1002/sim.2121-BIB36) 1998; 75
Neuhaus (10.1002/sim.2121-BIB26) 1998; 54
Zhao (10.1002/sim.2121-BIB4) 1990; 77
Thall (10.1002/sim.2121-BIB38) 1990; 46
Bates (10.1002/sim.2121-BIB22) 1952; 1
Chao (10.1002/sim.2121-BIB42) 1997; 53
Scott (10.1002/sim.2121-BIB29) 1982; 77
Liang (10.1002/sim.2121-BIB2) 1986; 73
Aguirre-Hernández (10.1002/sim.2121-BIB33) 2004; 23
Fitzmaurice (10.1002/sim.2121-BIB11) 1993; 80
Davis (10.1002/sim.2121-BIB37) 2000; 87
Holgate (10.1002/sim.2121-BIB13) 1964; 51
Pepe (10.1002/sim.2121-BIB30) 1994; 23
Palta (10.1002/sim.2121-BIB32) 1994; 13
Chaganty (10.1002/sim.2121-BIB20) 1999; 76
Oman (10.1002/sim.2121-BIB7) 2000; 88
Chaganty (10.1002/sim.2121-BIB19) 1997; 63
Breslow (10.1002/sim.2121-BIB39) 1993; 88
Fitzmaurice (10.1002/sim.2121-BIB1) 1993; 8
Bahadur (10.1002/sim.2121-BIB9) 1961
Arbous (10.1002/sim.2121-BIB21) 1951; 7
Fallowfield (10.1002/sim.2121-BIB24) 2002; 359
Ford (10.1002/sim.2121-BIB25) 2000; 50
Cox (10.1002/sim.2121-BIB23) 1961; 1
Crowder (10.1002/sim.2121-BIB14) 1995; 82
Thall (10.1002/sim.2121-BIB34) 1998; 44
Cox (10.1002/sim.2121-BIB10) 1972; 21
Hand (10.1002/sim.2121-BIB16) 1996
Shen (10.1002/sim.2121-BIB27) 1999
Prentice (10.1002/sim.2121-BIB3) 1988; 44
Wolfinger (10.1002/sim.2121-BIB40) 1993; 48
Palta (10.1002/sim.2121-BIB28) 1997
Wang (10.1002/sim.2121-BIB18) 2003; 90
Lawless (10.1002/sim.2121-BIB31) 1998; 26
Diggle (10.1002/sim.2121-BIB12) 2002
Lipsitz (10.1002/sim.2121-BIB8) 1991; 78
Prentice (10.1002/sim.2121-BIB5) 1991; 47
Heagerty (10.1002/sim.2121-BIB41) 1999; 55
References_xml – reference: Zhao LP, Prentice RL. Correlated binary regression using a quadratic exponential model. Biometrika 1990; 77:642-648.
– reference: Thall PF. Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 1998; 44:197-209.
– reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
– reference: Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048.
– reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410.
– reference: Cox DR. The analysis of multivariate binary data. Journal of the Royal Statistical Society, Series C 1972; 21:113-120.
– reference: Chaganty RN. An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference 1997; 63:39-54.
– reference: Arbous AG, Kerrich JE. Accident statistics and the concept of accident proneness. Biometrics 1951; 7:340-432.
– reference: Hand DJ, Crowder MJ. Practical Longitudinal Data Analysis. Chapman & Hall: London, 1996.
– reference: Shen L, Palta M, Shao J, Park S. Model misspecification and different between- and within-cluster covariate effects in the analysis of correlated data. Proceedings of the Biometrics Section of the American Statistical Association 1999; 219-224.
– reference: Wolfinger R, O'Connell M. Generalized linear models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation 1993; 48:233-243.
– reference: Holgate P. Estimation for the bivariate poisson distribution. Biometrika 1964; 51:241-245.
– reference: Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communication in Statistics, Part B: Simulation and computation 1994; 23:939-951.
– reference: Heagerty PJ. Marginally specified logistic-normal models for longitudinal binary data. Biometrics 1999; 55:688-698.
– reference: Chao W, Palta M, Young T. Effect of omitted confounders on the analysis of correlated binary data. Biometrics 1997; 53:678-689.
– reference: Prentice RL, Zhao LP. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 1991; 47:825-839.
– reference: Lawless JF, Zhan M. Analysis of interval-grouped recurrent event data using piecewise constant rate functions. The Canadian Journal of Statistics 1998; 26:549-565.
– reference: Fitzmaurice GM, Laird NM, Rotnitzky AG. Regression models for discrete longitudinal responses. Statistical Science 1993; 8:284-309.
– reference: Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002.
– reference: Crowder M. On repeated measures analysis with misspecified covariance structure. Journal of the Royal Statistical Society, Series B 2001; 63:55-62.
– reference: Aguirre-Hernández R, Farewell VT. Handbook of Statistics, vol. 23, Appraisal of Models for the Study of Disease Progression in Psoriatic Arthritis. Elsevier: New York, 2004.
– reference: Bates GE, Neyman J. Contributions to the theory of accident proneness: I. An optimistic model of the correlation between light and severe accidents. University of California Publications in Statistics 1952; 1:215-253.
– reference: Scott AJ, Holt D. The effect of two-stage sampling on ordinary least squares methods. Journal of the American Statistical Association 1982; 77(380):848-854.
– reference: Oman SD, Zucker DM. Modelling and generating correlated binary variables. Biometrika 2000; 88:287-290.
– reference: Davis CS. Statistical Methods for the Analysis of Repeated Measurements. Springer: New York, 2002.
– reference: Wang YG, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29-41.
– reference: Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of cluster data. Biometrics 1998; 54:638-645.
– reference: Zeger SL. A regression model for time series of counts. Biometrika 1998; 75(4):621-629.
– reference: Breslow N, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 1993; 88:9-25.
– reference: Ford S, Hall A, Ratcliffe D, Fallowfield L. The medical interaction process system (MIPS): an instrument for analysing interviews of oncologists and patients with cancer. Social Science and Medicine 2000; 50:553-566.
– reference: Liang KY, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B 1992; 54:3-40.
– reference: Thall PF, Vail SC. Some covariance models for longitudinal count data with overdispersion. Biometrics 1990; 46:657-671.
– reference: Lipsitz SR, Laird NM, Harrington DP. Generalized estimating equations for correlated binary data: using the odds ratios as a measure of association. Biometrika 1991; 78(1):153-160.
– reference: Fitzmaurice GM, Laird NM. A likelihood based method for analysing longitudinal binary responses. Biometrika 1993; 80:141-151.
– reference: Chaganty RN, Shults J. On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter. Journal of Statistical Planning and Inference 1999; 76:145-161.
– reference: Palta M, Yao TJ, Velu R. Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 1994; 13:2219-2231.
– reference: Fallowfield L, Jenkins V, Farewell V, Saul J, Duffy A, Eves R. Efficacy of a cancer research UK communication skills training model for oncologists: a randomised controlled trial. The Lancet 2002; 359:650-656.
– reference: Davis RA, Dunsmuir WTM, Wang Y. On autocorrelation in a Poisson regression model. Biometrika 2000; 87(3):491-505.
– volume: 63
  start-page: 55
  year: 2001
  end-page: 62
  article-title: On repeated measures analysis with misspecified covariance structure
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 63
  start-page: 39
  year: 1997
  end-page: 54
  article-title: An alternative approach to the analysis of longitudinal data via generalized estimating equations
  publication-title: Journal of Statistical Planning and Inference
– volume: 1
  start-page: 215
  year: 1952
  end-page: 253
  article-title: Contributions to the theory of accident proneness: I. An optimistic model of the correlation between light and severe accidents
  publication-title: University of California Publications in Statistics
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  article-title: Approximate inference in generalized linear mixed models
  publication-title: Journal of the American Statistical Association
– volume: 55
  start-page: 688
  year: 1999
  end-page: 698
  article-title: Marginally specified logistic‐normal models for longitudinal binary data
  publication-title: Biometrics
– volume: 47
  start-page: 825
  year: 1991
  end-page: 839
  article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses
  publication-title: Biometrics
– volume: 23
  year: 2004
– volume: 77
  start-page: 848
  issue: 380
  year: 1982
  end-page: 854
  article-title: The effect of two‐stage sampling on ordinary least squares methods
  publication-title: Journal of the American Statistical Association
– volume: 26
  start-page: 549
  year: 1998
  end-page: 565
  article-title: Analysis of interval‐grouped recurrent event data using piecewise constant rate functions
  publication-title: The Canadian Journal of Statistics
– volume: 44
  start-page: 1033
  year: 1988
  end-page: 1048
  article-title: Correlated binary regression with covariates specific to each binary observation
  publication-title: Biometrics
– year: 1996
– volume: 82
  start-page: 407
  year: 1995
  end-page: 410
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
– start-page: 77
  year: 1997
  end-page: 87
– start-page: 158
  year: 1961
  end-page: 168
– volume: 23
  start-page: 939
  year: 1994
  end-page: 951
  article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
  publication-title: Communication in Statistics, Part B: Simulation and computation
– volume: 359
  start-page: 650
  year: 2002
  end-page: 656
  article-title: Efficacy of a cancer research UK communication skills training model for oncologists: a randomised controlled trial
  publication-title: The Lancet
– volume: 48
  start-page: 233
  year: 1993
  end-page: 243
  article-title: Generalized linear models: a pseudo‐likelihood approach
  publication-title: Journal of Statistical Computation and Simulation
– volume: 1
  start-page: 105
  year: 1961
  end-page: 123
– volume: 80
  start-page: 141
  year: 1993
  end-page: 151
  article-title: A likelihood based method for analysing longitudinal binary responses
  publication-title: Biometrika
– volume: 51
  start-page: 241
  year: 1964
  end-page: 245
  article-title: Estimation for the bivariate poisson distribution
  publication-title: Biometrika
– start-page: 219
  year: 1999
  end-page: 224
  article-title: Model misspecification and different between‐ and within‐cluster covariate effects in the analysis of correlated data
  publication-title: Proceedings of the Biometrics Section of the American Statistical Association
– volume: 21
  start-page: 113
  year: 1972
  end-page: 120
  article-title: The analysis of multivariate binary data
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 54
  start-page: 3
  year: 1992
  end-page: 40
  article-title: Multivariate regression analyses for categorical data (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 8
  start-page: 284
  year: 1993
  end-page: 309
  article-title: Regression models for discrete longitudinal responses
  publication-title: Statistical Science
– volume: 7
  start-page: 340
  year: 1951
  end-page: 432
  article-title: Accident statistics and the concept of accident proneness
  publication-title: Biometrics
– volume: 87
  start-page: 491
  issue: 3
  year: 2000
  end-page: 505
  article-title: On autocorrelation in a Poisson regression model
  publication-title: Biometrika
– volume: 90
  start-page: 29
  year: 2003
  end-page: 41
  article-title: Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance
  publication-title: Biometrika
– volume: 46
  start-page: 657
  year: 1990
  end-page: 671
  article-title: Some covariance models for longitudinal count data with overdispersion
  publication-title: Biometrics
– year: 2002
– volume: 53
  start-page: 678
  year: 1997
  end-page: 689
  article-title: Effect of omitted confounders on the analysis of correlated binary data
  publication-title: Biometrics
– volume: 50
  start-page: 553
  year: 2000
  end-page: 566
  article-title: The medical interaction process system (MIPS): an instrument for analysing interviews of oncologists and patients with cancer
  publication-title: Social Science and Medicine
– volume: 44
  start-page: 197
  year: 1998
  end-page: 209
  article-title: Mixed Poisson likelihood regression models for longitudinal interval count data
  publication-title: Biometrics
– volume: 75
  start-page: 621
  issue: 4
  year: 1998
  end-page: 629
  article-title: A regression model for time series of counts
  publication-title: Biometrika
– volume: 77
  start-page: 642
  year: 1990
  end-page: 648
  article-title: Correlated binary regression using a quadratic exponential model
  publication-title: Biometrika
– volume: 88
  start-page: 287
  year: 2000
  end-page: 290
  article-title: Modelling and generating correlated binary variables
  publication-title: Biometrika
– volume: 54
  start-page: 638
  year: 1998
  end-page: 645
  article-title: Between‐ and within‐cluster covariate effects in the analysis of cluster data
  publication-title: Biometrics
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– year: 1991
– volume: 76
  start-page: 145
  year: 1999
  end-page: 161
  article-title: On eliminating the asymptotic bias in the quasi‐least squares estimate of the correlation parameter
  publication-title: Journal of Statistical Planning and Inference
– volume: 13
  start-page: 2219
  year: 1994
  end-page: 2231
  article-title: Testing for omitted variables and non‐linearity in regression models for longitudinal data
  publication-title: Statistics in Medicine
– volume: 78
  start-page: 153
  issue: 1
  year: 1991
  end-page: 160
  article-title: Generalized estimating equations for correlated binary data: using the odds ratios as a measure of association
  publication-title: Biometrika
– volume: 63
  start-page: 39
  year: 1997
  ident: 10.1002/sim.2121-BIB19
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(96)00203-0
– start-page: 158
  volume-title: Studies in Item Analysis and Prediction
  year: 1961
  ident: 10.1002/sim.2121-BIB9
– volume-title: Statistical Methods for the Analysis of Repeated Measurements
  year: 2002
  ident: 10.1002/sim.2121-BIB17
  doi: 10.1007/b97287
– volume: 26
  start-page: 549
  year: 1998
  ident: 10.1002/sim.2121-BIB31
  publication-title: The Canadian Journal of Statistics
  doi: 10.2307/3315717
– volume: 73
  start-page: 13
  year: 1986
  ident: 10.1002/sim.2121-BIB2
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 80
  start-page: 141
  year: 1993
  ident: 10.1002/sim.2121-BIB11
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.141
– volume-title: Estimating Equations for Mixed Poisson Models
  year: 1991
  ident: 10.1002/sim.2121-BIB35
– volume: 46
  start-page: 657
  year: 1990
  ident: 10.1002/sim.2121-BIB38
  publication-title: Biometrics
  doi: 10.2307/2532086
– volume: 8
  start-page: 284
  year: 1993
  ident: 10.1002/sim.2121-BIB1
  publication-title: Statistical Science
  doi: 10.1214/ss/1177010899
– volume-title: Practical Longitudinal Data Analysis
  year: 1996
  ident: 10.1002/sim.2121-BIB16
  doi: 10.1007/978-1-4899-3033-0
– volume: 47
  start-page: 825
  year: 1991
  ident: 10.1002/sim.2121-BIB5
  publication-title: Biometrics
  doi: 10.2307/2532642
– volume: 88
  start-page: 9
  year: 1993
  ident: 10.1002/sim.2121-BIB39
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1993.10594284
– volume: 54
  start-page: 638
  year: 1998
  ident: 10.1002/sim.2121-BIB26
  publication-title: Biometrics
  doi: 10.2307/3109770
– volume: 77
  start-page: 848
  year: 1982
  ident: 10.1002/sim.2121-BIB29
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1982.10477897
– volume: 88
  start-page: 287
  year: 2000
  ident: 10.1002/sim.2121-BIB7
  publication-title: Biometrika
  doi: 10.1093/biomet/88.1.287
– volume: 21
  start-page: 113
  year: 1972
  ident: 10.1002/sim.2121-BIB10
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 90
  start-page: 29
  year: 2003
  ident: 10.1002/sim.2121-BIB18
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.29
– volume: 44
  start-page: 1033
  year: 1988
  ident: 10.1002/sim.2121-BIB3
  publication-title: Biometrics
  doi: 10.2307/2531733
– volume: 44
  start-page: 197
  year: 1998
  ident: 10.1002/sim.2121-BIB34
  publication-title: Biometrics
  doi: 10.2307/2531907
– start-page: 77
  volume-title: Modelling Longitudinal and Spatially Correlated Data
  year: 1997
  ident: 10.1002/sim.2121-BIB28
  doi: 10.1007/978-1-4612-0699-6_7
– volume: 76
  start-page: 145
  year: 1999
  ident: 10.1002/sim.2121-BIB20
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(98)00180-3
– volume: 50
  start-page: 553
  year: 2000
  ident: 10.1002/sim.2121-BIB25
  publication-title: Social Science and Medicine
  doi: 10.1016/S0277-9536(99)00308-1
– volume: 1
  start-page: 105
  volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
  year: 1961
  ident: 10.1002/sim.2121-BIB23
– volume: 55
  start-page: 688
  year: 1999
  ident: 10.1002/sim.2121-BIB41
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00688.x
– volume: 78
  start-page: 153
  year: 1991
  ident: 10.1002/sim.2121-BIB8
  publication-title: Biometrika
  doi: 10.1093/biomet/78.1.153
– volume: 54
  start-page: 3
  year: 1992
  ident: 10.1002/sim.2121-BIB6
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1992.tb01862.x
– volume: 87
  start-page: 491
  year: 2000
  ident: 10.1002/sim.2121-BIB37
  publication-title: Biometrika
  doi: 10.1093/biomet/87.3.491
– volume: 359
  start-page: 650
  year: 2002
  ident: 10.1002/sim.2121-BIB24
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(02)07810-8
– start-page: 219
  year: 1999
  ident: 10.1002/sim.2121-BIB27
  publication-title: Proceedings of the Biometrics Section of the American Statistical Association
– volume: 48
  start-page: 233
  year: 1993
  ident: 10.1002/sim.2121-BIB40
  publication-title: Journal of Statistical Computation and Simulation
  doi: 10.1080/00949659308811554
– volume: 23
  start-page: 939
  year: 1994
  ident: 10.1002/sim.2121-BIB30
  publication-title: Communication in Statistics, Part B: Simulation and computation
  doi: 10.1080/03610919408813210
– volume: 63
  start-page: 55
  year: 2001
  ident: 10.1002/sim.2121-BIB15
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00275
– volume: 53
  start-page: 678
  year: 1997
  ident: 10.1002/sim.2121-BIB42
  publication-title: Biometrics
  doi: 10.2307/2533967
– volume: 51
  start-page: 241
  year: 1964
  ident: 10.1002/sim.2121-BIB13
  publication-title: Biometrika
  doi: 10.1093/biomet/51.1-2.241
– volume: 1
  start-page: 215
  year: 1952
  ident: 10.1002/sim.2121-BIB22
  publication-title: University of California Publications in Statistics
– volume: 23
  volume-title: Handbook of Statistics
  year: 2004
  ident: 10.1002/sim.2121-BIB33
– volume: 82
  start-page: 407
  year: 1995
  ident: 10.1002/sim.2121-BIB14
  publication-title: Biometrika
  doi: 10.1093/biomet/82.2.407
– volume: 7
  start-page: 340
  year: 1951
  ident: 10.1002/sim.2121-BIB21
  publication-title: Biometrics
  doi: 10.2307/3001656
– volume-title: Analysis of Longitudinal Data
  year: 2002
  ident: 10.1002/sim.2121-BIB12
  doi: 10.1093/oso/9780198524847.001.0001
– volume: 13
  start-page: 2219
  year: 1994
  ident: 10.1002/sim.2121-BIB32
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780132104
– volume: 77
  start-page: 642
  year: 1990
  ident: 10.1002/sim.2121-BIB4
  publication-title: Biometrika
  doi: 10.1093/biomet/77.3.642
– volume: 75
  start-page: 621
  year: 1998
  ident: 10.1002/sim.2121-BIB36
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.621
SSID ssj0011527
Score 1.9322214
Snippet A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2557
SubjectTerms Arthritis
Arthritis, Psoriatic - pathology
Cluster Analysis
Communication
Correlation analysis
Female
generalized estimating equations
Hand Deformities - pathology
Humans
Joint Diseases - pathology
Male
marginal model
Models, Statistical
Multivariate Analysis
multivariate negative binomial model
overdispersed correlated count data
Physician-Patient Relations
Randomized Controlled Trials as Topic - methods
Regression Analysis
subject specific covariates
Title Regression analysis of overdispersed correlated count data with subject specific covariates
URI https://api.istex.fr/ark:/67375/WNG-XXMWDL7B-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.2121
https://www.ncbi.nlm.nih.gov/pubmed/15977293
https://www.proquest.com/docview/223147341
https://www.proquest.com/docview/68086507
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF6kghRE21PrtbauIPqU6yW3P5JHW22reH2olh70YdmfUlpzpbmI9K_vTDZJqVQQnxLIBCabnd1vZ7_9hpC3UhTOO8-SSRFcwhwsd2AMLBIB4ERzOw4sNATZQ3FwzL7M-KxlVeJZmKgP0SfcMDKa8RoDXJtq-1Y0tDr7OYJxF1c-SNVCPHTUK0elXbVW3KEUMuWd7uw42-5evDMTPcRG_X0fzLyLWptpZ-8pOe0cjmyT81G9MCN7_YeW4_990Qp50qJR-iF2n1XywJcD8mja7rcPyOOY1aPxsNKALCM2jdLOz8jpkf8RWbQl1a22CZ0HiqRQd4YK5JV31GL5jwtAtHhblwuKnFSK6V9a1QazQBRPeyJjCQx-wdId0e9zcrz36fvuQdLWakjsJGdpwgtt8oIbFlyaCSld4MLmLNc5zIaWa8ZsWuRByyCYMADTnOAc0H2wsN4pMjN5QZbKeelfEppLZ5jVjmUZgDkptc9dENoEn8JNKofkfffflG2FzLGexoWKEsyZgoZU2JBD8qa3vIziHffYvGt-fW-gr86R7Ca5OjncV7PZ9OTjV7mj9odko-sbqo3zSgG4SpkEJDAkr_unEKC466JLP68rhbVNAAaD22uxQ926gtp_ALfAhaZb_NVH9e3zFK_r_2q4QZYbiVnMfY9fkaXFVe03ATwtzFYTJjcQ1RW8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9KC1oQH-frrNoVRD_lesntI8FPvtqr3t2H2tIDhWWT3ZXSmpPmIuJf70w2uVKpIH7KQiYw2d3Z_c3s7G8AniuZWWcdj0aZtxG36O7gGphFEsGJEcXQc98kyM7k-Ih_mIv5Grzq7sIEfohVwI0so1mvycApIL1zwRpanXwb4MKLrs8GFfRu_KmDFXdU3NVrpTNKqWLRMc8Ok53uy0t70QZ168-rgOZl3NpsPLu34Euncsg3OR3Uy3xQ_PqDzfE__-k23GwBKXsdZtAdWHNlD65N2yP3HtwIgT0W7iv1YJPgaWB3vgufD9zXkEhbMtPSm7CFZ5QXak-IhLxylhVUAeQMQS0163LJKC2VUQSYVXVOgSBGFz4paQkFfqD3TgD4Hhztvj98O47acg1RMUp5HInM5Gkmcu5tnEilrBeySHlqUtwQC2E4L-Is9UZ5yWWOSM1KIRDg-wJdnizJR_dhvVyU7iGwVNmcF8byJEE8p5RxqfXS5N7F2IhVH152A6eLlsucSmqc6cDCnGjsSE0d2YdnK8nvgb_jCpkXzdivBMz5KeW7KaGPZ3t6Pp8ev5uoN3qvD1vd5NCtqVca8VXMFYKBPmyv3qKN0sGLKd2irjSVN0EkjGo_CDPqQhWi_0PEhSo08-KvOupP-1N6PvpXwW24Pj6cTvRkf_ZxCzYbxlkKhQ8fw_ryvHZPEEst86eNzfwGVHQZ1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-khVIQrefX2WpXEH3K9ZLbj-Sxel5b7R1SLT3ow7LZDymtudJcRPzrO5NNUioVxKcsZAKT3Znd387O_oaQN1Jk1lnHolHmbcQsbHdgDswiAeBEczP0zNcJsjOxf8w-zfm8yarEuzCBH6ILuKFn1PM1Ovil9Ts3pKHl2Y8BzLuw81llYpiiRY-POuqouC3XikeUQsa8JZ4dJjvtl7eWolXs1V934czbsLVedyYPyWmrcUg3OR9Uy3xgfv9B5vh_v7RBHjRwlO4G-3lE7rmiR9amzYF7j9wPYT0abiv1yDqC08Dt_JicHrnvIY22oLohN6ELTzEr1J4hBXnpLDVY_-MCIC02q2JJMSmVYvyXllWOYSCK1z0xZQkEfsLeHeHvE3I8-fjtw37UFGuIzChlccQznacZz5m3cSKktJ4Lk7JUp7AcGq4ZM3GWei29YCIHnGYF5wDvvYENT5bko6dkpVgU7jmhqbQ5M9qyJAE0J6V2qfVC597F0Ihln7xrx02ZhskcC2pcqMDBnCjoSIUd2SevO8nLwN5xh8zbeug7AX11jtlukquT2Z6az6cn40P5Xu31yWZrG6px9FIBuoqZBCjQJ9vdW_BQPHbRhVtUpcLiJoCDQe1nwaBuVEHyP8BboEJtFn_VUX09mOLzxb8KbpO1L-OJOjyYfd4k6zXdLMbBh1tkZXlVuZcApJb5q9pjrgEWGhiP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+analysis+of+overdispersed+correlated+count+data+with+subject+specific+covariates&rft.jtitle=Statistics+in+medicine&rft.au=Solis-Trapala%2C+I.+L.&rft.au=Farewell%2C+V.+T.&rft.date=2005-08-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=24&rft.issue=16&rft.spage=2557&rft.epage=2575&rft_id=info:doi/10.1002%2Fsim.2121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_2121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon