Regression analysis of overdispersed correlated count data with subject specific covariates
A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the es...
Saved in:
Published in | Statistics in medicine Vol. 24; no. 16; pp. 2557 - 2575 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.08.2005
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.2121 |
Cover
Loading…
Abstract | A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within‐ and between‐cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross‐sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. Copyright © 2005 John Wiley & Sons, Ltd. |
---|---|
AbstractList | A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. [PUBLICATION ABSTRACT] A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints.A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within- and between-cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross-sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We emphasise two characteristics of the proposed method: That the correlation structure satisfies the constraints on the second moments and that the estimation of the correlation structure guarantees consistent estimates of the regression coefficients. In addition we extend the mean specification to include within‐ and between‐cluster effects. The method is illustrated through the analysis of data from two studies. In the first study, cross‐sectional count data from a randomised controlled trial are analysed to evaluate the efficacy of a communication skills training programme. The second study involves longitudinal count data which represent counts of damaged hand joints in patients with psoriatic arthritis. Motivated by this study, we generalize our model to accommodate for a subpopulation of patients who are not susceptible to the development of damaged hand joints. Copyright © 2005 John Wiley & Sons, Ltd. |
Author | Solis-Trapala, I. L. Farewell, V. T. |
Author_xml | – sequence: 1 givenname: I. L. surname: Solis-Trapala fullname: Solis-Trapala, I. L. organization: Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas, Guanajuato, Gto., México – sequence: 2 givenname: V. T. surname: Farewell fullname: Farewell, V. T. email: vern.farewell@mrc-bsu.cam.ac.uk organization: MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Cambridge CB2 2SR, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15977293$$D View this record in MEDLINE/PubMed |
BookMark | eNp10d9PFDEQB_CGYOBAE_4Cs_HB8LJH293-2EdBOUkOTAQDCQ9Nt9tqz73t2emC999bPCQR49PMw2cmmfnuoe0hDBahA4KnBGN6BH45pYSSLTQhuBElpkxuowmmQpRcELaL9gAWGBPCqNhBu4Q1QtCmmqDbz_ZrtAA-DIUedL8GD0VwRbizsfOwshFsV5gQo-11-t2OQyo6nXRx79O3AsZ2YU0qMjXeeZPBnY4-W3iJXjjdg331WPfRl9MPVycfy_mn2dnJu3lpKlmTkjW6lQ1ra9cRyoXoHONG1lJLLqRhuq4NaaTTwvGat4yRjjMmJXVGcNnQttpHbzd7VzH8GC0ktfRgbN_rwYYRFJdYcoZFhm-ewUUYY74aFKUVqUVVk4xeP6KxXdpOraJf6rhWf36WwXQDTAwA0TplfNIpfzBF7XtFsHoIReVQ1EMoeeDw2cDTzn9puaH3vrfr_zp1eXb-t_eQ7M8nr-N3xUUlmLq-mKmbm_Pr93NxrGbVLyyOqc8 |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1080_10543406_2017_1333999 crossref_primary_10_3390_d14050320 crossref_primary_10_1007_s00180_015_0599_1 crossref_primary_10_1093_biostatistics_kxs050 crossref_primary_10_1080_00949655_2014_996151 crossref_primary_10_1111_biom_13435 crossref_primary_10_1111_biom_13457 crossref_primary_10_1002_sim_5529 crossref_primary_10_1038_s41393_020_0517_4 crossref_primary_10_1093_biostatistics_kxr005 crossref_primary_10_1002_sim_8676 crossref_primary_10_1016_j_electstud_2024_102849 crossref_primary_10_1016_j_cct_2013_02_003 crossref_primary_10_1146_annurev_statistics_060116_054131 crossref_primary_10_46292_sci21_00062 crossref_primary_10_1007_s00180_015_0589_3 crossref_primary_10_1007_s00184_022_00890_1 crossref_primary_10_1002_sim_3619 crossref_primary_10_1111_biom_13147 crossref_primary_10_1002_ett_3732 crossref_primary_10_1002_bimj_201000076 crossref_primary_10_1002_sim_3032 crossref_primary_10_1002_sim_7074 crossref_primary_10_1016_j_appet_2013_07_012 crossref_primary_10_1080_03610926_2021_1939380 crossref_primary_10_1088_1742_6596_1397_1_012077 |
Cites_doi | 10.1016/S0378-3758(96)00203-0 10.1007/b97287 10.2307/3315717 10.1093/biomet/73.1.13 10.1093/biomet/80.1.141 10.2307/2532086 10.1214/ss/1177010899 10.1007/978-1-4899-3033-0 10.2307/2532642 10.1080/01621459.1993.10594284 10.2307/3109770 10.1080/01621459.1982.10477897 10.1093/biomet/88.1.287 10.1093/biomet/90.1.29 10.2307/2531733 10.2307/2531907 10.1007/978-1-4612-0699-6_7 10.1016/S0378-3758(98)00180-3 10.1016/S0277-9536(99)00308-1 10.1111/j.0006-341X.1999.00688.x 10.1093/biomet/78.1.153 10.1111/j.2517-6161.1992.tb01862.x 10.1093/biomet/87.3.491 10.1016/S0140-6736(02)07810-8 10.1080/00949659308811554 10.1080/03610919408813210 10.1111/1467-9868.00275 10.2307/2533967 10.1093/biomet/51.1-2.241 10.1093/biomet/82.2.407 10.2307/3001656 10.1093/oso/9780198524847.001.0001 10.1002/sim.4780132104 10.1093/biomet/77.3.642 10.1093/biomet/75.4.621 |
ContentType | Journal Article |
Copyright | Copyright © 2005 John Wiley & Sons, Ltd. Copyright 2005 John Wiley & Sons, Ltd Copyright John Wiley and Sons, Limited Aug 30, 2005 |
Copyright_xml | – notice: Copyright © 2005 John Wiley & Sons, Ltd. – notice: Copyright 2005 John Wiley & Sons, Ltd – notice: Copyright John Wiley and Sons, Limited Aug 30, 2005 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.2121 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2575 |
ExternalDocumentID | 883572881 15977293 10_1002_sim_2121 SIM2121 ark_67375_WNG_XXMWDL7B_G |
Genre | article Journal Article Feature |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 YHZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3841-59ab895b4fd12677df56c848a8678c5a44c198fa7f646b551d655882fc76892b3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Fri Jul 11 05:28:08 EDT 2025 Fri Jul 25 03:59:45 EDT 2025 Thu May 22 04:21:10 EDT 2025 Tue Jul 01 04:32:58 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Wed Jan 22 16:59:07 EST 2025 Wed Oct 30 09:51:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 Copyright 2005 John Wiley & Sons, Ltd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3841-59ab895b4fd12677df56c848a8678c5a44c198fa7f646b551d655882fc76892b3 |
Notes | ArticleID:SIM2121 istex:529984EDB91B774DF5C742999F54FF12525D78C7 ark:/67375/WNG-XXMWDL7B-G SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 15977293 |
PQID | 223147341 |
PQPubID | 48361 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_68086507 proquest_journals_223147341 pubmed_primary_15977293 crossref_citationtrail_10_1002_sim_2121 crossref_primary_10_1002_sim_2121 wiley_primary_10_1002_sim_2121_SIM2121 istex_primary_ark_67375_WNG_XXMWDL7B_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-08-30 30 August 2005 2005-Aug-30 20050830 |
PublicationDateYYYYMMDD | 2005-08-30 |
PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-30 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2005 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002. Liang KY, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B 1992; 54:3-40. Lipsitz SR, Laird NM, Harrington DP. Generalized estimating equations for correlated binary data: using the odds ratios as a measure of association. Biometrika 1991; 78(1):153-160. Chao W, Palta M, Young T. Effect of omitted confounders on the analysis of correlated binary data. Biometrics 1997; 53:678-689. Fitzmaurice GM, Laird NM. A likelihood based method for analysing longitudinal binary responses. Biometrika 1993; 80:141-151. Crowder M. On repeated measures analysis with misspecified covariance structure. Journal of the Royal Statistical Society, Series B 2001; 63:55-62. Arbous AG, Kerrich JE. Accident statistics and the concept of accident proneness. Biometrics 1951; 7:340-432. Lawless JF, Zhan M. Analysis of interval-grouped recurrent event data using piecewise constant rate functions. The Canadian Journal of Statistics 1998; 26:549-565. Shen L, Palta M, Shao J, Park S. Model misspecification and different between- and within-cluster covariate effects in the analysis of correlated data. Proceedings of the Biometrics Section of the American Statistical Association 1999; 219-224. Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048. Hand DJ, Crowder MJ. Practical Longitudinal Data Analysis. Chapman & Hall: London, 1996. Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of cluster data. Biometrics 1998; 54:638-645. Fallowfield L, Jenkins V, Farewell V, Saul J, Duffy A, Eves R. Efficacy of a cancer research UK communication skills training model for oncologists: a randomised controlled trial. The Lancet 2002; 359:650-656. Zeger SL. A regression model for time series of counts. Biometrika 1998; 75(4):621-629. Heagerty PJ. Marginally specified logistic-normal models for longitudinal binary data. Biometrics 1999; 55:688-698. Ford S, Hall A, Ratcliffe D, Fallowfield L. The medical interaction process system (MIPS): an instrument for analysing interviews of oncologists and patients with cancer. Social Science and Medicine 2000; 50:553-566. Scott AJ, Holt D. The effect of two-stage sampling on ordinary least squares methods. Journal of the American Statistical Association 1982; 77(380):848-854. Aguirre-Hernández R, Farewell VT. Handbook of Statistics, vol. 23, Appraisal of Models for the Study of Disease Progression in Psoriatic Arthritis. Elsevier: New York, 2004. Palta M, Yao TJ, Velu R. Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 1994; 13:2219-2231. Fitzmaurice GM, Laird NM, Rotnitzky AG. Regression models for discrete longitudinal responses. Statistical Science 1993; 8:284-309. Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410. Chaganty RN, Shults J. On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter. Journal of Statistical Planning and Inference 1999; 76:145-161. Zhao LP, Prentice RL. Correlated binary regression using a quadratic exponential model. Biometrika 1990; 77:642-648. Thall PF, Vail SC. Some covariance models for longitudinal count data with overdispersion. Biometrics 1990; 46:657-671. Breslow N, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 1993; 88:9-25. Prentice RL, Zhao LP. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 1991; 47:825-839. Oman SD, Zucker DM. Modelling and generating correlated binary variables. Biometrika 2000; 88:287-290. Wolfinger R, O'Connell M. Generalized linear models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation 1993; 48:233-243. Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communication in Statistics, Part B: Simulation and computation 1994; 23:939-951. Chaganty RN. An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference 1997; 63:39-54. Thall PF. Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 1998; 44:197-209. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22. Davis CS. Statistical Methods for the Analysis of Repeated Measurements. Springer: New York, 2002. Holgate P. Estimation for the bivariate poisson distribution. Biometrika 1964; 51:241-245. Cox DR. The analysis of multivariate binary data. Journal of the Royal Statistical Society, Series C 1972; 21:113-120. Davis RA, Dunsmuir WTM, Wang Y. On autocorrelation in a Poisson regression model. Biometrika 2000; 87(3):491-505. Wang YG, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29-41. Bates GE, Neyman J. Contributions to the theory of accident proneness: I. An optimistic model of the correlation between light and severe accidents. University of California Publications in Statistics 1952; 1:215-253. 1993; 48 1993; 8 1998; 26 1990; 77 1986; 73 1991; 78 1997; 63 2000; 87 1993; 88 2000; 88 2004; 23 1982; 77 2002; 359 2000; 50 1994; 23 1997 1996 1972; 21 2002 1991 1992; 54 1951; 7 2001; 63 1998; 44 1999 1995; 82 2003; 90 1991; 47 1990; 46 1997; 53 1961; 1 1988; 44 1999; 55 1999; 76 1994; 13 1961 1993; 80 1998; 54 1998; 75 1964; 51 1952; 1 Liang (10.1002/sim.2121-BIB6) 1992; 54 Dean (10.1002/sim.2121-BIB35) 1991 Crowder (10.1002/sim.2121-BIB15) 2001; 63 Davis (10.1002/sim.2121-BIB17) 2002 Zeger (10.1002/sim.2121-BIB36) 1998; 75 Neuhaus (10.1002/sim.2121-BIB26) 1998; 54 Zhao (10.1002/sim.2121-BIB4) 1990; 77 Thall (10.1002/sim.2121-BIB38) 1990; 46 Bates (10.1002/sim.2121-BIB22) 1952; 1 Chao (10.1002/sim.2121-BIB42) 1997; 53 Scott (10.1002/sim.2121-BIB29) 1982; 77 Liang (10.1002/sim.2121-BIB2) 1986; 73 Aguirre-Hernández (10.1002/sim.2121-BIB33) 2004; 23 Fitzmaurice (10.1002/sim.2121-BIB11) 1993; 80 Davis (10.1002/sim.2121-BIB37) 2000; 87 Holgate (10.1002/sim.2121-BIB13) 1964; 51 Pepe (10.1002/sim.2121-BIB30) 1994; 23 Palta (10.1002/sim.2121-BIB32) 1994; 13 Chaganty (10.1002/sim.2121-BIB20) 1999; 76 Oman (10.1002/sim.2121-BIB7) 2000; 88 Chaganty (10.1002/sim.2121-BIB19) 1997; 63 Breslow (10.1002/sim.2121-BIB39) 1993; 88 Fitzmaurice (10.1002/sim.2121-BIB1) 1993; 8 Bahadur (10.1002/sim.2121-BIB9) 1961 Arbous (10.1002/sim.2121-BIB21) 1951; 7 Fallowfield (10.1002/sim.2121-BIB24) 2002; 359 Ford (10.1002/sim.2121-BIB25) 2000; 50 Cox (10.1002/sim.2121-BIB23) 1961; 1 Crowder (10.1002/sim.2121-BIB14) 1995; 82 Thall (10.1002/sim.2121-BIB34) 1998; 44 Cox (10.1002/sim.2121-BIB10) 1972; 21 Hand (10.1002/sim.2121-BIB16) 1996 Shen (10.1002/sim.2121-BIB27) 1999 Prentice (10.1002/sim.2121-BIB3) 1988; 44 Wolfinger (10.1002/sim.2121-BIB40) 1993; 48 Palta (10.1002/sim.2121-BIB28) 1997 Wang (10.1002/sim.2121-BIB18) 2003; 90 Lawless (10.1002/sim.2121-BIB31) 1998; 26 Diggle (10.1002/sim.2121-BIB12) 2002 Lipsitz (10.1002/sim.2121-BIB8) 1991; 78 Prentice (10.1002/sim.2121-BIB5) 1991; 47 Heagerty (10.1002/sim.2121-BIB41) 1999; 55 |
References_xml | – reference: Zhao LP, Prentice RL. Correlated binary regression using a quadratic exponential model. Biometrika 1990; 77:642-648. – reference: Thall PF. Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 1998; 44:197-209. – reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22. – reference: Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048. – reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410. – reference: Cox DR. The analysis of multivariate binary data. Journal of the Royal Statistical Society, Series C 1972; 21:113-120. – reference: Chaganty RN. An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference 1997; 63:39-54. – reference: Arbous AG, Kerrich JE. Accident statistics and the concept of accident proneness. Biometrics 1951; 7:340-432. – reference: Hand DJ, Crowder MJ. Practical Longitudinal Data Analysis. Chapman & Hall: London, 1996. – reference: Shen L, Palta M, Shao J, Park S. Model misspecification and different between- and within-cluster covariate effects in the analysis of correlated data. Proceedings of the Biometrics Section of the American Statistical Association 1999; 219-224. – reference: Wolfinger R, O'Connell M. Generalized linear models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation 1993; 48:233-243. – reference: Holgate P. Estimation for the bivariate poisson distribution. Biometrika 1964; 51:241-245. – reference: Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communication in Statistics, Part B: Simulation and computation 1994; 23:939-951. – reference: Heagerty PJ. Marginally specified logistic-normal models for longitudinal binary data. Biometrics 1999; 55:688-698. – reference: Chao W, Palta M, Young T. Effect of omitted confounders on the analysis of correlated binary data. Biometrics 1997; 53:678-689. – reference: Prentice RL, Zhao LP. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 1991; 47:825-839. – reference: Lawless JF, Zhan M. Analysis of interval-grouped recurrent event data using piecewise constant rate functions. The Canadian Journal of Statistics 1998; 26:549-565. – reference: Fitzmaurice GM, Laird NM, Rotnitzky AG. Regression models for discrete longitudinal responses. Statistical Science 1993; 8:284-309. – reference: Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data (2nd edn). Oxford University Press: New York, 2002. – reference: Crowder M. On repeated measures analysis with misspecified covariance structure. Journal of the Royal Statistical Society, Series B 2001; 63:55-62. – reference: Aguirre-Hernández R, Farewell VT. Handbook of Statistics, vol. 23, Appraisal of Models for the Study of Disease Progression in Psoriatic Arthritis. Elsevier: New York, 2004. – reference: Bates GE, Neyman J. Contributions to the theory of accident proneness: I. An optimistic model of the correlation between light and severe accidents. University of California Publications in Statistics 1952; 1:215-253. – reference: Scott AJ, Holt D. The effect of two-stage sampling on ordinary least squares methods. Journal of the American Statistical Association 1982; 77(380):848-854. – reference: Oman SD, Zucker DM. Modelling and generating correlated binary variables. Biometrika 2000; 88:287-290. – reference: Davis CS. Statistical Methods for the Analysis of Repeated Measurements. Springer: New York, 2002. – reference: Wang YG, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29-41. – reference: Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of cluster data. Biometrics 1998; 54:638-645. – reference: Zeger SL. A regression model for time series of counts. Biometrika 1998; 75(4):621-629. – reference: Breslow N, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 1993; 88:9-25. – reference: Ford S, Hall A, Ratcliffe D, Fallowfield L. The medical interaction process system (MIPS): an instrument for analysing interviews of oncologists and patients with cancer. Social Science and Medicine 2000; 50:553-566. – reference: Liang KY, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B 1992; 54:3-40. – reference: Thall PF, Vail SC. Some covariance models for longitudinal count data with overdispersion. Biometrics 1990; 46:657-671. – reference: Lipsitz SR, Laird NM, Harrington DP. Generalized estimating equations for correlated binary data: using the odds ratios as a measure of association. Biometrika 1991; 78(1):153-160. – reference: Fitzmaurice GM, Laird NM. A likelihood based method for analysing longitudinal binary responses. Biometrika 1993; 80:141-151. – reference: Chaganty RN, Shults J. On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter. Journal of Statistical Planning and Inference 1999; 76:145-161. – reference: Palta M, Yao TJ, Velu R. Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 1994; 13:2219-2231. – reference: Fallowfield L, Jenkins V, Farewell V, Saul J, Duffy A, Eves R. Efficacy of a cancer research UK communication skills training model for oncologists: a randomised controlled trial. The Lancet 2002; 359:650-656. – reference: Davis RA, Dunsmuir WTM, Wang Y. On autocorrelation in a Poisson regression model. Biometrika 2000; 87(3):491-505. – volume: 63 start-page: 55 year: 2001 end-page: 62 article-title: On repeated measures analysis with misspecified covariance structure publication-title: Journal of the Royal Statistical Society, Series B – volume: 63 start-page: 39 year: 1997 end-page: 54 article-title: An alternative approach to the analysis of longitudinal data via generalized estimating equations publication-title: Journal of Statistical Planning and Inference – volume: 1 start-page: 215 year: 1952 end-page: 253 article-title: Contributions to the theory of accident proneness: I. An optimistic model of the correlation between light and severe accidents publication-title: University of California Publications in Statistics – volume: 88 start-page: 9 year: 1993 end-page: 25 article-title: Approximate inference in generalized linear mixed models publication-title: Journal of the American Statistical Association – volume: 55 start-page: 688 year: 1999 end-page: 698 article-title: Marginally specified logistic‐normal models for longitudinal binary data publication-title: Biometrics – volume: 47 start-page: 825 year: 1991 end-page: 839 article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses publication-title: Biometrics – volume: 23 year: 2004 – volume: 77 start-page: 848 issue: 380 year: 1982 end-page: 854 article-title: The effect of two‐stage sampling on ordinary least squares methods publication-title: Journal of the American Statistical Association – volume: 26 start-page: 549 year: 1998 end-page: 565 article-title: Analysis of interval‐grouped recurrent event data using piecewise constant rate functions publication-title: The Canadian Journal of Statistics – volume: 44 start-page: 1033 year: 1988 end-page: 1048 article-title: Correlated binary regression with covariates specific to each binary observation publication-title: Biometrics – year: 1996 – volume: 82 start-page: 407 year: 1995 end-page: 410 article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures publication-title: Biometrika – start-page: 77 year: 1997 end-page: 87 – start-page: 158 year: 1961 end-page: 168 – volume: 23 start-page: 939 year: 1994 end-page: 951 article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data publication-title: Communication in Statistics, Part B: Simulation and computation – volume: 359 start-page: 650 year: 2002 end-page: 656 article-title: Efficacy of a cancer research UK communication skills training model for oncologists: a randomised controlled trial publication-title: The Lancet – volume: 48 start-page: 233 year: 1993 end-page: 243 article-title: Generalized linear models: a pseudo‐likelihood approach publication-title: Journal of Statistical Computation and Simulation – volume: 1 start-page: 105 year: 1961 end-page: 123 – volume: 80 start-page: 141 year: 1993 end-page: 151 article-title: A likelihood based method for analysing longitudinal binary responses publication-title: Biometrika – volume: 51 start-page: 241 year: 1964 end-page: 245 article-title: Estimation for the bivariate poisson distribution publication-title: Biometrika – start-page: 219 year: 1999 end-page: 224 article-title: Model misspecification and different between‐ and within‐cluster covariate effects in the analysis of correlated data publication-title: Proceedings of the Biometrics Section of the American Statistical Association – volume: 21 start-page: 113 year: 1972 end-page: 120 article-title: The analysis of multivariate binary data publication-title: Journal of the Royal Statistical Society, Series C – volume: 54 start-page: 3 year: 1992 end-page: 40 article-title: Multivariate regression analyses for categorical data (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 8 start-page: 284 year: 1993 end-page: 309 article-title: Regression models for discrete longitudinal responses publication-title: Statistical Science – volume: 7 start-page: 340 year: 1951 end-page: 432 article-title: Accident statistics and the concept of accident proneness publication-title: Biometrics – volume: 87 start-page: 491 issue: 3 year: 2000 end-page: 505 article-title: On autocorrelation in a Poisson regression model publication-title: Biometrika – volume: 90 start-page: 29 year: 2003 end-page: 41 article-title: Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance publication-title: Biometrika – volume: 46 start-page: 657 year: 1990 end-page: 671 article-title: Some covariance models for longitudinal count data with overdispersion publication-title: Biometrics – year: 2002 – volume: 53 start-page: 678 year: 1997 end-page: 689 article-title: Effect of omitted confounders on the analysis of correlated binary data publication-title: Biometrics – volume: 50 start-page: 553 year: 2000 end-page: 566 article-title: The medical interaction process system (MIPS): an instrument for analysing interviews of oncologists and patients with cancer publication-title: Social Science and Medicine – volume: 44 start-page: 197 year: 1998 end-page: 209 article-title: Mixed Poisson likelihood regression models for longitudinal interval count data publication-title: Biometrics – volume: 75 start-page: 621 issue: 4 year: 1998 end-page: 629 article-title: A regression model for time series of counts publication-title: Biometrika – volume: 77 start-page: 642 year: 1990 end-page: 648 article-title: Correlated binary regression using a quadratic exponential model publication-title: Biometrika – volume: 88 start-page: 287 year: 2000 end-page: 290 article-title: Modelling and generating correlated binary variables publication-title: Biometrika – volume: 54 start-page: 638 year: 1998 end-page: 645 article-title: Between‐ and within‐cluster covariate effects in the analysis of cluster data publication-title: Biometrics – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – year: 1991 – volume: 76 start-page: 145 year: 1999 end-page: 161 article-title: On eliminating the asymptotic bias in the quasi‐least squares estimate of the correlation parameter publication-title: Journal of Statistical Planning and Inference – volume: 13 start-page: 2219 year: 1994 end-page: 2231 article-title: Testing for omitted variables and non‐linearity in regression models for longitudinal data publication-title: Statistics in Medicine – volume: 78 start-page: 153 issue: 1 year: 1991 end-page: 160 article-title: Generalized estimating equations for correlated binary data: using the odds ratios as a measure of association publication-title: Biometrika – volume: 63 start-page: 39 year: 1997 ident: 10.1002/sim.2121-BIB19 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/S0378-3758(96)00203-0 – start-page: 158 volume-title: Studies in Item Analysis and Prediction year: 1961 ident: 10.1002/sim.2121-BIB9 – volume-title: Statistical Methods for the Analysis of Repeated Measurements year: 2002 ident: 10.1002/sim.2121-BIB17 doi: 10.1007/b97287 – volume: 26 start-page: 549 year: 1998 ident: 10.1002/sim.2121-BIB31 publication-title: The Canadian Journal of Statistics doi: 10.2307/3315717 – volume: 73 start-page: 13 year: 1986 ident: 10.1002/sim.2121-BIB2 publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 80 start-page: 141 year: 1993 ident: 10.1002/sim.2121-BIB11 publication-title: Biometrika doi: 10.1093/biomet/80.1.141 – volume-title: Estimating Equations for Mixed Poisson Models year: 1991 ident: 10.1002/sim.2121-BIB35 – volume: 46 start-page: 657 year: 1990 ident: 10.1002/sim.2121-BIB38 publication-title: Biometrics doi: 10.2307/2532086 – volume: 8 start-page: 284 year: 1993 ident: 10.1002/sim.2121-BIB1 publication-title: Statistical Science doi: 10.1214/ss/1177010899 – volume-title: Practical Longitudinal Data Analysis year: 1996 ident: 10.1002/sim.2121-BIB16 doi: 10.1007/978-1-4899-3033-0 – volume: 47 start-page: 825 year: 1991 ident: 10.1002/sim.2121-BIB5 publication-title: Biometrics doi: 10.2307/2532642 – volume: 88 start-page: 9 year: 1993 ident: 10.1002/sim.2121-BIB39 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1993.10594284 – volume: 54 start-page: 638 year: 1998 ident: 10.1002/sim.2121-BIB26 publication-title: Biometrics doi: 10.2307/3109770 – volume: 77 start-page: 848 year: 1982 ident: 10.1002/sim.2121-BIB29 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1982.10477897 – volume: 88 start-page: 287 year: 2000 ident: 10.1002/sim.2121-BIB7 publication-title: Biometrika doi: 10.1093/biomet/88.1.287 – volume: 21 start-page: 113 year: 1972 ident: 10.1002/sim.2121-BIB10 publication-title: Journal of the Royal Statistical Society, Series C – volume: 90 start-page: 29 year: 2003 ident: 10.1002/sim.2121-BIB18 publication-title: Biometrika doi: 10.1093/biomet/90.1.29 – volume: 44 start-page: 1033 year: 1988 ident: 10.1002/sim.2121-BIB3 publication-title: Biometrics doi: 10.2307/2531733 – volume: 44 start-page: 197 year: 1998 ident: 10.1002/sim.2121-BIB34 publication-title: Biometrics doi: 10.2307/2531907 – start-page: 77 volume-title: Modelling Longitudinal and Spatially Correlated Data year: 1997 ident: 10.1002/sim.2121-BIB28 doi: 10.1007/978-1-4612-0699-6_7 – volume: 76 start-page: 145 year: 1999 ident: 10.1002/sim.2121-BIB20 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/S0378-3758(98)00180-3 – volume: 50 start-page: 553 year: 2000 ident: 10.1002/sim.2121-BIB25 publication-title: Social Science and Medicine doi: 10.1016/S0277-9536(99)00308-1 – volume: 1 start-page: 105 volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability year: 1961 ident: 10.1002/sim.2121-BIB23 – volume: 55 start-page: 688 year: 1999 ident: 10.1002/sim.2121-BIB41 publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00688.x – volume: 78 start-page: 153 year: 1991 ident: 10.1002/sim.2121-BIB8 publication-title: Biometrika doi: 10.1093/biomet/78.1.153 – volume: 54 start-page: 3 year: 1992 ident: 10.1002/sim.2121-BIB6 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1992.tb01862.x – volume: 87 start-page: 491 year: 2000 ident: 10.1002/sim.2121-BIB37 publication-title: Biometrika doi: 10.1093/biomet/87.3.491 – volume: 359 start-page: 650 year: 2002 ident: 10.1002/sim.2121-BIB24 publication-title: The Lancet doi: 10.1016/S0140-6736(02)07810-8 – start-page: 219 year: 1999 ident: 10.1002/sim.2121-BIB27 publication-title: Proceedings of the Biometrics Section of the American Statistical Association – volume: 48 start-page: 233 year: 1993 ident: 10.1002/sim.2121-BIB40 publication-title: Journal of Statistical Computation and Simulation doi: 10.1080/00949659308811554 – volume: 23 start-page: 939 year: 1994 ident: 10.1002/sim.2121-BIB30 publication-title: Communication in Statistics, Part B: Simulation and computation doi: 10.1080/03610919408813210 – volume: 63 start-page: 55 year: 2001 ident: 10.1002/sim.2121-BIB15 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00275 – volume: 53 start-page: 678 year: 1997 ident: 10.1002/sim.2121-BIB42 publication-title: Biometrics doi: 10.2307/2533967 – volume: 51 start-page: 241 year: 1964 ident: 10.1002/sim.2121-BIB13 publication-title: Biometrika doi: 10.1093/biomet/51.1-2.241 – volume: 1 start-page: 215 year: 1952 ident: 10.1002/sim.2121-BIB22 publication-title: University of California Publications in Statistics – volume: 23 volume-title: Handbook of Statistics year: 2004 ident: 10.1002/sim.2121-BIB33 – volume: 82 start-page: 407 year: 1995 ident: 10.1002/sim.2121-BIB14 publication-title: Biometrika doi: 10.1093/biomet/82.2.407 – volume: 7 start-page: 340 year: 1951 ident: 10.1002/sim.2121-BIB21 publication-title: Biometrics doi: 10.2307/3001656 – volume-title: Analysis of Longitudinal Data year: 2002 ident: 10.1002/sim.2121-BIB12 doi: 10.1093/oso/9780198524847.001.0001 – volume: 13 start-page: 2219 year: 1994 ident: 10.1002/sim.2121-BIB32 publication-title: Statistics in Medicine doi: 10.1002/sim.4780132104 – volume: 77 start-page: 642 year: 1990 ident: 10.1002/sim.2121-BIB4 publication-title: Biometrika doi: 10.1093/biomet/77.3.642 – volume: 75 start-page: 621 year: 1998 ident: 10.1002/sim.2121-BIB36 publication-title: Biometrika doi: 10.1093/biomet/75.4.621 |
SSID | ssj0011527 |
Score | 1.9322214 |
Snippet | A robust likelihood approach for the analysis of overdispersed correlated count data that takes into account cluster varying covariates is proposed. We... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2557 |
SubjectTerms | Arthritis Arthritis, Psoriatic - pathology Cluster Analysis Communication Correlation analysis Female generalized estimating equations Hand Deformities - pathology Humans Joint Diseases - pathology Male marginal model Models, Statistical Multivariate Analysis multivariate negative binomial model overdispersed correlated count data Physician-Patient Relations Randomized Controlled Trials as Topic - methods Regression Analysis subject specific covariates |
Title | Regression analysis of overdispersed correlated count data with subject specific covariates |
URI | https://api.istex.fr/ark:/67375/WNG-XXMWDL7B-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.2121 https://www.ncbi.nlm.nih.gov/pubmed/15977293 https://www.proquest.com/docview/223147341 https://www.proquest.com/docview/68086507 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF6kghRE21PrtbauIPqU6yW3P5JHW22reH2olh70YdmfUlpzpbmI9K_vTDZJqVQQnxLIBCabnd1vZ7_9hpC3UhTOO8-SSRFcwhwsd2AMLBIB4ERzOw4sNATZQ3FwzL7M-KxlVeJZmKgP0SfcMDKa8RoDXJtq-1Y0tDr7OYJxF1c-SNVCPHTUK0elXbVW3KEUMuWd7uw42-5evDMTPcRG_X0fzLyLWptpZ-8pOe0cjmyT81G9MCN7_YeW4_990Qp50qJR-iF2n1XywJcD8mja7rcPyOOY1aPxsNKALCM2jdLOz8jpkf8RWbQl1a22CZ0HiqRQd4YK5JV31GL5jwtAtHhblwuKnFSK6V9a1QazQBRPeyJjCQx-wdId0e9zcrz36fvuQdLWakjsJGdpwgtt8oIbFlyaCSld4MLmLNc5zIaWa8ZsWuRByyCYMADTnOAc0H2wsN4pMjN5QZbKeelfEppLZ5jVjmUZgDkptc9dENoEn8JNKofkfffflG2FzLGexoWKEsyZgoZU2JBD8qa3vIziHffYvGt-fW-gr86R7Ca5OjncV7PZ9OTjV7mj9odko-sbqo3zSgG4SpkEJDAkr_unEKC466JLP68rhbVNAAaD22uxQ926gtp_ALfAhaZb_NVH9e3zFK_r_2q4QZYbiVnMfY9fkaXFVe03ATwtzFYTJjcQ1RW8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9KC1oQH-frrNoVRD_lesntI8FPvtqr3t2H2tIDhWWT3ZXSmpPmIuJf70w2uVKpIH7KQiYw2d3Z_c3s7G8AniuZWWcdj0aZtxG36O7gGphFEsGJEcXQc98kyM7k-Ih_mIv5Grzq7sIEfohVwI0so1mvycApIL1zwRpanXwb4MKLrs8GFfRu_KmDFXdU3NVrpTNKqWLRMc8Ok53uy0t70QZ168-rgOZl3NpsPLu34Euncsg3OR3Uy3xQ_PqDzfE__-k23GwBKXsdZtAdWHNlD65N2yP3HtwIgT0W7iv1YJPgaWB3vgufD9zXkEhbMtPSm7CFZ5QXak-IhLxylhVUAeQMQS0163LJKC2VUQSYVXVOgSBGFz4paQkFfqD3TgD4Hhztvj98O47acg1RMUp5HInM5Gkmcu5tnEilrBeySHlqUtwQC2E4L-Is9UZ5yWWOSM1KIRDg-wJdnizJR_dhvVyU7iGwVNmcF8byJEE8p5RxqfXS5N7F2IhVH152A6eLlsucSmqc6cDCnGjsSE0d2YdnK8nvgb_jCpkXzdivBMz5KeW7KaGPZ3t6Pp8ev5uoN3qvD1vd5NCtqVca8VXMFYKBPmyv3qKN0sGLKd2irjSVN0EkjGo_CDPqQhWi_0PEhSo08-KvOupP-1N6PvpXwW24Pj6cTvRkf_ZxCzYbxlkKhQ8fw_ryvHZPEEst86eNzfwGVHQZ1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-khVIQrefX2WpXEH3K9ZLbj-Sxel5b7R1SLT3ow7LZDymtudJcRPzrO5NNUioVxKcsZAKT3Znd387O_oaQN1Jk1lnHolHmbcQsbHdgDswiAeBEczP0zNcJsjOxf8w-zfm8yarEuzCBH6ILuKFn1PM1Ovil9Ts3pKHl2Y8BzLuw81llYpiiRY-POuqouC3XikeUQsa8JZ4dJjvtl7eWolXs1V934czbsLVedyYPyWmrcUg3OR9Uy3xgfv9B5vh_v7RBHjRwlO4G-3lE7rmiR9amzYF7j9wPYT0abiv1yDqC08Dt_JicHrnvIY22oLohN6ELTzEr1J4hBXnpLDVY_-MCIC02q2JJMSmVYvyXllWOYSCK1z0xZQkEfsLeHeHvE3I8-fjtw37UFGuIzChlccQznacZz5m3cSKktJ4Lk7JUp7AcGq4ZM3GWei29YCIHnGYF5wDvvYENT5bko6dkpVgU7jmhqbQ5M9qyJAE0J6V2qfVC597F0Ihln7xrx02ZhskcC2pcqMDBnCjoSIUd2SevO8nLwN5xh8zbeug7AX11jtlukquT2Z6az6cn40P5Xu31yWZrG6px9FIBuoqZBCjQJ9vdW_BQPHbRhVtUpcLiJoCDQe1nwaBuVEHyP8BboEJtFn_VUX09mOLzxb8KbpO1L-OJOjyYfd4k6zXdLMbBh1tkZXlVuZcApJb5q9pjrgEWGhiP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+analysis+of+overdispersed+correlated+count+data+with+subject+specific+covariates&rft.jtitle=Statistics+in+medicine&rft.au=Solis-Trapala%2C+I.+L.&rft.au=Farewell%2C+V.+T.&rft.date=2005-08-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=24&rft.issue=16&rft.spage=2557&rft.epage=2575&rft_id=info:doi/10.1002%2Fsim.2121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_2121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |