Atoms and Photons: Kinetic Equations with Delay

In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsy...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 260; no. 3; pp. 335 - 370
Main Author Uchaikin, V. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system “atoms+photons” is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Biberman–Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free-electron lasers and laser cooling of atoms.
AbstractList In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system “atoms+photons” is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Biberman–Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free-electron lasers and laser cooling of atoms.
In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system "atoms+photons" is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Biberman--Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free-electron lasers and laser cooling of atoms. Keywords and phrases: balance equation, radiation trapping, frequency redistribution, telegraph equation, laser beam, fractal medium. AMS Subject Classification: 65P40
Audience Academic
Author Uchaikin, V. V.
Author_xml – sequence: 1
  givenname: V. V.
  surname: Uchaikin
  fullname: Uchaikin, V. V.
  email: vuchaikin@gmail.com
  organization: Ulyanovsk State University
BookMark eNp9kVtLwzAYhoMouE3_gFcFr7Pl0Dapd2POAw70Qq9DmqZbRptuSYf035utwlDGyEU-Pp4ngfcdgkvbWA3AHUZjjBCbeIyyhENECERJmnHYXYABThiFnGXJZZgRI5BSFl-DofdrFKSU0wGYTNum9pG0RfSxatrG-ofozVjdGhXNtzvZmrCKvk27ih51JbsbcFXKyuvb33sEvp7mn7MXuHh_fp1NF1BRTjtYMpoWklAssWZZzigvJSuQ1ESpVOWlopSiMktxmuQZi1VeoJgznocxJlku6Qjc9-9uXLPdad-KdbNzNnwpSEpigjlJsiO1lJUWxpZN66SqjVdiyhAOEEJ7Cp6gltpqJ6uQY2nC-g8_PsGHU-jaqJMC7wXlGu-dLoUy7SG6IJpKYCT2LYm-JRFaEoeWRBdU8k_dOFNL152XaC_5ANuldsdwzlg_7RCkIA
CitedBy_id crossref_primary_10_3390_appliedmath2040034
Cites_doi 10.1017/CBO9780511755668
10.1016/S0301-0104(02)00547-5
10.4236/jamp.2015.32029
10.1103/PhysRevLett.72.203
10.1142/S0218127408021932
10.1063/1.1993567
10.1515/fca-2016-0068
10.3367/UFNr.0173.200308c.0847
10.1080/10652460108819305
10.1016/0031-8914(61)90008-8
10.1063/1.1704379
10.1088/1751-8113/44/14/145501
10.1103/PhysRevLett.61.251
10.1016/S0031-8914(57)92891-4
10.1063/1.1763136
10.1103/PhysRev.72.1212
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10958-022-05698-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 370
ExternalDocumentID A701182009
10_1007_s10958_022_05698_y
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c383y-f736da231a1e79b738fa7d0ae2cc6cbfc3330f96165b974cbd04878b74c429ba3
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:20:42 EDT 2025
Tue Jun 17 21:38:34 EDT 2025
Thu Jun 12 23:47:35 EDT 2025
Tue Jun 10 20:35:00 EDT 2025
Tue Jul 01 01:42:20 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 21 02:46:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords frequency redistribution
telegraph equation
radiation trapping
fractal medium
balance equation
laser beam
65P40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383y-f736da231a1e79b738fa7d0ae2cc6cbfc3330f96165b974cbd04878b74c429ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-022-05698-y.pdf
PQID 2624218259
PQPubID 2043545
PageCount 36
ParticipantIDs proquest_journals_2624218259
gale_infotracmisc_A701182009
gale_infotracgeneralonefile_A701182009
gale_infotracacademiconefile_A701182009
crossref_citationtrail_10_1007_s10958_022_05698_y
crossref_primary_10_1007_s10958_022_05698_y
springer_journals_10_1007_s10958_022_05698_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References MargolinGBarkaiEAging correlation functions for blinking nanocrystals, and other on-off stochastic processesJ. Chem. Phys.200412131566157710.1063/1.1763136
V. V. Uchaikin, R. T. Sibatov, and O. P. Harlova, “Galaxies as accelerators of cosmic rays,” in: Proc. 34th Int. Conf. on Cosmic Rays, Netherlands (2015), pp. 532.
KacMProbability and Related Topics if Physical Sciences1959London–New YorkInterscience
UchaikinVVSelf-similar anomalous diffusion and stable lawsUsp. Fiz. Nauk2003173884787610.3367/UFNr.0173.200308c.0847
SchauflerSYakovlevVPSubrecoil laser cooling: Trapping versus diffusionLaser Phys.19946414419
TangJMarcusRAMechanisms of fluorescence blinking in semiconductor nanocrystal quantum dotsJ. Chem. Phys.200512305470410.1063/1.1993567
V. V. Uchaikin and R. T. Sibatov, “Stochastic model of flickering fluorescence,” Zh. Eksp. Teor. Fiz., 136, No. 4 (10), 627–638 (2009).
F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, L´evy Statistics and Laser Cooling, Cambridge, Cambridge Univ. Press (2002).
UchaikinVVOn time-fractional representation of an open system responseFract. Calc. Appl. Anal.201619513061315357101310.1515/fca-2016-0068
KondrashinMPSchauflerSSchleichWPYakovlevVPAnomalous kinetics of heavy particles in light mediaJ. Chem. Phys.20022841–2319330
UchaikinVVNonlocal models of cosmic ray transport in the GalaxyJ. Appl. Math. Phys.2015318720010.4236/jamp.2015.32029
BoyadjievLDobnerHJOn a fractional integro-differential equation of Volterra typeIntegr. Transforms Special Funct.20011111313610.1080/10652460108819305
V. V. Uchaikin, “On the fractional differential Liouville equation as an equation of the dynamics of an open system,” Nauch. Ved. Belgorod. Univ. Ser. Mat. Fiz., 25 (196), No. 37, 58–67 (2014).
GolubovskyYBKaganYMLyagushchenkoRIPopulation of resonance levels in a discharge of cylindrical configurationOpt. Spektroskop.19713112229
KuscerIZweifelPFTime-dependent one-speed albedo problem for a semi-infinite mediumJ. Math. Phys.1965671125113018141410.1063/1.1704379
G. Dattoli, S. Lorenzutta, G. Maino, D. Tocci, and A. Torre, “Results for an integro-differential equation arising in a radiation evolution problem,”, 202–221 (1995).
BurshteinAIKinetics of induced relaxationZh. Eksp. Teor. Fiz.1965483850859
NakhushevAMFractional Calculus and Its Applications2003MoscowFizmatlit1066.26005[in Russian]
KofmanAGZaibelRLevineAMPriorYNon-Markovian stochastic jump processes in nonlinear opticsPhys. Rev. Lett.19886125194987010.1103/PhysRevLett.61.251
UchaikinVVMethod of Fractional Derivatives2008UlyanovskArtishok[in Russian]
DattoliGRenieriATorreALectures in Free-Electron Laser Theory and Related Topics1995SingaporeWorld Scientific
PrigogineIRésiboisPOn the kinetics of the approach to equilibriumPhysica.19612762964612986910.1016/0031-8914(61)90008-8
UchaikinVVZakharovAYFractional derivatives in plasma theoryObozr. Prikl. Prom. Mat.200512540
UchaikinVVCahoyDOSibatovRTFractional processes: from Poisson to branching oneInt. J. Bifurcation Chaos.200818927172725247932710.1142/S0218127408021932
van HoveLThe approach to equilibrium in quantum statistics: A perturbation treatment to general orderPhysica.1957234414808957610.1016/S0031-8914(57)92891-4
UchaikinVVSibatovRTFractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasmaJ. Phys. A: Math. Theor.20114414145501278043210.1088/1751-8113/44/14/145501
FokVASolution of one problem of the theory of diffusion by the method of finite differences and its application to diffusion of lightTr. Gos. Opt. Inst.1926434131
Y. Jung, E. Barkai, and R. Silbey, “Lineshape theory and photon counting statistics for blinking quantum dots: A Levy walk process,” J. Chem. Phys., 284, No. 1–2, 181–194.
BardouFBouchaudJ-PEmileOAspectACohen-TannoudjiCSubrecoil laser cooling and Levy flightsPhys. Rev. Lett.19947220320610.1103/PhysRevLett.72.203
HolsteinTImprisonment of resonance radiation in gasesPhys. Rev.1947721212123310.1103/PhysRev.72.1212
BibermanLMOn the theory of diffusion of resonant radiationZh. Eksp. Teor. Fiz.1947175416426
MoninASEquations of turbulent diffusionDokl. Akad. Nauk SSSR19551052256260811120067.19204
5698_CR28
VV Uchaikin (5698_CR31) 2005; 12
G Dattoli (5698_CR7) 1995
5698_CR24
G Margolin (5698_CR16) 2004; 121
S Schaufler (5698_CR20) 1994; 6
AI Burshtein (5698_CR5) 1965; 48
YB Golubovsky (5698_CR9) 1971; 31
M Kac (5698_CR12) 1959
J Tang (5698_CR21) 2005; 123
VA Fok (5698_CR8) 1926; 4
5698_CR1
AG Kofman (5698_CR13) 1988; 61
5698_CR6
VV Uchaikin (5698_CR23) 2008
L Boyadjiev (5698_CR4) 2001; 11
VV Uchaikin (5698_CR25) 2015; 3
I Prigogine (5698_CR19) 1961; 27
VV Uchaikin (5698_CR27) 2008; 18
L van Hove (5698_CR32) 1957; 23
I Kuscer (5698_CR15) 1965; 6
F Bardou (5698_CR2) 1994; 72
LM Biberman (5698_CR3) 1947; 17
T Holstein (5698_CR10) 1947; 72
AS Monin (5698_CR17) 1955; 105
5698_CR11
AM Nakhushev (5698_CR18) 2003
MP Kondrashin (5698_CR14) 2002; 284
5698_CR30
VV Uchaikin (5698_CR26) 2016; 19
VV Uchaikin (5698_CR22) 2003; 173
VV Uchaikin (5698_CR29) 2011; 44
References_xml – reference: BardouFBouchaudJ-PEmileOAspectACohen-TannoudjiCSubrecoil laser cooling and Levy flightsPhys. Rev. Lett.19947220320610.1103/PhysRevLett.72.203
– reference: G. Dattoli, S. Lorenzutta, G. Maino, D. Tocci, and A. Torre, “Results for an integro-differential equation arising in a radiation evolution problem,”, 202–221 (1995).
– reference: UchaikinVVCahoyDOSibatovRTFractional processes: from Poisson to branching oneInt. J. Bifurcation Chaos.200818927172725247932710.1142/S0218127408021932
– reference: MargolinGBarkaiEAging correlation functions for blinking nanocrystals, and other on-off stochastic processesJ. Chem. Phys.200412131566157710.1063/1.1763136
– reference: PrigogineIRésiboisPOn the kinetics of the approach to equilibriumPhysica.19612762964612986910.1016/0031-8914(61)90008-8
– reference: KofmanAGZaibelRLevineAMPriorYNon-Markovian stochastic jump processes in nonlinear opticsPhys. Rev. Lett.19886125194987010.1103/PhysRevLett.61.251
– reference: KuscerIZweifelPFTime-dependent one-speed albedo problem for a semi-infinite mediumJ. Math. Phys.1965671125113018141410.1063/1.1704379
– reference: UchaikinVVSibatovRTFractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasmaJ. Phys. A: Math. Theor.20114414145501278043210.1088/1751-8113/44/14/145501
– reference: UchaikinVVOn time-fractional representation of an open system responseFract. Calc. Appl. Anal.201619513061315357101310.1515/fca-2016-0068
– reference: V. V. Uchaikin and R. T. Sibatov, “Stochastic model of flickering fluorescence,” Zh. Eksp. Teor. Fiz., 136, No. 4 (10), 627–638 (2009).
– reference: TangJMarcusRAMechanisms of fluorescence blinking in semiconductor nanocrystal quantum dotsJ. Chem. Phys.200512305470410.1063/1.1993567
– reference: UchaikinVVNonlocal models of cosmic ray transport in the GalaxyJ. Appl. Math. Phys.2015318720010.4236/jamp.2015.32029
– reference: SchauflerSYakovlevVPSubrecoil laser cooling: Trapping versus diffusionLaser Phys.19946414419
– reference: HolsteinTImprisonment of resonance radiation in gasesPhys. Rev.1947721212123310.1103/PhysRev.72.1212
– reference: KondrashinMPSchauflerSSchleichWPYakovlevVPAnomalous kinetics of heavy particles in light mediaJ. Chem. Phys.20022841–2319330
– reference: GolubovskyYBKaganYMLyagushchenkoRIPopulation of resonance levels in a discharge of cylindrical configurationOpt. Spektroskop.19713112229
– reference: UchaikinVVSelf-similar anomalous diffusion and stable lawsUsp. Fiz. Nauk2003173884787610.3367/UFNr.0173.200308c.0847
– reference: KacMProbability and Related Topics if Physical Sciences1959London–New YorkInterscience
– reference: NakhushevAMFractional Calculus and Its Applications2003MoscowFizmatlit1066.26005[in Russian]
– reference: DattoliGRenieriATorreALectures in Free-Electron Laser Theory and Related Topics1995SingaporeWorld Scientific
– reference: V. V. Uchaikin, “On the fractional differential Liouville equation as an equation of the dynamics of an open system,” Nauch. Ved. Belgorod. Univ. Ser. Mat. Fiz., 25 (196), No. 37, 58–67 (2014).
– reference: F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, L´evy Statistics and Laser Cooling, Cambridge, Cambridge Univ. Press (2002).
– reference: BibermanLMOn the theory of diffusion of resonant radiationZh. Eksp. Teor. Fiz.1947175416426
– reference: BoyadjievLDobnerHJOn a fractional integro-differential equation of Volterra typeIntegr. Transforms Special Funct.20011111313610.1080/10652460108819305
– reference: V. V. Uchaikin, R. T. Sibatov, and O. P. Harlova, “Galaxies as accelerators of cosmic rays,” in: Proc. 34th Int. Conf. on Cosmic Rays, Netherlands (2015), pp. 532.
– reference: UchaikinVVMethod of Fractional Derivatives2008UlyanovskArtishok[in Russian]
– reference: BurshteinAIKinetics of induced relaxationZh. Eksp. Teor. Fiz.1965483850859
– reference: MoninASEquations of turbulent diffusionDokl. Akad. Nauk SSSR19551052256260811120067.19204
– reference: FokVASolution of one problem of the theory of diffusion by the method of finite differences and its application to diffusion of lightTr. Gos. Opt. Inst.1926434131
– reference: UchaikinVVZakharovAYFractional derivatives in plasma theoryObozr. Prikl. Prom. Mat.200512540
– reference: Y. Jung, E. Barkai, and R. Silbey, “Lineshape theory and photon counting statistics for blinking quantum dots: A Levy walk process,” J. Chem. Phys., 284, No. 1–2, 181–194.
– reference: van HoveLThe approach to equilibrium in quantum statistics: A perturbation treatment to general orderPhysica.1957234414808957610.1016/S0031-8914(57)92891-4
– volume-title: Probability and Related Topics if Physical Sciences
  year: 1959
  ident: 5698_CR12
– ident: 5698_CR1
  doi: 10.1017/CBO9780511755668
– ident: 5698_CR6
– volume: 31
  start-page: 22
  issue: 1
  year: 1971
  ident: 5698_CR9
  publication-title: Opt. Spektroskop.
– volume: 12
  start-page: 540
  year: 2005
  ident: 5698_CR31
  publication-title: Obozr. Prikl. Prom. Mat.
– ident: 5698_CR11
  doi: 10.1016/S0301-0104(02)00547-5
– volume: 4
  start-page: 1
  issue: 34
  year: 1926
  ident: 5698_CR8
  publication-title: Tr. Gos. Opt. Inst.
– volume: 17
  start-page: 416
  issue: 5
  year: 1947
  ident: 5698_CR3
  publication-title: Zh. Eksp. Teor. Fiz.
– volume: 3
  start-page: 187
  year: 2015
  ident: 5698_CR25
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2015.32029
– volume: 72
  start-page: 203
  year: 1994
  ident: 5698_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.203
– volume: 18
  start-page: 2717
  issue: 9
  year: 2008
  ident: 5698_CR27
  publication-title: Int. J. Bifurcation Chaos.
  doi: 10.1142/S0218127408021932
– volume: 123
  start-page: 054704
  year: 2005
  ident: 5698_CR21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1993567
– volume-title: Method of Fractional Derivatives
  year: 2008
  ident: 5698_CR23
– ident: 5698_CR28
– ident: 5698_CR24
– volume: 19
  start-page: 1306
  issue: 5
  year: 2016
  ident: 5698_CR26
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0068
– volume: 48
  start-page: 850
  issue: 3
  year: 1965
  ident: 5698_CR5
  publication-title: Zh. Eksp. Teor. Fiz.
– volume: 173
  start-page: 847
  issue: 8
  year: 2003
  ident: 5698_CR22
  publication-title: Usp. Fiz. Nauk
  doi: 10.3367/UFNr.0173.200308c.0847
– volume: 11
  start-page: 113
  year: 2001
  ident: 5698_CR4
  publication-title: Integr. Transforms Special Funct.
  doi: 10.1080/10652460108819305
– volume: 27
  start-page: 629
  year: 1961
  ident: 5698_CR19
  publication-title: Physica.
  doi: 10.1016/0031-8914(61)90008-8
– volume: 105
  start-page: 256
  issue: 2
  year: 1955
  ident: 5698_CR17
  publication-title: Dokl. Akad. Nauk SSSR
– volume-title: Lectures in Free-Electron Laser Theory and Related Topics
  year: 1995
  ident: 5698_CR7
– volume: 6
  start-page: 1125
  issue: 7
  year: 1965
  ident: 5698_CR15
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1704379
– volume: 44
  start-page: 145501
  issue: 14
  year: 2011
  ident: 5698_CR29
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/44/14/145501
– volume: 6
  start-page: 414
  year: 1994
  ident: 5698_CR20
  publication-title: Laser Phys.
– ident: 5698_CR30
– volume: 61
  start-page: 251
  year: 1988
  ident: 5698_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.251
– volume: 23
  start-page: 441
  year: 1957
  ident: 5698_CR32
  publication-title: Physica.
  doi: 10.1016/S0031-8914(57)92891-4
– volume: 121
  start-page: 1566
  issue: 3
  year: 2004
  ident: 5698_CR16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1763136
– volume: 284
  start-page: 319
  issue: 1–2
  year: 2002
  ident: 5698_CR14
  publication-title: J. Chem. Phys.
– volume: 72
  start-page: 1212
  year: 1947
  ident: 5698_CR10
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.72.1212
– volume-title: Fractional Calculus and Its Applications
  year: 2003
  ident: 5698_CR18
SSID ssj0007683
Score 2.231158
Snippet In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms Atoms & subatomic particles
Differential equations
Free electron lasers
Hamiltonian functions
Kinetic equations
Kinetic theory
Laser cooling
Lasers
Mathematics
Mathematics and Statistics
Open systems
Operators (mathematics)
Photons
Subsystems
Title Atoms and Photons: Kinetic Equations with Delay
URI https://link.springer.com/article/10.1007/s10958-022-05698-y
https://www.proquest.com/docview/2624218259
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RSDMfWA4AAR6ytJuXWwMTExcWDSOEVJ2sJhdEDHof8ep4-NwkDi1Ep2o8qJ7c-J7SB0DE4sBKtHsGSSYUdZDAOOI5gISqK2GzFPZFm-Q9IfObdjd1wUhSVltnt5JJlZ6i_Fbp7LsM4-B6ftMZyuorqrY3dYxSPLn9tfANB5Wj21sG1TpyiVWT5GxR19N8o_Tkczp9PbRBsFWjT8fHq30EoYb6P1u3mr1WQHXfiz6UtiiDgw7p-ngOSSS2MA0BGoRvctb-SdGHq71bgOJyLdRaNe9-Gqj4tbELCC6DHFEbVJIACGCTOknqQ2iwQN2iK0lCJKRsq27XbkEZO4EoIDJQNQSsokvIKvkcLeQ7V4Gof7yBBUMho5CkCgBBilYyMmiBQCUBiNLLOBzFIYXBUtwvVNFRO-aG6sBchBgDwTIE8b6Gz-zWveIONP7lMtY661B0ZWoigCgP_Tfai4T3UlrD6xaaCTCudT3oV7GWOzwgjqoarkcjp5oZ4Jt3RVDNBdIJ-XU7wg__7_B_9jP0RrVrbY9JZNE9Vm7x_hEYCYmWyhut_rdIb6efM46LayNfwJ4Prnsg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCgQwIBrBoXrbDFkFRoQ8xtFI3y3YSGEoKpAz595zzaAkUJLZId7Gss-_us-9hhE7BiYVg9QiWTDLsKIthwHEEE0FJ1HQj5oksy7dP2kPnYeSOiqKwpMx2L0OSmaX-UuzmuQzr7HNw2h7D6TJaATDAdCLX0PJn9hcAdJ5WTy1s29QpSmUWj1FxR9-N8o_oaOZ07jbRRoEWDT9f3i20FMbbaL03a7Wa7KArfzp5SQwRB8bj8wSQXHJtdAA6AtVoveWNvBNDX7cat-FYpLtoeNca3LRx8QoCVnB6THFEbRIIgGHCDKknqc0iQYOmCC2liJKRsm27GXnEJK6Ew4GSASglZRI-wddIYe-hWjyJw31kCCoZjRwFIFCC5PTZiAkihQAURiPLrCOzFAZXRYtw_VLFmM-bG2sBchAgzwTI0zq6mP3zmjfI-JP7XMuYa-2BkZUoigBgfroPFfeproTVEZs6OqtwPuVduBcxNiqMoB6qSi6XkxfqmXBLV8UA3QXyZbnEc_Lv8z_4H_sJWm0Pel3eve93DtGalW08fX3TQLXp-0d4BIBmKo-z_fsJb2bnlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zOiqHswetAGdpdtu96ISFCUcJCEW9N2t3rABV088O-d7gNYRRNvm8xs00w7M18f8xWhc0hiIUQ9giWTDNeVwzDgOIKJoETXPM18kdzy7ZJ2v_4w8AYLVfzJbff8SDKtaTAsTdGkOg50daHwzfcYNjfRIYH7DE9X0RqEY9vM677TmMViANPpFXvqYNel9axsZnkbhdT0PUD_OClNElBrG21lyNFqpEO9g1bCaBdtPs1oV-M9VG1MRm-xJaLA6r2OANXFN1YHYCRIrbv3lNQ7tszWq9UMh2K6j_qtu-fbNs5eRMAKVpJTrKlLAgGQTNgh9SV1mRY0qInQUYooqZXrujXtE5t4EhYKSgbgoJRJ-IS8I4V7gErRKAoPkSWoZFTXFQBCCZDKrJOYIFIIQGRUO3YZ2bkxuMrows2rFUM-Jzo2BuRgQJ4YkE_L6Gr2zzgly_hT-9LYmBtPgpaVyAoCoH-Gk4o3qKmKNac3ZXRR0HxJGbmXKVYKiuAqqijOh5Nnrhpzx1TIgNwD8XU-xHPx7_0_-p_6GVrvNVv88b7bOUYbTjLvzE5OBZUmH5_hCWCbiTxNpu8X_v_r0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atoms+and+Photons%3A+Kinetic+Equations+with+Delay&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Uchaikin%2C+V.+V.&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=260&rft.issue=3&rft.spage=335&rft.epage=370&rft_id=info:doi/10.1007%2Fs10958-022-05698-y&rft.externalDocID=10_1007_s10958_022_05698_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon