Atoms and Photons: Kinetic Equations with Delay
In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsy...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 260; no. 3; pp. 335 - 370 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system “atoms+photons” is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Biberman–Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free-electron lasers and laser cooling of atoms. |
---|---|
AbstractList | In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system “atoms+photons” is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Biberman–Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free-electron lasers and laser cooling of atoms. In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system "atoms+photons" is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Biberman--Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free-electron lasers and laser cooling of atoms. Keywords and phrases: balance equation, radiation trapping, frequency redistribution, telegraph equation, laser beam, fractal medium. AMS Subject Classification: 65P40 |
Audience | Academic |
Author | Uchaikin, V. V. |
Author_xml | – sequence: 1 givenname: V. V. surname: Uchaikin fullname: Uchaikin, V. V. email: vuchaikin@gmail.com organization: Ulyanovsk State University |
BookMark | eNp9kVtLwzAYhoMouE3_gFcFr7Pl0Dapd2POAw70Qq9DmqZbRptuSYf035utwlDGyEU-Pp4ngfcdgkvbWA3AHUZjjBCbeIyyhENECERJmnHYXYABThiFnGXJZZgRI5BSFl-DofdrFKSU0wGYTNum9pG0RfSxatrG-ofozVjdGhXNtzvZmrCKvk27ih51JbsbcFXKyuvb33sEvp7mn7MXuHh_fp1NF1BRTjtYMpoWklAssWZZzigvJSuQ1ESpVOWlopSiMktxmuQZi1VeoJgznocxJlku6Qjc9-9uXLPdad-KdbNzNnwpSEpigjlJsiO1lJUWxpZN66SqjVdiyhAOEEJ7Cp6gltpqJ6uQY2nC-g8_PsGHU-jaqJMC7wXlGu-dLoUy7SG6IJpKYCT2LYm-JRFaEoeWRBdU8k_dOFNL152XaC_5ANuldsdwzlg_7RCkIA |
CitedBy_id | crossref_primary_10_3390_appliedmath2040034 |
Cites_doi | 10.1017/CBO9780511755668 10.1016/S0301-0104(02)00547-5 10.4236/jamp.2015.32029 10.1103/PhysRevLett.72.203 10.1142/S0218127408021932 10.1063/1.1993567 10.1515/fca-2016-0068 10.3367/UFNr.0173.200308c.0847 10.1080/10652460108819305 10.1016/0031-8914(61)90008-8 10.1063/1.1704379 10.1088/1751-8113/44/14/145501 10.1103/PhysRevLett.61.251 10.1016/S0031-8914(57)92891-4 10.1063/1.1763136 10.1103/PhysRev.72.1212 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10958-022-05698-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 370 |
ExternalDocumentID | A701182009 10_1007_s10958_022_05698_y |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c383y-f736da231a1e79b738fa7d0ae2cc6cbfc3330f96165b974cbd04878b74c429ba3 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:20:42 EDT 2025 Tue Jun 17 21:38:34 EDT 2025 Thu Jun 12 23:47:35 EDT 2025 Tue Jun 10 20:35:00 EDT 2025 Tue Jul 01 01:42:20 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Fri Feb 21 02:46:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | frequency redistribution telegraph equation radiation trapping fractal medium balance equation laser beam 65P40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383y-f736da231a1e79b738fa7d0ae2cc6cbfc3330f96165b974cbd04878b74c429ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-022-05698-y.pdf |
PQID | 2624218259 |
PQPubID | 2043545 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2624218259 gale_infotracmisc_A701182009 gale_infotracgeneralonefile_A701182009 gale_infotracacademiconefile_A701182009 crossref_citationtrail_10_1007_s10958_022_05698_y crossref_primary_10_1007_s10958_022_05698_y springer_journals_10_1007_s10958_022_05698_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | MargolinGBarkaiEAging correlation functions for blinking nanocrystals, and other on-off stochastic processesJ. Chem. Phys.200412131566157710.1063/1.1763136 V. V. Uchaikin, R. T. Sibatov, and O. P. Harlova, “Galaxies as accelerators of cosmic rays,” in: Proc. 34th Int. Conf. on Cosmic Rays, Netherlands (2015), pp. 532. KacMProbability and Related Topics if Physical Sciences1959London–New YorkInterscience UchaikinVVSelf-similar anomalous diffusion and stable lawsUsp. Fiz. Nauk2003173884787610.3367/UFNr.0173.200308c.0847 SchauflerSYakovlevVPSubrecoil laser cooling: Trapping versus diffusionLaser Phys.19946414419 TangJMarcusRAMechanisms of fluorescence blinking in semiconductor nanocrystal quantum dotsJ. Chem. Phys.200512305470410.1063/1.1993567 V. V. Uchaikin and R. T. Sibatov, “Stochastic model of flickering fluorescence,” Zh. Eksp. Teor. Fiz., 136, No. 4 (10), 627–638 (2009). F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, L´evy Statistics and Laser Cooling, Cambridge, Cambridge Univ. Press (2002). UchaikinVVOn time-fractional representation of an open system responseFract. Calc. Appl. Anal.201619513061315357101310.1515/fca-2016-0068 KondrashinMPSchauflerSSchleichWPYakovlevVPAnomalous kinetics of heavy particles in light mediaJ. Chem. Phys.20022841–2319330 UchaikinVVNonlocal models of cosmic ray transport in the GalaxyJ. Appl. Math. Phys.2015318720010.4236/jamp.2015.32029 BoyadjievLDobnerHJOn a fractional integro-differential equation of Volterra typeIntegr. Transforms Special Funct.20011111313610.1080/10652460108819305 V. V. Uchaikin, “On the fractional differential Liouville equation as an equation of the dynamics of an open system,” Nauch. Ved. Belgorod. Univ. Ser. Mat. Fiz., 25 (196), No. 37, 58–67 (2014). GolubovskyYBKaganYMLyagushchenkoRIPopulation of resonance levels in a discharge of cylindrical configurationOpt. Spektroskop.19713112229 KuscerIZweifelPFTime-dependent one-speed albedo problem for a semi-infinite mediumJ. Math. Phys.1965671125113018141410.1063/1.1704379 G. Dattoli, S. Lorenzutta, G. Maino, D. Tocci, and A. Torre, “Results for an integro-differential equation arising in a radiation evolution problem,”, 202–221 (1995). BurshteinAIKinetics of induced relaxationZh. Eksp. Teor. Fiz.1965483850859 NakhushevAMFractional Calculus and Its Applications2003MoscowFizmatlit1066.26005[in Russian] KofmanAGZaibelRLevineAMPriorYNon-Markovian stochastic jump processes in nonlinear opticsPhys. Rev. Lett.19886125194987010.1103/PhysRevLett.61.251 UchaikinVVMethod of Fractional Derivatives2008UlyanovskArtishok[in Russian] DattoliGRenieriATorreALectures in Free-Electron Laser Theory and Related Topics1995SingaporeWorld Scientific PrigogineIRésiboisPOn the kinetics of the approach to equilibriumPhysica.19612762964612986910.1016/0031-8914(61)90008-8 UchaikinVVZakharovAYFractional derivatives in plasma theoryObozr. Prikl. Prom. Mat.200512540 UchaikinVVCahoyDOSibatovRTFractional processes: from Poisson to branching oneInt. J. Bifurcation Chaos.200818927172725247932710.1142/S0218127408021932 van HoveLThe approach to equilibrium in quantum statistics: A perturbation treatment to general orderPhysica.1957234414808957610.1016/S0031-8914(57)92891-4 UchaikinVVSibatovRTFractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasmaJ. Phys. A: Math. Theor.20114414145501278043210.1088/1751-8113/44/14/145501 FokVASolution of one problem of the theory of diffusion by the method of finite differences and its application to diffusion of lightTr. Gos. Opt. Inst.1926434131 Y. Jung, E. Barkai, and R. Silbey, “Lineshape theory and photon counting statistics for blinking quantum dots: A Levy walk process,” J. Chem. Phys., 284, No. 1–2, 181–194. BardouFBouchaudJ-PEmileOAspectACohen-TannoudjiCSubrecoil laser cooling and Levy flightsPhys. Rev. Lett.19947220320610.1103/PhysRevLett.72.203 HolsteinTImprisonment of resonance radiation in gasesPhys. Rev.1947721212123310.1103/PhysRev.72.1212 BibermanLMOn the theory of diffusion of resonant radiationZh. Eksp. Teor. Fiz.1947175416426 MoninASEquations of turbulent diffusionDokl. Akad. Nauk SSSR19551052256260811120067.19204 5698_CR28 VV Uchaikin (5698_CR31) 2005; 12 G Dattoli (5698_CR7) 1995 5698_CR24 G Margolin (5698_CR16) 2004; 121 S Schaufler (5698_CR20) 1994; 6 AI Burshtein (5698_CR5) 1965; 48 YB Golubovsky (5698_CR9) 1971; 31 M Kac (5698_CR12) 1959 J Tang (5698_CR21) 2005; 123 VA Fok (5698_CR8) 1926; 4 5698_CR1 AG Kofman (5698_CR13) 1988; 61 5698_CR6 VV Uchaikin (5698_CR23) 2008 L Boyadjiev (5698_CR4) 2001; 11 VV Uchaikin (5698_CR25) 2015; 3 I Prigogine (5698_CR19) 1961; 27 VV Uchaikin (5698_CR27) 2008; 18 L van Hove (5698_CR32) 1957; 23 I Kuscer (5698_CR15) 1965; 6 F Bardou (5698_CR2) 1994; 72 LM Biberman (5698_CR3) 1947; 17 T Holstein (5698_CR10) 1947; 72 AS Monin (5698_CR17) 1955; 105 5698_CR11 AM Nakhushev (5698_CR18) 2003 MP Kondrashin (5698_CR14) 2002; 284 5698_CR30 VV Uchaikin (5698_CR26) 2016; 19 VV Uchaikin (5698_CR22) 2003; 173 VV Uchaikin (5698_CR29) 2011; 44 |
References_xml | – reference: BardouFBouchaudJ-PEmileOAspectACohen-TannoudjiCSubrecoil laser cooling and Levy flightsPhys. Rev. Lett.19947220320610.1103/PhysRevLett.72.203 – reference: G. Dattoli, S. Lorenzutta, G. Maino, D. Tocci, and A. Torre, “Results for an integro-differential equation arising in a radiation evolution problem,”, 202–221 (1995). – reference: UchaikinVVCahoyDOSibatovRTFractional processes: from Poisson to branching oneInt. J. Bifurcation Chaos.200818927172725247932710.1142/S0218127408021932 – reference: MargolinGBarkaiEAging correlation functions for blinking nanocrystals, and other on-off stochastic processesJ. Chem. Phys.200412131566157710.1063/1.1763136 – reference: PrigogineIRésiboisPOn the kinetics of the approach to equilibriumPhysica.19612762964612986910.1016/0031-8914(61)90008-8 – reference: KofmanAGZaibelRLevineAMPriorYNon-Markovian stochastic jump processes in nonlinear opticsPhys. Rev. Lett.19886125194987010.1103/PhysRevLett.61.251 – reference: KuscerIZweifelPFTime-dependent one-speed albedo problem for a semi-infinite mediumJ. Math. Phys.1965671125113018141410.1063/1.1704379 – reference: UchaikinVVSibatovRTFractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasmaJ. Phys. A: Math. Theor.20114414145501278043210.1088/1751-8113/44/14/145501 – reference: UchaikinVVOn time-fractional representation of an open system responseFract. Calc. Appl. Anal.201619513061315357101310.1515/fca-2016-0068 – reference: V. V. Uchaikin and R. T. Sibatov, “Stochastic model of flickering fluorescence,” Zh. Eksp. Teor. Fiz., 136, No. 4 (10), 627–638 (2009). – reference: TangJMarcusRAMechanisms of fluorescence blinking in semiconductor nanocrystal quantum dotsJ. Chem. Phys.200512305470410.1063/1.1993567 – reference: UchaikinVVNonlocal models of cosmic ray transport in the GalaxyJ. Appl. Math. Phys.2015318720010.4236/jamp.2015.32029 – reference: SchauflerSYakovlevVPSubrecoil laser cooling: Trapping versus diffusionLaser Phys.19946414419 – reference: HolsteinTImprisonment of resonance radiation in gasesPhys. Rev.1947721212123310.1103/PhysRev.72.1212 – reference: KondrashinMPSchauflerSSchleichWPYakovlevVPAnomalous kinetics of heavy particles in light mediaJ. Chem. Phys.20022841–2319330 – reference: GolubovskyYBKaganYMLyagushchenkoRIPopulation of resonance levels in a discharge of cylindrical configurationOpt. Spektroskop.19713112229 – reference: UchaikinVVSelf-similar anomalous diffusion and stable lawsUsp. Fiz. Nauk2003173884787610.3367/UFNr.0173.200308c.0847 – reference: KacMProbability and Related Topics if Physical Sciences1959London–New YorkInterscience – reference: NakhushevAMFractional Calculus and Its Applications2003MoscowFizmatlit1066.26005[in Russian] – reference: DattoliGRenieriATorreALectures in Free-Electron Laser Theory and Related Topics1995SingaporeWorld Scientific – reference: V. V. Uchaikin, “On the fractional differential Liouville equation as an equation of the dynamics of an open system,” Nauch. Ved. Belgorod. Univ. Ser. Mat. Fiz., 25 (196), No. 37, 58–67 (2014). – reference: F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, L´evy Statistics and Laser Cooling, Cambridge, Cambridge Univ. Press (2002). – reference: BibermanLMOn the theory of diffusion of resonant radiationZh. Eksp. Teor. Fiz.1947175416426 – reference: BoyadjievLDobnerHJOn a fractional integro-differential equation of Volterra typeIntegr. Transforms Special Funct.20011111313610.1080/10652460108819305 – reference: V. V. Uchaikin, R. T. Sibatov, and O. P. Harlova, “Galaxies as accelerators of cosmic rays,” in: Proc. 34th Int. Conf. on Cosmic Rays, Netherlands (2015), pp. 532. – reference: UchaikinVVMethod of Fractional Derivatives2008UlyanovskArtishok[in Russian] – reference: BurshteinAIKinetics of induced relaxationZh. Eksp. Teor. Fiz.1965483850859 – reference: MoninASEquations of turbulent diffusionDokl. Akad. Nauk SSSR19551052256260811120067.19204 – reference: FokVASolution of one problem of the theory of diffusion by the method of finite differences and its application to diffusion of lightTr. Gos. Opt. Inst.1926434131 – reference: UchaikinVVZakharovAYFractional derivatives in plasma theoryObozr. Prikl. Prom. Mat.200512540 – reference: Y. Jung, E. Barkai, and R. Silbey, “Lineshape theory and photon counting statistics for blinking quantum dots: A Levy walk process,” J. Chem. Phys., 284, No. 1–2, 181–194. – reference: van HoveLThe approach to equilibrium in quantum statistics: A perturbation treatment to general orderPhysica.1957234414808957610.1016/S0031-8914(57)92891-4 – volume-title: Probability and Related Topics if Physical Sciences year: 1959 ident: 5698_CR12 – ident: 5698_CR1 doi: 10.1017/CBO9780511755668 – ident: 5698_CR6 – volume: 31 start-page: 22 issue: 1 year: 1971 ident: 5698_CR9 publication-title: Opt. Spektroskop. – volume: 12 start-page: 540 year: 2005 ident: 5698_CR31 publication-title: Obozr. Prikl. Prom. Mat. – ident: 5698_CR11 doi: 10.1016/S0301-0104(02)00547-5 – volume: 4 start-page: 1 issue: 34 year: 1926 ident: 5698_CR8 publication-title: Tr. Gos. Opt. Inst. – volume: 17 start-page: 416 issue: 5 year: 1947 ident: 5698_CR3 publication-title: Zh. Eksp. Teor. Fiz. – volume: 3 start-page: 187 year: 2015 ident: 5698_CR25 publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2015.32029 – volume: 72 start-page: 203 year: 1994 ident: 5698_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.203 – volume: 18 start-page: 2717 issue: 9 year: 2008 ident: 5698_CR27 publication-title: Int. J. Bifurcation Chaos. doi: 10.1142/S0218127408021932 – volume: 123 start-page: 054704 year: 2005 ident: 5698_CR21 publication-title: J. Chem. Phys. doi: 10.1063/1.1993567 – volume-title: Method of Fractional Derivatives year: 2008 ident: 5698_CR23 – ident: 5698_CR28 – ident: 5698_CR24 – volume: 19 start-page: 1306 issue: 5 year: 2016 ident: 5698_CR26 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0068 – volume: 48 start-page: 850 issue: 3 year: 1965 ident: 5698_CR5 publication-title: Zh. Eksp. Teor. Fiz. – volume: 173 start-page: 847 issue: 8 year: 2003 ident: 5698_CR22 publication-title: Usp. Fiz. Nauk doi: 10.3367/UFNr.0173.200308c.0847 – volume: 11 start-page: 113 year: 2001 ident: 5698_CR4 publication-title: Integr. Transforms Special Funct. doi: 10.1080/10652460108819305 – volume: 27 start-page: 629 year: 1961 ident: 5698_CR19 publication-title: Physica. doi: 10.1016/0031-8914(61)90008-8 – volume: 105 start-page: 256 issue: 2 year: 1955 ident: 5698_CR17 publication-title: Dokl. Akad. Nauk SSSR – volume-title: Lectures in Free-Electron Laser Theory and Related Topics year: 1995 ident: 5698_CR7 – volume: 6 start-page: 1125 issue: 7 year: 1965 ident: 5698_CR15 publication-title: J. Math. Phys. doi: 10.1063/1.1704379 – volume: 44 start-page: 145501 issue: 14 year: 2011 ident: 5698_CR29 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/44/14/145501 – volume: 6 start-page: 414 year: 1994 ident: 5698_CR20 publication-title: Laser Phys. – ident: 5698_CR30 – volume: 61 start-page: 251 year: 1988 ident: 5698_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.251 – volume: 23 start-page: 441 year: 1957 ident: 5698_CR32 publication-title: Physica. doi: 10.1016/S0031-8914(57)92891-4 – volume: 121 start-page: 1566 issue: 3 year: 2004 ident: 5698_CR16 publication-title: J. Chem. Phys. doi: 10.1063/1.1763136 – volume: 284 start-page: 319 issue: 1–2 year: 2002 ident: 5698_CR14 publication-title: J. Chem. Phys. – volume: 72 start-page: 1212 year: 1947 ident: 5698_CR10 publication-title: Phys. Rev. doi: 10.1103/PhysRev.72.1212 – volume-title: Fractional Calculus and Its Applications year: 2003 ident: 5698_CR18 |
SSID | ssj0007683 |
Score | 2.231158 |
Snippet | In his recent works, the author drew attention to the fact that the extraction of a part of a closed Hamiltonian system turns the original well-known Liouville... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 335 |
SubjectTerms | Atoms & subatomic particles Differential equations Free electron lasers Hamiltonian functions Kinetic equations Kinetic theory Laser cooling Lasers Mathematics Mathematics and Statistics Open systems Operators (mathematics) Photons Subsystems |
Title | Atoms and Photons: Kinetic Equations with Delay |
URI | https://link.springer.com/article/10.1007/s10958-022-05698-y https://www.proquest.com/docview/2624218259 |
Volume | 260 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RSDMfWA4AAR6ytJuXWwMTExcWDSOEVJ2sJhdEDHof8ep4-NwkDi1Ep2o8qJ7c-J7SB0DE4sBKtHsGSSYUdZDAOOI5gISqK2GzFPZFm-Q9IfObdjd1wUhSVltnt5JJlZ6i_Fbp7LsM4-B6ftMZyuorqrY3dYxSPLn9tfANB5Wj21sG1TpyiVWT5GxR19N8o_Tkczp9PbRBsFWjT8fHq30EoYb6P1u3mr1WQHXfiz6UtiiDgw7p-ngOSSS2MA0BGoRvctb-SdGHq71bgOJyLdRaNe9-Gqj4tbELCC6DHFEbVJIACGCTOknqQ2iwQN2iK0lCJKRsq27XbkEZO4EoIDJQNQSsokvIKvkcLeQ7V4Gof7yBBUMho5CkCgBBilYyMmiBQCUBiNLLOBzFIYXBUtwvVNFRO-aG6sBchBgDwTIE8b6Gz-zWveIONP7lMtY661B0ZWoigCgP_Tfai4T3UlrD6xaaCTCudT3oV7GWOzwgjqoarkcjp5oZ4Jt3RVDNBdIJ-XU7wg__7_B_9jP0RrVrbY9JZNE9Vm7x_hEYCYmWyhut_rdIb6efM46LayNfwJ4Prnsg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCgQwIBrBoXrbDFkFRoQ8xtFI3y3YSGEoKpAz595zzaAkUJLZId7Gss-_us-9hhE7BiYVg9QiWTDLsKIthwHEEE0FJ1HQj5oksy7dP2kPnYeSOiqKwpMx2L0OSmaX-UuzmuQzr7HNw2h7D6TJaATDAdCLX0PJn9hcAdJ5WTy1s29QpSmUWj1FxR9-N8o_oaOZ07jbRRoEWDT9f3i20FMbbaL03a7Wa7KArfzp5SQwRB8bj8wSQXHJtdAA6AtVoveWNvBNDX7cat-FYpLtoeNca3LRx8QoCVnB6THFEbRIIgGHCDKknqc0iQYOmCC2liJKRsm27GXnEJK6Ew4GSASglZRI-wddIYe-hWjyJw31kCCoZjRwFIFCC5PTZiAkihQAURiPLrCOzFAZXRYtw_VLFmM-bG2sBchAgzwTI0zq6mP3zmjfI-JP7XMuYa-2BkZUoigBgfroPFfeproTVEZs6OqtwPuVduBcxNiqMoB6qSi6XkxfqmXBLV8UA3QXyZbnEc_Lv8z_4H_sJWm0Pel3eve93DtGalW08fX3TQLXp-0d4BIBmKo-z_fsJb2bnlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zOiqHswetAGdpdtu96ISFCUcJCEW9N2t3rABV088O-d7gNYRRNvm8xs00w7M18f8xWhc0hiIUQ9giWTDNeVwzDgOIKJoETXPM18kdzy7ZJ2v_4w8AYLVfzJbff8SDKtaTAsTdGkOg50daHwzfcYNjfRIYH7DE9X0RqEY9vM677TmMViANPpFXvqYNel9axsZnkbhdT0PUD_OClNElBrG21lyNFqpEO9g1bCaBdtPs1oV-M9VG1MRm-xJaLA6r2OANXFN1YHYCRIrbv3lNQ7tszWq9UMh2K6j_qtu-fbNs5eRMAKVpJTrKlLAgGQTNgh9SV1mRY0qInQUYooqZXrujXtE5t4EhYKSgbgoJRJ-IS8I4V7gErRKAoPkSWoZFTXFQBCCZDKrJOYIFIIQGRUO3YZ2bkxuMrows2rFUM-Jzo2BuRgQJ4YkE_L6Gr2zzgly_hT-9LYmBtPgpaVyAoCoH-Gk4o3qKmKNac3ZXRR0HxJGbmXKVYKiuAqqijOh5Nnrhpzx1TIgNwD8XU-xHPx7_0_-p_6GVrvNVv88b7bOUYbTjLvzE5OBZUmH5_hCWCbiTxNpu8X_v_r0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atoms+and+Photons%3A+Kinetic+Equations+with+Delay&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Uchaikin%2C+V.+V.&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=260&rft.issue=3&rft.spage=335&rft.epage=370&rft_id=info:doi/10.1007%2Fs10958-022-05698-y&rft.externalDocID=10_1007_s10958_022_05698_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |