High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions

An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and f...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 32; no. 17; pp. 4350 - 4357
Main Authors Santa Rosa, D.T., Pinto, D.G., Silva, V.S., Silva, R.A., Rangel, C.M.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and flow rate were varied in order to identify situations that could arise when the PEMFC stack is used in low-power portable PEMFC applications. The stack uses an air fan in the edge of the cathode manifolds, combining high stoichiometric oxidant supply and stack cooling purposes. In comparison with natural convection air-breathing stacks, the air dual-function approach brings higher stack performances, at the expense of having a lower use of the total stack power output. Although improving the electrochemical reactions kinetics and decreasing the polarization effects, the increase of the stack temperature lead to membrane excessive dehydration (loss of sorbed water), increasing the ohmic resistance of the stack (lower performance). The results show that the stack outputs a maximum power density of 310 mW / cm 2 at 790 mA / cm 2 when operating at ambient temperature, atmospheric air pressure, self-humidifying, air fan voltage at 5.0 V and 250 mbar hydrogen relative pressure. For the studied range of hydrogen relative pressure (150–750 mbar), it is found that the stack performance is practically not affected by this operation condition, although a slightly higher power output for 150 mbar was observed. On the other hand, it is found that the stack performance increases appreciably when operated with forced air convection instead of natural convection. Finally, the continuous fuel flow operation mode does not improve the stack performance in comparison with the hydrogen dead-end mode, in spite of being preferable to operate the stack with hydrogen flow rates above 0.20 l/min.
AbstractList An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and flow rate were varied in order to identify situations that could arise when the PEMFC stack is used in low-power portable PEMFC applications. The stack uses an air fan in the edge of the cathode manifolds, combining high stoichiometric oxidant supply and stack cooling purposes. In comparison with natural convection air-breathing stacks, the air dual-function approach brings higher stack performances, at the expense of having a lower use of the total stack power output. Although improving the electrochemical reactions kinetics and decreasing the polarization effects, the increase of the stack temperature lead to membrane excessive dehydration (loss of sorbed water), increasing the ohmic resistance of the stack (lower performance). The results show that the stack outputs a maximum power density of 310 mW / cm 2 at 790 mA / cm 2 when operating at ambient temperature, atmospheric air pressure, self-humidifying, air fan voltage at 5.0 V and 250 mbar hydrogen relative pressure. For the studied range of hydrogen relative pressure (150–750 mbar), it is found that the stack performance is practically not affected by this operation condition, although a slightly higher power output for 150 mbar was observed. On the other hand, it is found that the stack performance increases appreciably when operated with forced air convection instead of natural convection. Finally, the continuous fuel flow operation mode does not improve the stack performance in comparison with the hydrogen dead-end mode, in spite of being preferable to operate the stack with hydrogen flow rates above 0.20 l/min.
Author Rangel, C.M.
Silva, V.S.
Santa Rosa, D.T.
Pinto, D.G.
Silva, R.A.
Author_xml – sequence: 1
  givenname: D.T.
  surname: Santa Rosa
  fullname: Santa Rosa, D.T.
  organization: SRE—Soluções Racionais de Energia, S.A., Polígono Industrial do Alto do Ameal, Pav. C 13, 2565-641 Ramalhal, Portugal
– sequence: 2
  givenname: D.G.
  surname: Pinto
  fullname: Pinto, D.G.
  organization: SRE—Soluções Racionais de Energia, S.A., Polígono Industrial do Alto do Ameal, Pav. C 13, 2565-641 Ramalhal, Portugal
– sequence: 3
  givenname: V.S.
  surname: Silva
  fullname: Silva, V.S.
  email: vs@sre-fc.com
  organization: SRE—Soluções Racionais de Energia, S.A., Polígono Industrial do Alto do Ameal, Pav. C 13, 2565-641 Ramalhal, Portugal
– sequence: 4
  givenname: R.A.
  surname: Silva
  fullname: Silva, R.A.
  organization: INETI, Unidade de Electroquímica de Materiais, DMTP, Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
– sequence: 5
  givenname: C.M.
  surname: Rangel
  fullname: Rangel, C.M.
  organization: INETI, Unidade de Electroquímica de Materiais, DMTP, Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19892992$$DView record in Pascal Francis
BookMark eNqFkMFOwzAQRC1UJNrCLyBfOCbYcZzEN1DVUqQiOMARWY69IS6tE9kG1L8nUUEcOa12NTOreTM0cZ0DhC4pSSmhxfU2tdv2YMBBmhFSpoSnJM9O0JRWpUhYXpUTNCWsIAmjQpyhWQhbQmhJcjFFr2v71uIefNP5vXIa8NPyYbXAISr9jr9sbHHXg0u0im1nAKuI1b624CLuPYTw4YebMzjCfghRcdx154yNtnPhHJ02ahfg4mfO0ctq-bxYJ5vHu_vF7SbRrGIxaUzDy6IwAKKshRHUZJkRhGe85HVdM-BENbUmihtWCaWKUmmTQSMMy0TOKZuj4pirfReCh0b23u6VP0hK5AhJbuUvJDlCkoTLAdJgvDoaexW02jV-QGDDn1tUIhNi1N0cdTC0-LTgZdADBA3GetBRms7-9-obhy6Ekw
CODEN IJHEDX
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_08_003
crossref_primary_10_1016_j_rser_2015_08_058
crossref_primary_10_6110_KJACR_2012_24_2_091
crossref_primary_10_1016_j_egypro_2012_09_002
crossref_primary_10_1016_j_renene_2023_119608
crossref_primary_10_1088_1742_6596_2009_1_012025
crossref_primary_10_1016_j_ijhydene_2015_07_066
crossref_primary_10_1016_j_ijhydene_2019_09_113
crossref_primary_10_1021_acsnano_7b01880
crossref_primary_10_1016_j_renene_2023_05_134
crossref_primary_10_3390_mi14020286
crossref_primary_10_4028_www_scientific_net_AMR_939_630
crossref_primary_10_20964_2022_06_42
crossref_primary_10_1016_j_ijhydene_2020_05_108
crossref_primary_10_3390_wevj12030106
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119771
crossref_primary_10_1016_j_electacta_2014_04_003
crossref_primary_10_1016_j_compstruct_2015_12_061
crossref_primary_10_1016_j_ijhydene_2013_01_149
crossref_primary_10_3390_en13174393
crossref_primary_10_1016_j_apenergy_2022_118646
crossref_primary_10_1016_j_ijhydene_2022_08_015
crossref_primary_10_1016_j_jpowsour_2008_02_020
crossref_primary_10_1016_j_renene_2022_06_092
crossref_primary_10_1016_j_ijhydene_2011_09_138
crossref_primary_10_1016_j_ijhydene_2011_12_110
crossref_primary_10_1016_j_ijhydene_2009_12_087
crossref_primary_10_1016_j_ijhydene_2022_06_027
crossref_primary_10_1016_j_seta_2021_101681
crossref_primary_10_1016_j_pnsc_2020_08_011
crossref_primary_10_1016_j_ijhydene_2019_01_095
crossref_primary_10_1016_j_ijhydene_2013_12_180
crossref_primary_10_1039_C9SE00861F
crossref_primary_10_1115_1_4007792
crossref_primary_10_1016_j_ijhydene_2013_10_156
crossref_primary_10_1016_j_ijhydene_2020_09_133
crossref_primary_10_1016_j_ijhydene_2011_07_028
crossref_primary_10_1016_j_apenergy_2012_12_056
crossref_primary_10_1016_j_ijhydene_2020_07_102
crossref_primary_10_1002_er_3380
crossref_primary_10_3390_en15176262
crossref_primary_10_1016_j_renene_2022_06_132
crossref_primary_10_1016_j_jpowsour_2010_02_083
crossref_primary_10_1016_j_jpowsour_2024_234409
crossref_primary_10_1149_2_0261702jes
crossref_primary_10_1016_j_electacta_2016_04_018
crossref_primary_10_1016_j_electacta_2012_11_088
crossref_primary_10_1149_2_025310jes
crossref_primary_10_1016_j_ijhydene_2015_07_040
crossref_primary_10_1016_j_ijhydene_2022_05_175
crossref_primary_10_1016_j_jpowsour_2014_07_072
crossref_primary_10_1016_j_apenergy_2020_116359
crossref_primary_10_1016_j_apenergy_2013_04_091
crossref_primary_10_1016_j_ijhydene_2021_05_135
crossref_primary_10_20964_2019_01_01
crossref_primary_10_1016_j_electacta_2022_140154
crossref_primary_10_1016_j_enconman_2015_07_082
crossref_primary_10_1016_j_ijhydene_2013_01_132
crossref_primary_10_1016_j_ijepes_2011_08_025
crossref_primary_10_1016_j_ijhydene_2023_07_340
crossref_primary_10_1016_j_jpowsour_2008_07_019
crossref_primary_10_1115_1_4025054
crossref_primary_10_3390_membranes13110881
crossref_primary_10_1016_j_ijhydene_2024_01_045
crossref_primary_10_1016_j_jpowsour_2010_12_093
crossref_primary_10_1016_j_enconman_2019_06_034
crossref_primary_10_1016_j_electacta_2015_08_106
crossref_primary_10_1016_j_ijhydene_2021_01_044
crossref_primary_10_1016_j_ijhydene_2014_04_194
crossref_primary_10_1016_j_ijhydene_2011_04_233
crossref_primary_10_1016_j_apcatb_2011_12_001
crossref_primary_10_1016_j_jpowsour_2015_04_101
crossref_primary_10_1016_j_enconman_2024_118440
crossref_primary_10_1061__ASCE_EY_1943_7897_0000090
crossref_primary_10_1016_j_jpowsour_2009_09_033
crossref_primary_10_1016_j_applthermaleng_2024_122709
crossref_primary_10_1016_j_energy_2014_05_079
crossref_primary_10_1016_j_jpowsour_2008_02_001
crossref_primary_10_1016_j_applthermaleng_2013_11_012
crossref_primary_10_1016_j_energy_2024_131559
crossref_primary_10_1016_j_jpowsour_2019_03_071
crossref_primary_10_1016_j_proeng_2011_12_691
crossref_primary_10_1016_j_egypro_2015_11_541
crossref_primary_10_1016_j_jpowsour_2015_07_069
crossref_primary_10_1016_j_rser_2022_112558
crossref_primary_10_1002_adem_202400142
crossref_primary_10_1016_j_renene_2011_06_037
crossref_primary_10_1016_j_ijhydene_2015_04_025
crossref_primary_10_1016_j_apenergy_2024_123289
crossref_primary_10_1016_j_applthermaleng_2020_115779
crossref_primary_10_1016_j_seta_2023_103517
crossref_primary_10_3390_en16227472
crossref_primary_10_1016_j_ijhydene_2020_10_258
crossref_primary_10_1016_j_jpowsour_2008_11_069
crossref_primary_10_1016_j_electacta_2016_06_068
crossref_primary_10_1016_j_ijhydene_2020_06_171
ContentType Journal Article
Copyright 2007 International Association for Hydrogen Energy
2008 INIST-CNRS
Copyright_xml – notice: 2007 International Association for Hydrogen Energy
– notice: 2008 INIST-CNRS
DBID IQODW
AAYXX
CITATION
DOI 10.1016/j.ijhydene.2007.05.042
DatabaseName Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3487
EndPage 4357
ExternalDocumentID 10_1016_j_ijhydene_2007_05_042
19892992
S0360319907003321
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c383t-fdf5766dee97b9d91d22d9052575bbb3e50afbc0a5d389aa67acd2ef9d3294513
IEDL.DBID AIKHN
ISSN 0360-3199
IngestDate Thu Sep 26 17:35:51 EDT 2024
Sun Oct 22 16:07:34 EDT 2023
Fri Feb 23 02:27:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Forced convection air-breathing cathode
PEMFC stack
Open-air cathode manifold stack
Cathode
Hydrogen
Natural convection
Kinetics
Performance
Proton exchange membrane fuel cells
Comparative study
Operating conditions
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-fdf5766dee97b9d91d22d9052575bbb3e50afbc0a5d389aa67acd2ef9d3294513
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2007_05_042
pascalfrancis_primary_19892992
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2007_05_042
PublicationCentury 2000
PublicationDate 2007-12-01
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of hydrogen energy
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Baoa, Ouyanga, Yib (bib22) 2006; 31
Chen, Hickner, Noble (bib19) 2005; 29
Noponen, Mennola, Mikkola, Hottinen, Luna (bib23) 2002; 106
Sohn, Park, Yang, Yoon, Lee, Yim (bib26) 2005; 145
Santarelli, Torchio (bib15) 2007; 48
Yoon, Lee, Yang, Park, Kim (bib13) 2003; 118
Ferng, Sun, Su (bib20) 2003; 27
Su, Chiu, Weng (bib17) 2005; 29
Chu, Jiang (bib25) 1999; 83
Knights, Colbow, St-Pierre, Wilkinson (bib28) 2004; 127
Dong Z, Shen J. Solid cage fuel cell stack. Patent US 6 720 101 B1; 2004.
Acosta, Merten, Eigenberger, Class, Helmig, Thoben (bib6) 2006; 159
Larminie, Dicks (bib9) 2003
Goldpaygan, Ashgriz (bib18) 2005; 29
Ahn, Shin, Ha, Hong, Lee, Lim (bib2) 2002; 106
Zhu, Kee (bib5) 2003; 117
Whishart, Dong, Secanell (bib7) 2006; 161
Zawodzinski, Springer, Uribe, Gottersfeld (bib14) 1993; 60
Watanable, Uchida, Seki, Emori (bib10) 1996; 143
Qi, Kaufman (bib4) 2003; 114
Leahy S. Active flow control of lab-scale solid polymer electrolyte fuel cells. Master thesis, Georgia Institute of Technology; 2004.
Hottinen, Mikkola, Lund (bib3) 2004; 129
Fowler, Mann, Amphlett, Peppley, Roberge (bib16) 2002; 106
Liu, Mao, Wang, Zhuge, Zhang (bib27) 2006; 160
Silva VS, Mendes A, Madeira LM, Nunes S. Membranes for direct methanol fuel cell applications: analysis based on characterization, experimentation and modeling. In: Zhang X, editors. Advances in fuel cells. 2005. p. 57–80.
Rodatz, Onder, Guzzella (bib21) 2005; 1
Fabian, Posner, O’Hayre, Cha, Eaton, Prinz (bib24) 2006; 161
Mao (bib1) 2005
References_xml – volume: 106
  start-page: 295
  year: 2002
  ident: bib2
  article-title: Performance and lifetime analysis of the kW-class PEMFC stack
  publication-title: J Power Sources
  contributor:
    fullname: Lim
– volume: 145
  start-page: 604
  year: 2005
  ident: bib26
  article-title: Operating characteristic of an air-cooling PEMFC for portable applications
  publication-title: J Power Sources
  contributor:
    fullname: Yim
– volume: 29
  start-page: 1113
  year: 2005
  ident: bib19
  article-title: Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface
  publication-title: Int J Energy Res
  contributor:
    fullname: Noble
– year: 2005
  ident: bib1
  article-title: Fuel cells
  contributor:
    fullname: Mao
– volume: 118
  start-page: 193
  year: 2003
  ident: bib13
  article-title: Current distribution in a single cell of PEMFC
  publication-title: J Power Sources
  contributor:
    fullname: Kim
– volume: 60
  start-page: 199
  year: 1993
  ident: bib14
  article-title: Characterization of polymer electrolytes for fuel cell applications
  publication-title: Solid State Ionics
  contributor:
    fullname: Gottersfeld
– volume: 161
  start-page: 168
  year: 2006
  ident: bib24
  article-title: The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell
  publication-title: J Power Source
  contributor:
    fullname: Prinz
– volume: 129
  start-page: 68
  year: 2004
  ident: bib3
  article-title: Evaluation of planar free-breathing polymer electrolyte membrane fuel cell design
  publication-title: J Power Sources
  contributor:
    fullname: Lund
– volume: 114
  start-page: 21
  year: 2003
  ident: bib4
  article-title: Quick and effective activation of proton-exchange membrane fuel cells
  publication-title: J Power Sources
  contributor:
    fullname: Kaufman
– volume: 31
  start-page: 1879
  year: 2006
  ident: bib22
  article-title: Modelling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Yib
– volume: 127
  start-page: 127
  year: 2004
  ident: bib28
  article-title: Aging mechanisms and lifetime of PEFC and DMFC
  publication-title: J Power Sources
  contributor:
    fullname: Wilkinson
– volume: 143
  year: 1996
  ident: bib10
  article-title: Self-humidifying polymer electrolyte membranes for fuel cells
  publication-title: J Electrochem Soc
  contributor:
    fullname: Emori
– volume: 29
  start-page: 409
  year: 2005
  ident: bib17
  article-title: The impact of flow field pattern on the concentration and performance in PEMFC
  publication-title: Int J Energy Res
  contributor:
    fullname: Weng
– volume: 159
  start-page: 1123
  year: 2006
  ident: bib6
  article-title: Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells
  publication-title: J Power Sources
  contributor:
    fullname: Thoben
– volume: 48
  start-page: 40
  year: 2007
  ident: bib15
  article-title: Experimental analysis of the effects of the operating variables on the performance of a single PEMFC
  publication-title: Energy Convers Manage
  contributor:
    fullname: Torchio
– volume: 29
  start-page: 1027
  year: 2005
  ident: bib18
  article-title: Effect of oxidant properties on the mobility of water droplets in the channels of the PEM fuel cell
  publication-title: Int J Energy Res
  contributor:
    fullname: Ashgriz
– volume: 83
  start-page: 128
  year: 1999
  ident: bib25
  article-title: Performance of polymer electrolyte membrane fuel cell stacks, part I. Evaluation and simulation of an air-breathing PEMFC stack
  publication-title: J Power Sources
  contributor:
    fullname: Jiang
– volume: 106
  start-page: 274
  year: 2002
  ident: bib16
  article-title: Incorporation of voltage degradation into a generalized steady state electrochemical model for PEM fuel cell
  publication-title: J Power Sources
  contributor:
    fullname: Roberge
– year: 2003
  ident: bib9
  article-title: Fuel cell system explained
  contributor:
    fullname: Dicks
– volume: 106
  start-page: 304
  year: 2002
  ident: bib23
  article-title: Measurement of current distribution in a free-breathing PEMFC
  publication-title: J Power Sources
  contributor:
    fullname: Luna
– volume: 161
  start-page: 1041
  year: 2006
  ident: bib7
  article-title: Optimization of a PEM fuel cell system based on empirical data and generalized electrochemical semi-empirical model
  publication-title: J Power Sources
  contributor:
    fullname: Secanell
– volume: 117
  start-page: 61
  year: 2003
  ident: bib5
  article-title: A general mathematical model for analyzing the performance of fuel cell membrane electrode assemblies
  publication-title: J Power Sources
  contributor:
    fullname: Kee
– volume: 27
  start-page: 495
  year: 2003
  ident: bib20
  article-title: Numerical simulation of thermal-hydraulic characteristics in a proton exchange membrane fuel cell
  publication-title: Int J Energy Res
  contributor:
    fullname: Su
– volume: 160
  start-page: 1111
  year: 2006
  ident: bib27
  article-title: Numerical simulation of a mini PEMFC stack
  publication-title: J Power Sources
  contributor:
    fullname: Zhang
– volume: 1
  start-page: 5
  year: 2005
  ident: bib21
  article-title: Air supply system of a PEMFC stack dynamic model
  publication-title: Fuel Cells
  contributor:
    fullname: Guzzella
SSID ssj0017049
Score 2.2816105
Snippet An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating...
SourceID crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 4350
SubjectTerms Applied sciences
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Forced convection air-breathing cathode
Fuel cells
Open-air cathode manifold stack
PEMFC stack
Title High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions
URI https://dx.doi.org/10.1016/j.ijhydene.2007.05.042
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8QLxpj_Iz4QXrwOtjKyuiREAhqICZKwsUs_YxgHAuOgxf_dl-3TuBgPHht1q35vfW932vfB0K3ygShJCTwlFDMsxYK9hw1npZKSwoS95W90R2N28NJeD-l0wrqlbkwNqzS6f5Cp-fa2o00HZrNdDZrPoHutSk44N3ZhmQ2mXwXzFEYVtFu9-5hOP65TIgcC4bnPTthI1F43pjNXz9hh2tXzZA2_JD8ZqMOUv4ByJmi5cWGHRocoUNHIHG3WOMxqujkBO1vlBU8RS82eAOn65QA_NgfDXoYiKB8w_bkFdumWZ4t2bpQGvMM83dhEyNxHha7WsJYorAtW-VqLmNwm1UR3XWGJoP-c2_ouTYKngT3M_OMMuBUtJXWLBJMsUARoljev44KIVqa-twI6XOqgL1w3o64VEQbplqEhTRonaNqskj0BcJckg6ngTYdcNukoB0BlIn5AliZ0TzUNdQsgYvTolpGXIaRzeMSatv6Mop9GgPUNcRKfOMtuceg0v-cW98SyPqTDNbHGLn8x8uv0F5-jJtHrlyjarZc6RvgH5moo53GV1B3f9k3AMbc5Q
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHNQY4zPiA3vwurBbtiw9EgIBecRESLiYTZ8RjEAQDv57p7tdgYPx4LXZ7jbfbGe-aeeB0KMyQSgJCTwlFPOshYI9R42npdKSgsR9ZW90B8NaZxw-Tegkh5pZLowNq3S6P9XpibZ2IxWHZmU5nVZeQPfaFBzw7mxDMptMXghpFIR5VGh0e53hz2VC5FgwPO_ZCTuJwrPydPb2BTtcu2qGtOyH5Dcbdbzkn4CcSVte7Nih9ik6cQQSN9I1nqGcnp-jo52yghfo1QZv4OU2JQA_twbtJgYiKN-xPXnFtmmWZ0u2LpTGfI35h7CJkTgJi92sYGyusC1b5WouY3CbVRrddYnG7dao2fFcGwVPgvu59owy4FTUlNYsEkyxQBGiWNK_jgohqpr63Ajpc6qAvXBei7hURBumqoSFNKheofx8MdfXCHNJ6pwG2tTBbZOC1gVQJuYLYGVG81AXUSUDLl6m1TLiLIxsFmdQ29aXUezTGKAuIpbhG-_JPQaV_ufc0p5Atp9ksD7GyM0_Xv6ADjqjQT_ud4e9W3SYHOkmUSx3KL9ebfQ9cJG1KLl_7RtWON7X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+performance+PEMFC+stack+with+open-cathode+at+ambient+pressure+and+temperature+conditions&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Santa+Rosa%2C+D.T.&rft.au=Pinto%2C+D.G.&rft.au=Silva%2C+V.S.&rft.au=Silva%2C+R.A.&rft.date=2007-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=32&rft.issue=17&rft.spage=4350&rft.epage=4357&rft_id=info:doi/10.1016%2Fj.ijhydene.2007.05.042&rft.externalDocID=S0360319907003321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon