Effect of Water–Ethanol Extraction as Pre-Treatment on the Adsorption Properties of Aloe vera Waste

The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water–ethanol solutions at different ethanol concentrations: 0% v/v (AV0), 25% v/v (AV25), and 50% v/v (AV50). The pre-treated mate...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 16; p. 5566
Main Authors Mazzeo, Leone, Bavasso, Irene, Spallieri, Melissa, Bracciale, Maria Paola, Piemonte, Vincenzo, Di Palma, Luca
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water–ethanol solutions at different ethanol concentrations: 0% v/v (AV0), 25% v/v (AV25), and 50% v/v (AV50). The pre-treated materials were characterized as follows: the pHZC was evaluated to be 6, 5.7, and 7.2 for AV0, AV25, and AV50, respectively; from BET-BJH analysis the mesoporous nature of the material and an increase from 108.2 (AV0) to 331.7 (AV50) m2/kg of its solid surface area was observed; TG analysis revealed a significat increase in volatile compounds from the untreated (5.4%) to the treated materials (8.9%, 10.3%, and 11.3% for AV0, AV25, and AV50, respectively). Adsorption batch tests were then performed to investigate the equilibrium, the kinetics, and the thermodynamics of the process. Results suggested that the Langmuir model was in agreement with the experimental results, and values for qmax of 199 mg/g, 311 mg/g, and 346 mg/g were calculated for AV0, AV25, and AV50, respectively. The kinetic results were used to develop a mathematical model to estimate the effective diffusion coefficient for each type of Aloe adopted. Effective diffusion coefficients of 5.43·10−7 cm2/min, 3.89·10−7 cm2/min, and 5.78·10−7 cm2/min were calculated for AV0, AV25, and AV50, respectively. It was found that pre-treatment, on the one hand, enhances the adsorption capacity of the material and on the other, reduces its affinity toward MB uptake.
AbstractList The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water-ethanol solutions at different ethanol concentrations: 0% v/v (AV0), 25% v/v (AV25), and 50% v/v (AV50). The pre-treated materials were characterized as follows: the pHZC was evaluated to be 6, 5.7, and 7.2 for AV0, AV25, and AV50, respectively; from BET-BJH analysis the mesoporous nature of the material and an increase from 108.2 (AV0) to 331.7 (AV50) m2/kg of its solid surface area was observed; TG analysis revealed a significat increase in volatile compounds from the untreated (5.4%) to the treated materials (8.9%, 10.3%, and 11.3% for AV0, AV25, and AV50, respectively). Adsorption batch tests were then performed to investigate the equilibrium, the kinetics, and the thermodynamics of the process. Results suggested that the Langmuir model was in agreement with the experimental results, and values for qmax of 199 mg/g, 311 mg/g, and 346 mg/g were calculated for AV0, AV25, and AV50, respectively. The kinetic results were used to develop a mathematical model to estimate the effective diffusion coefficient for each type of Aloe adopted. Effective diffusion coefficients of 5.43·10-7 cm2/min, 3.89·10-7 cm2/min, and 5.78·10-7 cm2/min were calculated for AV0, AV25, and AV50, respectively. It was found that pre-treatment, on the one hand, enhances the adsorption capacity of the material and on the other, reduces its affinity toward MB uptake.The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water-ethanol solutions at different ethanol concentrations: 0% v/v (AV0), 25% v/v (AV25), and 50% v/v (AV50). The pre-treated materials were characterized as follows: the pHZC was evaluated to be 6, 5.7, and 7.2 for AV0, AV25, and AV50, respectively; from BET-BJH analysis the mesoporous nature of the material and an increase from 108.2 (AV0) to 331.7 (AV50) m2/kg of its solid surface area was observed; TG analysis revealed a significat increase in volatile compounds from the untreated (5.4%) to the treated materials (8.9%, 10.3%, and 11.3% for AV0, AV25, and AV50, respectively). Adsorption batch tests were then performed to investigate the equilibrium, the kinetics, and the thermodynamics of the process. Results suggested that the Langmuir model was in agreement with the experimental results, and values for qmax of 199 mg/g, 311 mg/g, and 346 mg/g were calculated for AV0, AV25, and AV50, respectively. The kinetic results were used to develop a mathematical model to estimate the effective diffusion coefficient for each type of Aloe adopted. Effective diffusion coefficients of 5.43·10-7 cm2/min, 3.89·10-7 cm2/min, and 5.78·10-7 cm2/min were calculated for AV0, AV25, and AV50, respectively. It was found that pre-treatment, on the one hand, enhances the adsorption capacity of the material and on the other, reduces its affinity toward MB uptake.
The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water–ethanol solutions at different ethanol concentrations: 0% v/v (AV0), 25% v/v (AV25), and 50% v/v (AV50). The pre-treated materials were characterized as follows: the pHZC was evaluated to be 6, 5.7, and 7.2 for AV0, AV25, and AV50, respectively; from BET-BJH analysis the mesoporous nature of the material and an increase from 108.2 (AV0) to 331.7 (AV50) m2/kg of its solid surface area was observed; TG analysis revealed a significat increase in volatile compounds from the untreated (5.4%) to the treated materials (8.9%, 10.3%, and 11.3% for AV0, AV25, and AV50, respectively). Adsorption batch tests were then performed to investigate the equilibrium, the kinetics, and the thermodynamics of the process. Results suggested that the Langmuir model was in agreement with the experimental results, and values for qmax of 199 mg/g, 311 mg/g, and 346 mg/g were calculated for AV0, AV25, and AV50, respectively. The kinetic results were used to develop a mathematical model to estimate the effective diffusion coefficient for each type of Aloe adopted. Effective diffusion coefficients of 5.43·10−7 cm2/min, 3.89·10−7 cm2/min, and 5.78·10−7 cm2/min were calculated for AV0, AV25, and AV50, respectively. It was found that pre-treatment, on the one hand, enhances the adsorption capacity of the material and on the other, reduces its affinity toward MB uptake.
The adsorption properties of Aloe vera ( Aloe barbadensis Miller ) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water–ethanol solutions at different ethanol concentrations: 0% v / v (AV0), 25% v / v (AV25), and 50% v / v (AV50). The pre-treated materials were characterized as follows: the pHZC was evaluated to be 6, 5.7, and 7.2 for AV0, AV25, and AV50, respectively; from BET-BJH analysis the mesoporous nature of the material and an increase from 108.2 (AV0) to 331.7 (AV50) m 2 /kg of its solid surface area was observed; TG analysis revealed a significat increase in volatile compounds from the untreated (5.4%) to the treated materials (8.9%, 10.3%, and 11.3% for AV0, AV25, and AV50, respectively). Adsorption batch tests were then performed to investigate the equilibrium, the kinetics, and the thermodynamics of the process. Results suggested that the Langmuir model was in agreement with the experimental results, and values for q max of 199 mg/g, 311 mg/g, and 346 mg/g were calculated for AV0, AV25, and AV50, respectively. The kinetic results were used to develop a mathematical model to estimate the effective diffusion coefficient for each type of Aloe adopted. Effective diffusion coefficients of 5.43·10 −7 cm 2 /min, 3.89·10 −7 cm 2 /min, and 5.78·10 −7 cm 2 /min were calculated for AV0, AV25, and AV50, respectively. It was found that pre-treatment, on the one hand, enhances the adsorption capacity of the material and on the other, reduces its affinity toward MB uptake.
Author Bracciale, Maria Paola
Di Palma, Luca
Mazzeo, Leone
Bavasso, Irene
Spallieri, Melissa
Piemonte, Vincenzo
AuthorAffiliation 2 Department of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
1 Department of Chemical Engineering Materials & Environment, Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
AuthorAffiliation_xml – name: 1 Department of Chemical Engineering Materials & Environment, Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
– name: 2 Department of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
Author_xml – sequence: 1
  givenname: Leone
  orcidid: 0000-0002-7302-3567
  surname: Mazzeo
  fullname: Mazzeo, Leone
– sequence: 2
  givenname: Irene
  orcidid: 0000-0003-2736-4915
  surname: Bavasso
  fullname: Bavasso, Irene
– sequence: 3
  givenname: Melissa
  surname: Spallieri
  fullname: Spallieri, Melissa
– sequence: 4
  givenname: Maria Paola
  orcidid: 0000-0002-3863-1188
  surname: Bracciale
  fullname: Bracciale, Maria Paola
– sequence: 5
  givenname: Vincenzo
  orcidid: 0000-0002-2421-3938
  surname: Piemonte
  fullname: Piemonte, Vincenzo
– sequence: 6
  givenname: Luca
  orcidid: 0000-0003-4838-7227
  surname: Di Palma
  fullname: Di Palma, Luca
BookMark eNptkctKAzEUQINUtD42fsGAGxFGk8lMZrIRSqkPEHRRcRky6Y0dmUlqkhbd-Q_-oV9iais-MJsEcu65rx3UM9YAQgcEn1DK8WknSUFYUTC2gfqEc5YSnue9H-9ttO_9I46HUlJlfAttU4YJLTHtIxhpDSokVif3MoB7f30bhak0tk1Gz8FJFRprEumTWwfp2IEMHZiImyRMIRlMvHWzT-TW2Rm40IBfugathWQBTkarD7CHNrVsPeyv7110dz4aDy_T65uLq-HgOlW0oiHVuJwoVRNGc6YVL1ReaQxZVSsCHEOds5pQXnLMdWxOZkTyoqY5LqqyrieZpLvobOWdzesOJiqW6mQrZq7ppHsRVjbi949ppuLBLgTPSZZVJAqO1gJnn-bgg-gar6BtpQE79yIrcVnFybEqood_0Ec7dya2t6RYxnBJ8kjhFaWc9d6BFqoJcjmxmL9pBcFiuUbxvcYYcvwn5Kv-f-APHdee_A
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e29455
crossref_primary_10_1016_j_jssc_2023_123912
crossref_primary_10_3390_ma16041450
Cites_doi 10.1016/j.jct.2012.06.022
10.1016/j.jhazmat.2005.01.029
10.1016/S0043-1354(01)00056-2
10.1177/0263617416684517
10.3390/app9224856
10.1016/j.jhazmat.2008.05.120
10.3390/molecules26092652
10.3390/w12072016
10.1016/j.jhazmat.2009.12.047
10.3390/pr9050782
10.1016/j.jenvman.2008.11.017
10.1007/s00449-012-0864-4
10.1007/978-3-030-47400-3_15
10.1016/j.jhazmat.2006.09.092
10.1016/j.jece.2020.104418
10.1021/la700694b
10.1016/j.desal.2007.03.003
10.1016/j.jhazmat.2007.10.031
10.1016/j.hermed.2018.01.002
10.1146/annurev-environ-100809-125342
10.1016/j.desal.2005.10.032
10.1023/A:1005197308228
10.1016/j.jhazmat.2009.01.014
10.1016/j.jhazmat.2007.05.023
10.1016/j.desal.2008.11.017
10.1021/j100723a018
10.1016/j.cherd.2010.11.003
10.1016/j.aej.2016.03.017
10.3390/molecules13081599
10.1016/j.jenvman.2018.08.064
10.1016/j.jhazmat.2006.02.029
10.1021/ja00463a035
10.1023/A:1008937210953
10.1016/S0304-3894(02)00017-1
10.1007/s11356-021-13332-8
10.1016/j.molliq.2020.112455
10.1016/j.cherd.2022.07.025
10.1016/j.marpolbul.2020.111773
10.1590/S0101-20612013005000002
10.3390/molecules24081554
10.1016/j.jhazmat.2008.07.131
10.1016/j.scp.2019.100168
10.1016/j.jksus.2018.05.022
10.1016/j.jhazmat.2008.11.019
10.15244/pjoes/66769
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15165566
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC9412281
10_3390_ma15165566
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c383t-f07dccb16346fc95c48f0e28bc1e90eb46b1397909f996a21a95b340587bbd2a3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 14:12:53 EDT 2025
Thu Jul 10 22:29:34 EDT 2025
Fri Jul 25 11:46:12 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 03:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-f07dccb16346fc95c48f0e28bc1e90eb46b1397909f996a21a95b340587bbd2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4838-7227
0000-0003-2736-4915
0000-0002-7302-3567
0000-0002-3863-1188
0000-0002-2421-3938
OpenAccessLink https://www.proquest.com/docview/2706260714?pq-origsite=%requestingapplication%
PMID 36013703
PQID 2706260714
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9412281
proquest_miscellaneous_2707837068
proquest_journals_2706260714
crossref_citationtrail_10_3390_ma15165566
crossref_primary_10_3390_ma15165566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220813
PublicationDateYYYYMMDD 2022-08-13
PublicationDate_xml – month: 8
  year: 2022
  text: 20220813
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Noubigh (ref_22) 2012; 55
Tan (ref_3) 2008; 154
McKay (ref_27) 1999; 114
Hong (ref_40) 2009; 167
ref_14
Mazzeo (ref_28) 2022; 186
Meshko (ref_45) 2001; 35
Sostaric (ref_32) 2015; 7
Benzidia (ref_37) 2019; 31
Manes (ref_43) 1969; 73
ref_10
Puc (ref_13) 2019; 14
Lafi (ref_42) 2007; 217
Panagopoulos (ref_5) 2020; 161
Gong (ref_30) 2005; 121
Pavan (ref_31) 2008; 150
Panagopoulos (ref_6) 2021; 28
ref_16
ref_38
Maan (ref_11) 2018; 12
Perdoncin (ref_24) 1977; 99
(ref_46) 2017; 35
Hameed (ref_25) 2009; 162
Tan (ref_15) 2013; 36
Yao (ref_47) 2020; 301
Uddin (ref_29) 2009; 164
Hamman (ref_12) 2008; 13
Baup (ref_48) 2000; 6
Giovagnoli (ref_21) 2013; 33
Bulut (ref_36) 2006; 194
Annadurai (ref_33) 2002; 92
Gupta (ref_7) 2009; 90
ref_44
ref_20
Franca (ref_35) 2009; 249
Hanafiah (ref_18) 2018; 17
Panagopoulos (ref_4) 2020; 8
Hameed (ref_26) 2009; 166
Schwarzenbach (ref_8) 2010; 35
Dursun (ref_41) 2007; 144
Postai (ref_39) 2016; 55
Sulyman (ref_9) 2017; 26
Zanchi (ref_23) 2007; 23
Han (ref_34) 2006; 137
Rafatullah (ref_2) 2010; 177
Gironi (ref_19) 2011; 89
Giannakoudakis (ref_17) 2018; 227
Sardar (ref_1) 2021; 49
References_xml – volume: 55
  start-page: 75
  year: 2012
  ident: ref_22
  article-title: Solubility of gallic acid in liquid mixtures of (ethanol+water) from (293.15 to 318.15)K
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2012.06.022
– volume: 121
  start-page: 247
  year: 2005
  ident: ref_30
  article-title: Removal of cationic dyes from aqueous solution by adsorption on peanut hull
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.01.029
– volume: 35
  start-page: 3357
  year: 2001
  ident: ref_45
  article-title: Adsorption of basic dyes on granular acivated carbon and natural zeolite
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00056-2
– volume: 35
  start-page: 789
  year: 2017
  ident: ref_46
  article-title: Phenol and methylene blue adsorption on heat-treated activated carbon: Characterization, kinetics, and equilibrium studies
  publication-title: Adsorpt. Sci. Technol.
  doi: 10.1177/0263617416684517
– ident: ref_38
  doi: 10.3390/app9224856
– volume: 162
  start-page: 939
  year: 2009
  ident: ref_25
  article-title: Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.05.120
– ident: ref_20
  doi: 10.3390/molecules26092652
– ident: ref_10
  doi: 10.3390/w12072016
– volume: 177
  start-page: 70
  year: 2010
  ident: ref_2
  article-title: Adsorption of methylene blue on low-cost adsorbents: A review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.12.047
– ident: ref_16
  doi: 10.3390/pr9050782
– volume: 90
  start-page: 2313
  year: 2009
  ident: ref_7
  article-title: Suhas Application of low-cost adsorbents for dye removal—A review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2008.11.017
– volume: 36
  start-page: 1105
  year: 2013
  ident: ref_15
  article-title: Extraction and purification of anthraquinones derivatives from Aloe vera L. using alcohol/salt aqueous two-phase system
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-012-0864-4
– volume: 49
  start-page: 377
  year: 2021
  ident: ref_1
  article-title: Remediation of Dyes from Industrial Wastewater Using Low-Cost Adsorbents
  publication-title: Environ. Chem. Sustain. World Green Adsorbents Remove Met. Dye. Boron Polluted Water
  doi: 10.1007/978-3-030-47400-3_15
– volume: 144
  start-page: 171
  year: 2007
  ident: ref_41
  article-title: Methylene blue adsorption from aqueous solution by dehydrated peanut hull
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.09.092
– volume: 17
  start-page: 1055
  year: 2018
  ident: ref_18
  article-title: Methylene blue adsorption on aloe vera rind powder: Kinetics, isotherm and mechanisms
  publication-title: Nat. Environ. Pollut. Technol.
– volume: 8
  start-page: 104418
  year: 2020
  ident: ref_4
  article-title: Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery – Analysis, challenges and prospects
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104418
– ident: ref_44
– volume: 23
  start-page: 9949
  year: 2007
  ident: ref_23
  article-title: Colloidal Dispersions of Tannins in Water−Ethanol Solutions
  publication-title: Langmuir
  doi: 10.1021/la700694b
– volume: 217
  start-page: 212
  year: 2007
  ident: ref_42
  article-title: Adsorption of methylene blue by acid and heat treated diatomaceous silica
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.03.003
– volume: 154
  start-page: 337
  year: 2008
  ident: ref_3
  article-title: Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.031
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_11
  article-title: The therapeutic properties and applications of Aloe vera: A review
  publication-title: J. Herb. Med.
  doi: 10.1016/j.hermed.2018.01.002
– volume: 35
  start-page: 109
  year: 2010
  ident: ref_8
  article-title: Global Water Pollution and Human Health
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-100809-125342
– volume: 194
  start-page: 259
  year: 2006
  ident: ref_36
  article-title: A kinetics and thermodynamics study of methylene blue adsorption on wheat shells
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.10.032
– volume: 114
  start-page: 423
  year: 1999
  ident: ref_27
  article-title: The Removal of Dye Colours from Aqueous Solutions by Adsorption on Low-cost Materials
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1005197308228
– volume: 167
  start-page: 630
  year: 2009
  ident: ref_40
  article-title: Adsorption thermodynamics of Methylene Blue onto bentonite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.01.014
– volume: 150
  start-page: 703
  year: 2008
  ident: ref_31
  article-title: Methylene blue biosorption from aqueous solutions by yellow passion fruit waste
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.05.023
– volume: 249
  start-page: 267
  year: 2009
  ident: ref_35
  article-title: Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.11.017
– volume: 73
  start-page: 584
  year: 1969
  ident: ref_43
  article-title: Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100723a018
– volume: 89
  start-page: 857
  year: 2011
  ident: ref_19
  article-title: Temperature and solvent effects on polyphenol extraction process from chestnut tree wood
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.11.003
– volume: 55
  start-page: 1713
  year: 2016
  ident: ref_39
  article-title: Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.03.017
– volume: 13
  start-page: 1599
  year: 2008
  ident: ref_12
  article-title: Composition and Applications of Aloe vera Leaf Gel
  publication-title: Molecules
  doi: 10.3390/molecules13081599
– volume: 227
  start-page: 354
  year: 2018
  ident: ref_17
  article-title: Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.08.064
– volume: 137
  start-page: 550
  year: 2006
  ident: ref_34
  article-title: Removal of methylene blue from aqueous solution by chaff in batch mode
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.02.029
– volume: 99
  start-page: 6983
  year: 1977
  ident: ref_24
  article-title: Protonation Equilibria in Water at Several Temperatures of Alcohols, Ethers, acetone, Dimethyl Sulfide, and Dimethyl Sulfoxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00463a035
– volume: 6
  start-page: 219
  year: 2000
  ident: ref_48
  article-title: Adsorption of Pesticides onto Granular Activated Carbon: Determination of Surface Diffusivities Using Simple Batch Experiments
  publication-title: Adsorption
  doi: 10.1023/A:1008937210953
– volume: 92
  start-page: 263
  year: 2002
  ident: ref_33
  article-title: Use of cellulose-based wastes for adsorption of dyes from aqueous solutions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(02)00017-1
– volume: 28
  start-page: 21009
  year: 2021
  ident: ref_6
  article-title: Water-energy nexus: Desalination technologies and renewable energy sources
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13332-8
– volume: 301
  start-page: 112455
  year: 2020
  ident: ref_47
  article-title: A new method of characterizing mass transfer controlling mechanism in pollutant adsorption from aqueous solutions
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112455
– volume: 186
  start-page: 13
  year: 2022
  ident: ref_28
  article-title: Characterization of waste roots from the As hyperaccumulator Pteris vittata as low-cost adsorbent for Methylene Blue removal
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.07.025
– volume: 161
  start-page: 111773
  year: 2020
  ident: ref_5
  article-title: Environmental impacts of desalination and brine treatment—Challenges and mitigation measures
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2020.111773
– volume: 33
  start-page: 52
  year: 2013
  ident: ref_21
  article-title: Chemical and physical properties of aloe vera (Aloe barbadensis Miller) gel stored after high hydrostatic pressure processing
  publication-title: Cienc. e Tecnol. Aliment.
  doi: 10.1590/S0101-20612013005000002
– ident: ref_14
  doi: 10.3390/molecules24081554
– volume: 164
  start-page: 53
  year: 2009
  ident: ref_29
  article-title: Rukanuzzaman Adsorptive removal of methylene blue by tea waste
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.07.131
– volume: 14
  start-page: 100168
  year: 2019
  ident: ref_13
  article-title: Extraction of phenolic components from an Aloe vera (Aloe barbadensis Miller) crop and their potential as antimicrobials and textile dyes
  publication-title: Sustain. Chem. Pharm.
  doi: 10.1016/j.scp.2019.100168
– volume: 31
  start-page: 1175
  year: 2019
  ident: ref_37
  article-title: Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F
  publication-title: J. King Saud Univ.-Sci.
  doi: 10.1016/j.jksus.2018.05.022
– volume: 166
  start-page: 233
  year: 2009
  ident: ref_26
  article-title: Grass waste: A novel sorbent for the removal of basic dye from aqueous solution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.11.019
– volume: 26
  start-page: 479
  year: 2017
  ident: ref_9
  article-title: Low-cost Adsorbents Derived from Agricultural By-products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/66769
– volume: 7
  start-page: 107
  year: 2015
  ident: ref_32
  article-title: Biosorption of methylene blue by waste apricot shells from food industry
  publication-title: J. Eng. Process. Manag.
SSID ssj0000331829
Score 2.3569748
Snippet The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the...
The adsorption properties of Aloe vera ( Aloe barbadensis Miller ) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5566
SubjectTerms Adsorbents
Adsorption
Aloe
Diffusion
Diffusion coefficient
Dyes
Equilibrium
Ethanol
Mathematical models
Methylene blue
Pollutants
Pretreatment
Solid surfaces
Solvent extraction processes
Thermodynamic equilibrium
Volatile compounds
Water treatment
Title Effect of Water–Ethanol Extraction as Pre-Treatment on the Adsorption Properties of Aloe vera Waste
URI https://www.proquest.com/docview/2706260714
https://www.proquest.com/docview/2707837068
https://pubmed.ncbi.nlm.nih.gov/PMC9412281
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XPQgPnF9EdGLh7JtmrbpSVbZBx5kkV3cW0nSFIW1XdsVPPof_If-Eidt9wXisU1IYWYy-WYy_Qbg2pVScFv6ViiYNAEKtYTgnkUTVzOR-DLWZbXFo98bsoeRN6oTbkVdVjnziaWjjjNlcuRNGtgGewcOu528W6ZrlLldrVtorMMmumCOwdfmXfux_zTPstgu2iwNK15SF-P75pvAM873vJIWcekkWsDL1eLIpdOmsws7NUwkrUqve7Cm033YXiIPPABdEQ-TLCHPCBjzn6_vtsmDZ2PS_pzm1Q8LRBSkn2trMKsnJ_gOMR9pxUWWl-4Cx7OJqa7WhVmrNc40QfsWuCpawCEMO-3Bfc-qmyZYCoPNqZXYQayURJjF_ESFnmI8sTXlUjk6tLVkvjSgL7TDBEMdQR0RetJF2MYDKWMq3CPYSLNUHwNBdCVQfOgTmM2EEpwliJ4CqhBmKE_pBtzMBBipmlHcNLYYRxhZGGFHC2E34Go-d1LxaPw562ymh6jeS0W00HwDLufDuAvM1YZIdfZRzgkMjY_PGxCs6G_-NcOjvTqSvr6UfNohcyjlzsn_Hz-FLWpM2dDhumewMc0_9DkCkqm8gHXe6V7UtodP3ZHzC-2C5lk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF91oYARcOAQ1XGcxD4gtIJdtrRUHLait2A7jkBakiXZCrjxDrwHD8WTMJNs9kdC3HrNWLY0nhl_44y_AXgaWWsUt0mgjbSUoIjAGBUHooi8NEVic99WW5wkk1P59iw-24Hf_VsYKqvsY2IbqPPK0R35gUg5Ye80lC_nXwPqGkV_V_sWGp1ZHPkf3zBla14cvsb9fSbEeDR9NQmWXQUCh9nYIih4mjtnEYfIpHA6dlIV3AtlXeg191YmllCR5rrAXMCI0OjYRohrVGptLkyE816CyzKKNHmUGr9Z3enwCD1E6I4FFeX84IvBEzWJ45aEcePcW4PZ7VLMjbNtfAOuL0EpG3ZWdBN2fHkLrm1QFd4G39Ecs6pgHxCe1n9-_hrRrXs1Y6Pvi7p7HsFMw97XPpj21esMvyHCZMO8qeo2OKG8mlMtt29oruGs8gy9yeCsaG934PRClHkXdsuq9HvAEMsZVB9GIMmlcUbJArFaKhyCGhc7P4DnvQIzt-QvpzYaswzzGFJ2tlb2AJ6sxs471o5_jtrv9yFbem6Tre1sAI9XYvQ5-pFiSl-dt2NSIg1K1ADSrf1brUas3duS8vOnlr1by1AIFd77_-KP4Mpk-u44Oz48OboPVwU5ERHxRvuwu6jP_QOEQgv7sLU_Bh8v2uD_AmUoH-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQOWlBtpiBBw4rOL1eh8-VCiliVqKogi1orfF9toCKeyG3VTAjf_Qf8PP4Zcw3kceEuLWq23Z0nhm_I09_gbgZaCUTKiKPCG5cgEK86RMQo_ZwHBpI5WZOttiEp1c8HeX4eUW_O7-wri0ys4n1o46K7S7Ix-wmDrsHft8YNu0iOnx-M38m-cqSLmX1q6cRqMiZ-bndwzfqsPTY9zrV4yNR-dvT7y2woCnMTJbeJbGmdYKMQmPrBah5omlhiVK-0ZQo3ikHEISVFiMCyTzpQhVgBgniZXKmAxw3luwHWNURHuwfTSaTD8sb3hogPbCRMOJGgSCDr5KPF-jMKwpGddOwRW03UzMXDvpxjtwr4WoZNjo1H3YMvkDuLtGXPgQTEN6TApLPiJYLf_8uh65O_hiRkY_FmXzWYLIikxL4513uewE2xBvkmFWFWXtqrC_mLvMblO5uYazwhC0LYmzovY9gosbEedj6OVFbnaBILKTKD70R5xyqWXCLSK3mGmEODrUpg-vOwGmumUzd0U1ZilGNU7Y6UrYfXixHDtvODz-OWqv24e0teMqXWldH54vu9EC3bOKzE1xVY-JHYVQlPQh3ti_5WqOw3uzJ__yuebyFtxnLPGf_H_xZ3AblT19fzo5ewp3mLMox8ob7EFvUV6ZfcRFC3XQKiCBTzet838BQOIlfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Water-Ethanol+Extraction+as+Pre-Treatment+on+the+Adsorption+Properties+of+Aloe+vera+Waste&rft.jtitle=Materials&rft.au=Mazzeo%2C+Leone&rft.au=Bavasso%2C+Irene&rft.au=Spallieri%2C+Melissa&rft.au=Bracciale%2C+Maria+Paola&rft.date=2022-08-13&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=16&rft_id=info:doi/10.3390%2Fma15165566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon