Electrochemical reduction of carbon dioxide to multicarbon (C) products: challenges and perspectives

Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C 2+ ) compounds with higher energy density are desirable value-added products. Herein, we revie...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 16; no. 11; pp. 4714 - 4758
Main Authors Chang, Bin, Pang, Hong, Raziq, Fazal, Wang, Sibo, Huang, Kuo-Wei, Ye, Jinhua, Zhang, Huabin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C 2+ ) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C 2+ products. We start with the elaboration of the most recent advancement of carbon-carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO 2 activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C 2+ product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several in situ / operando techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C 2+ selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C 2+ products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling. This review analyzes advanced catalysts and C 2+ synthesis mechanisms based on theoretical explorations and in situ / operando characterizations. Triphasic interface optimization is discussed for the potential of industry-compatible stability.
AbstractList Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C 2+ ) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C 2+ products. We start with the elaboration of the most recent advancement of carbon-carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO 2 activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C 2+ product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several in situ / operando techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C 2+ selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C 2+ products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling. This review analyzes advanced catalysts and C 2+ synthesis mechanisms based on theoretical explorations and in situ / operando characterizations. Triphasic interface optimization is discussed for the potential of industry-compatible stability.
Electrocatalytic CO2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C2+) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C2+ products. We start with the elaboration of the most recent advancement of carbon–carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO2 activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C2+ product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several in situ/operando techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C2+ selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C2+ products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling.
Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C 2+ ) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C 2+ products. We start with the elaboration of the most recent advancement of carbon–carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO 2  activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C 2+ product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several in situ / operando techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C 2+ selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C 2+ products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling.
Author Ye, Jinhua
Pang, Hong
Zhang, Huabin
Raziq, Fazal
Huang, Kuo-Wei
Wang, Sibo
Chang, Bin
AuthorAffiliation King Abdullah University of Science and Technology (KAUST)
Fuzhou University
Tsukuba
College of Chemistry
Chemistry Program
International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS)1-1 Namiki
Physical Science and Engineering Division
KAUST Catalysis Center (KCC)
State Key Laboratory of Photocatalysis on Energy and Environment
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Photocatalysis on Energy and Environment
– sequence: 0
  name: Physical Science and Engineering Division
– sequence: 0
  name: Tsukuba
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Chemistry Program
– sequence: 0
  name: King Abdullah University of Science and Technology (KAUST)
– sequence: 0
  name: KAUST Catalysis Center (KCC)
– sequence: 0
  name: International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS)1-1 Namiki
– sequence: 0
  name: Fuzhou University
Author_xml – sequence: 1
  givenname: Bin
  surname: Chang
  fullname: Chang, Bin
– sequence: 2
  givenname: Hong
  surname: Pang
  fullname: Pang, Hong
– sequence: 3
  givenname: Fazal
  surname: Raziq
  fullname: Raziq, Fazal
– sequence: 4
  givenname: Sibo
  surname: Wang
  fullname: Wang, Sibo
– sequence: 5
  givenname: Kuo-Wei
  surname: Huang
  fullname: Huang, Kuo-Wei
– sequence: 6
  givenname: Jinhua
  surname: Ye
  fullname: Ye, Jinhua
– sequence: 7
  givenname: Huabin
  surname: Zhang
  fullname: Zhang, Huabin
BookMark eNptkd9LwzAQx4NMcJu--C4EfFGhmjRt0_o2Zv0BA1_0uSTp1WV0TU1S0f_ezE0F8emO43Pfu_veBI060wFCx5RcUsKKq5oBEFJkCeyhMeVpEqWcZKPvPCviAzRxbkVIFhNejFFdtqC8NWoJa61Eiy3Ug_LadNg0WAkrQ1Zr865rwN7g9dB6vSufzc9xb82Gd9dYLUXbQvcCDouuxj1Y1wdp_QbuEO03onVwtItT9HxbPs3vo8Xj3cN8togUy5mPoI6pJJRzSrmMgSYNY1JSJVWR0nCZaiiBXAnBEw6cFwnIPKVNqgqZpVlD2RSdbnXDVq8DOF-tzGC7MLKK85yTJFydBepiSylrnLPQVL3Va2E_KkqqjYvVDSvLLxfLAJM_sNJebPzxVuj2_5aTbYt16kf69zHsExlrgVc
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109881
crossref_primary_10_1021_acs_inorgchem_3c04239
crossref_primary_10_1039_D5NJ00797F
crossref_primary_10_1021_acs_iecr_4c03238
crossref_primary_10_1039_D4EE01301H
crossref_primary_10_1039_D4CY00101J
crossref_primary_10_1016_S1872_2067_24_60209_3
crossref_primary_10_1016_j_cej_2024_158067
crossref_primary_10_1002_cssc_202401173
crossref_primary_10_1007_s12598_024_02846_y
crossref_primary_10_1016_j_apcatb_2024_124967
crossref_primary_10_1039_D4CS00563E
crossref_primary_10_1039_D4TA06805J
crossref_primary_10_1016_j_jre_2025_02_009
crossref_primary_10_1002_adma_202419547
crossref_primary_10_1016_j_cclet_2024_110276
crossref_primary_10_1016_j_jcis_2024_06_016
crossref_primary_10_3389_fenrg_2024_1340622
crossref_primary_10_1002_cctc_202301335
crossref_primary_10_1016_j_apcatb_2025_125133
crossref_primary_10_1002_advs_202416597
crossref_primary_10_1021_acsami_4c21988
crossref_primary_10_1007_s12598_024_02840_4
crossref_primary_10_1016_j_nanoms_2024_09_001
crossref_primary_10_1039_D4EE02697G
crossref_primary_10_1002_anie_202422357
crossref_primary_10_1039_D4SU00121D
crossref_primary_10_1007_s40820_023_01214_2
crossref_primary_10_1002_ange_202404676
crossref_primary_10_1002_sstr_202300495
crossref_primary_10_1016_j_jechem_2024_11_032
crossref_primary_10_1007_s11426_023_1941_0
crossref_primary_10_1021_acsami_4c04632
crossref_primary_10_1002_cssc_202400871
crossref_primary_10_1002_smll_202311060
crossref_primary_10_1021_acsenergylett_4c03186
crossref_primary_10_1016_j_chempr_2023_08_008
crossref_primary_10_1002_ece2_23
crossref_primary_10_1002_ange_202422357
crossref_primary_10_1002_idm2_12157
crossref_primary_10_1002_smll_202406906
crossref_primary_10_1038_s41565_025_01892_6
crossref_primary_10_1016_j_jechem_2024_12_022
crossref_primary_10_1002_smll_202409186
crossref_primary_10_1007_s11426_024_2148_2
crossref_primary_10_1021_acs_nanolett_4c03863
crossref_primary_10_20517_energymater_2024_237
crossref_primary_10_1002_cey2_491
crossref_primary_10_1021_acs_jpcc_4c00021
crossref_primary_10_1016_j_cej_2025_161736
crossref_primary_10_1039_D4EE03743J
crossref_primary_10_1039_D4SC00967C
crossref_primary_10_1002_anie_202401821
crossref_primary_10_1021_acscatal_4c02465
crossref_primary_10_1002_adma_202310912
crossref_primary_10_1016_j_jechem_2024_09_059
crossref_primary_10_1039_D4CP03161J
crossref_primary_10_1016_j_cherd_2023_08_045
crossref_primary_10_1002_chem_202400352
crossref_primary_10_1016_j_nanoms_2024_05_005
crossref_primary_10_1021_acs_iecr_4c03428
crossref_primary_10_1126_sciadv_adi6119
crossref_primary_10_1021_jacsau_4c00583
crossref_primary_10_1039_D3CC05577A
crossref_primary_10_1002_ange_202401821
crossref_primary_10_1016_j_isci_2024_109313
crossref_primary_10_1039_D4CC03875D
crossref_primary_10_1002_adfm_202411195
crossref_primary_10_1021_jacs_4c03830
crossref_primary_10_1016_j_enchem_2024_100130
crossref_primary_10_1021_acs_est_4c02066
crossref_primary_10_1039_D3GC03893A
crossref_primary_10_1002_adfm_202416117
crossref_primary_10_1002_cnma_202400070
crossref_primary_10_1039_D4CS00186A
crossref_primary_10_1002_ange_202316264
crossref_primary_10_1007_s11705_025_2527_4
crossref_primary_10_1039_D4CP01622J
crossref_primary_10_1016_j_apcato_2025_207036
crossref_primary_10_1021_acsami_4c08499
crossref_primary_10_1021_jacs_4c10472
crossref_primary_10_1016_j_jcis_2024_09_198
crossref_primary_10_1002_advs_202309865
crossref_primary_10_1038_s41467_025_57573_4
crossref_primary_10_1007_s40843_024_3165_6
crossref_primary_10_1021_jacs_4c17295
crossref_primary_10_1002_smll_202400700
crossref_primary_10_1002_anie_202413832
crossref_primary_10_1007_s12598_024_02919_y
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1007_s12274_023_6334_2
crossref_primary_10_1016_j_ccr_2024_215983
crossref_primary_10_1021_acs_energyfuels_4c02546
crossref_primary_10_1007_s11426_024_2326_7
crossref_primary_10_1021_acsmaterialslett_4c02064
crossref_primary_10_1002_anie_202316264
crossref_primary_10_1002_anie_202404676
crossref_primary_10_1016_j_apsusc_2024_162086
crossref_primary_10_1007_s11708_024_0950_8
crossref_primary_10_1021_acsnano_5c01268
crossref_primary_10_1021_acsnano_5c00696
crossref_primary_10_1021_acs_chemrev_4c00282
crossref_primary_10_1016_j_nanoen_2023_108994
crossref_primary_10_1021_acsami_4c16371
crossref_primary_10_1039_D4QI01353K
crossref_primary_10_1002_cplu_202400069
crossref_primary_10_1021_acsami_3c18285
crossref_primary_10_1002_adma_202415799
crossref_primary_10_1016_j_gee_2025_01_003
crossref_primary_10_1016_j_mtcomm_2025_112016
crossref_primary_10_1016_j_cjche_2024_10_025
crossref_primary_10_1016_j_mser_2025_100967
crossref_primary_10_1021_acs_energyfuels_4c00410
crossref_primary_10_1002_cctc_202400601
crossref_primary_10_1021_acsaem_4c01896
crossref_primary_10_1039_D4SE00533C
crossref_primary_10_1021_acscatal_4c05286
crossref_primary_10_1002_aenm_202500177
crossref_primary_10_1039_D4CY00767K
crossref_primary_10_1002_aenm_202405726
crossref_primary_10_15243_jdmlm_2024_121_6949
crossref_primary_10_1021_acscatal_4c07987
crossref_primary_10_1016_j_cej_2025_159809
crossref_primary_10_1039_D3GC04920E
crossref_primary_10_1002_ente_202400178
crossref_primary_10_1016_j_jechem_2024_01_060
crossref_primary_10_1016_j_nanoen_2024_109660
crossref_primary_10_1021_acs_accounts_4c00417
crossref_primary_10_1002_celc_202400664
crossref_primary_10_1002_smll_202500538
crossref_primary_10_1016_j_jes_2024_03_012
crossref_primary_10_1002_cctc_202401049
crossref_primary_10_1002_adfm_202410186
crossref_primary_10_1002_advs_202308228
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1016_j_apcatb_2024_124428
crossref_primary_10_1002_cssc_202402120
crossref_primary_10_1016_j_apcatb_2024_124822
crossref_primary_10_1021_acscatal_4c06065
crossref_primary_10_1002_rpm_20240011
crossref_primary_10_1039_D4SE01065E
crossref_primary_10_1039_D4TA06722C
crossref_primary_10_1002_cctc_202401604
crossref_primary_10_1021_jacs_4c04031
crossref_primary_10_1002_ange_202413832
crossref_primary_10_1039_D4NR05259E
crossref_primary_10_1002_smtd_202500005
crossref_primary_10_1016_j_watres_2024_122317
crossref_primary_10_1039_D4EE01748J
crossref_primary_10_1016_j_jece_2024_114445
crossref_primary_10_1021_jacs_4c04848
crossref_primary_10_3390_catal15030237
crossref_primary_10_1002_adma_202414169
crossref_primary_10_1016_j_ccst_2024_100355
crossref_primary_10_1039_D4SE01515K
crossref_primary_10_1007_s12274_024_6870_4
crossref_primary_10_1016_j_jcis_2024_12_245
crossref_primary_10_1002_smll_202409259
crossref_primary_10_1016_j_cej_2024_156694
crossref_primary_10_1016_j_apcatb_2024_124933
crossref_primary_10_1016_j_checat_2025_101322
crossref_primary_10_1039_D4CC03964E
crossref_primary_10_1016_j_jechem_2025_02_017
crossref_primary_10_1002_cssc_202402755
crossref_primary_10_1039_D4TA05059B
crossref_primary_10_3390_molecules28248154
crossref_primary_10_1039_D3QM01179H
crossref_primary_10_1016_j_jmst_2024_09_032
Cites_doi 10.1002/ange.202105118
10.1021/acs.chemrev.8b00705
10.1021/jacs.0c01562
10.1021/acsenergylett.2c00606
10.1002/aenm.202202818
10.1021/acscatal.8b01340
10.1016/j.apcatb.2021.120991
10.1016/j.apcatb.2021.120897
10.1021/acscatal.1c01478
10.1038/s41929-020-0450-0
10.1021/acs.jpcc.1c10870
10.1039/C8TA05428B
10.1039/D2CC06943A
10.1002/advs.202207187
10.1002/cctc.202101224
10.1002/smtd.201800449
10.1002/celc.202200341
10.1038/s41467-022-30819-1
10.1021/acs.inorgchem.2c00148
10.1002/smsc.202100023
10.1038/s41929-018-0169-3
10.1016/S1872-2067(21)63880-9
10.1021/jacs.7b10142
10.1039/D2EE03752A
10.1021/acscatal.7b03477
10.1002/anie.202104114
10.1038/s41467-020-17231-3
10.1039/D1SC05519D
10.1002/anie.202101818
10.1016/j.apmate.2021.10.003
10.1021/acsnano.3c01059
10.1021/acscatal.0c04403
10.1038/s41560-020-0666-x
10.1002/adma.202207088
10.1016/j.jcou.2021.101697
10.1021/acscatal.1c05750
10.1021/acscatal.8b01200
10.1021/acs.jpcc.1c00297
10.1002/advs.202105292
10.1021/jacs.1c00880
10.1039/D2QI01977A
10.1002/adma.202200180
10.1002/sstr.202000058
10.1038/s44160-022-00129-x
10.1021/acs.chemrev.8b00481
10.1021/acs.iecr.7b03514
10.1002/aenm.202003990
10.1146/annurev.physchem.59.032607.093532
10.1039/D0EE01690J
10.1002/ange.202216102
10.1002/adma.202301127
10.1021/jacs.1c09777
10.1016/j.mtchem.2022.100838
10.1002/ange.201301470
10.1021/acsenergylett.0c00482
10.1038/ncomms14621
10.1002/ange.202207252
10.1021/jacs.1c09508
10.1038/s41467-022-30027-x
10.1007/s12274-021-3675-6
10.1002/aenm.202103663
10.1016/j.joule.2020.12.011
10.1038/s41929-022-00763-w
10.1021/jacs.5b11390
10.1038/s41565-019-0551-6
10.1021/acs.nanolett.1c04683
10.1002/aenm.202103383
10.1021/acsenergylett.1c02132
10.1021/acs.jpclett.6b00358
10.1016/j.apcatb.2016.02.010
10.1039/C1CS15278E
10.1038/s41467-022-31427-9
10.1021/acscatal.1c01486
10.1002/anie.202000601
10.1021/acs.accounts.9b00355
10.1016/j.joule.2018.09.021
10.1038/s41560-020-00761-x
10.1002/anie.202111021
10.1038/s41586-019-1782-2
10.1038/s41565-022-01286-y
10.1007/s12274-022-4969-z
10.1016/j.jcou.2022.102344
10.1039/D2TA02709G
10.1021/jacsau.1c00289
10.1021/jacs.2c11643
10.1021/jacs.8b01868
10.1002/smll.202301892
10.1021/acs.oprd.6b00103
10.1002/adfm.202111193
10.1016/j.mcat.2021.111725
10.1016/S1872-2067(21)64000-7
10.1039/D2EE03396H
10.1002/anie.202116706
10.1039/D1EE01664D
10.1038/s41586-020-2242-8
10.1021/acs.nanolett.6b05287
10.1016/j.cej.2019.01.045
10.1016/j.jallcom.2023.168798
10.1021/acsenergylett.0c00305
10.1021/acsenergylett.9b01142
10.1021/acs.jpcc.0c05964
10.1002/adfm.202113252
10.1021/acsenergylett.1c02667
10.1038/s41929-017-0018-9
10.1002/anie.202215136
10.1021/acs.chemrev.1c00690
10.1016/j.joule.2022.04.023
10.1021/jacs.2c02001
10.1021/jacs.0c06779
10.1016/j.chempr.2022.04.004
10.1021/acsenergylett.2c01454
10.1007/s40843-021-1749-5
10.1021/jacs.0c10774
10.1021/acsenergylett.7b01096
10.1103/PhysRevB.85.235149
10.1038/s41467-018-02925-6
10.1039/C9EE01341E
10.1021/acs.accounts.9b00496
10.1016/j.jcou.2017.04.011
10.1002/ange.202302096
10.1002/inf2.12094
10.1016/j.jcou.2019.07.014
10.1016/j.isci.2021.102172
10.1021/acscatal.3c00181
10.1021/acs.accounts.1c00673
10.1021/acs.jpcc.0c10159
10.1007/s40820-021-00668-6
10.1021/jacs.6b10740
10.1126/science.abg6582
10.1016/j.mtchem.2022.101328
10.1002/ange.201208320
10.1126/science.aas9100
10.1039/D1EE01696B
10.1038/s41929-022-00788-1
10.1002/aenm.202203506
10.1016/j.apcatb.2022.121845
10.1038/s41467-018-05511-y
10.1021/acscatal.0c02915
10.1002/smll.202104205
10.1002/anie.202108313
10.1038/s41467-021-25295-y
10.1021/acs.jpclett.5b02247
10.1016/S1872-2067(21)63948-7
10.1039/D0TA06203K
10.1002/anie.202014112
10.1021/acs.inorgchem.8b00902
10.1007/s12274-021-3962-2
10.1002/celc.201701316
10.1016/j.nanoen.2020.105049
10.1149/1945-7111/ac085d
10.1038/s41467-019-10084-5
10.1021/acscatal.1c04825
10.1021/acscatal.6b02299
10.1021/acs.jpcc.0c03101
10.1016/j.joule.2021.12.002
10.1038/s41467-022-29428-9
10.1002/anie.202204967
10.1002/adfm.202109310
10.1038/s41467-022-29698-3
10.1016/j.jcat.2014.01.013
10.1016/j.joule.2022.01.001
10.1038/s41467-021-20961-7
10.1039/C9EE01204D
10.1021/acs.jpcc.1c07484
10.1016/j.cattod.2019.06.066
10.1007/s40820-023-01092-8
10.1002/anie.202009498
10.1021/jacs.1c03428
10.1039/D0EE01706J
10.1039/D1CC01974K
10.1021/acs.jpcc.7b11316
10.1038/s41467-018-07970-9
10.1021/acscatal.7b01416
10.1016/j.joule.2019.07.021
10.1021/acscatal.2c01885
10.1038/s41467-020-14402-0
10.1016/j.jcou.2017.11.010
10.1016/j.apcatb.2022.122272
10.1038/ncomms15438
10.1021/acsami.1c18856
10.1016/j.chempr.2020.10.018
10.1016/j.apcatb.2022.121111
10.1038/nature13249
10.1021/acssuschemeng.9b05183
10.1002/cey2.362
10.1016/j.jcou.2013.03.003
10.1039/D1CS00893E
10.1038/s41929-017-0009-x
10.1038/s41929-018-0139-9
10.1016/j.jpowsour.2016.02.043
10.1002/smtd.202100700
10.1021/jacs.8b11237
10.1002/anie.201909610
10.1039/D1TA03636J
10.1021/acs.nanolett.0c04004
10.1021/jacs.1c06877
10.1021/jacs.1c10171
10.1016/j.mcat.2022.112285
10.1016/j.chempr.2022.10.017
10.6023/A20110540
10.1016/j.apcatb.2022.121498
10.1021/acs.accounts.1c00680
10.1039/D1FD00121C
10.1038/s41467-020-16847-9
10.1021/acsnano.7b03738
10.1002/ange.202302789
10.1038/s41467-021-21342-w
10.1016/j.checat.2021.07.012
10.1002/ange.202101818
10.1002/anie.202206470
10.1002/anie.202111700
10.1016/j.apsusc.2022.153724
10.1002/aenm.202000882
10.1002/anie.202202607
10.1039/C8EE00936H
10.1016/j.cplett.2012.11.025
10.1021/acs.energyfuels.1c01650
10.1002/cssc.201801078
10.1016/S1872-2067(21)64006-8
10.1021/acssuschemeng.0c08955
10.1038/s41467-020-16381-8
10.1021/acscatal.1c05272
10.1039/D0NR04961A
10.1002/ange.201508851
10.1016/j.joule.2022.11.003
10.1021/acs.jpclett.5b01043
10.1021/acs.accounts.1c00616
10.1021/acs.jpcc.1c01586
10.1038/s41467-023-36926-x
10.1038/s41467-022-28436-z
10.1021/acscatal.1c02783
10.1002/anie.201907935
10.1038/s41929-018-0108-3
10.1016/S1872-2067(21)63879-2
10.1007/s12274-019-2310-2
10.1149/2.0521810jes
10.1021/jacs.2c03875
10.1002/aenm.202203896
10.1126/science.aac8343
10.1021/acs.accounts.2c00080
10.1073/pnas.1702405114
10.1007/s40820-022-00879-5
10.1246/bcsj.64.123
10.1021/jacs.2c03662
10.1002/adma.201804867
10.1002/adma.202202830
10.1021/acscatal.2c01470
10.1002/celc.202100345
10.1002/aenm.202300402
10.1021/acscatal.1c01072
10.1039/D1CS00535A
10.1021/acs.nanolett.2c05112
10.1038/s41467-022-30733-6
10.1016/j.ccr.2021.214340
10.1002/ange.202205832
10.1038/s41467-023-35993-4
10.1016/j.apcatb.2021.120661
10.1021/acscatal.0c01388
10.1039/D0CS00071J
10.1016/j.apcatb.2022.121164
10.1073/pnas.1612106114
10.1002/adfm.202107349
10.1038/s41467-021-21901-1
10.1016/j.esci.2023.100097
10.1016/j.nanoen.2021.106460
10.1038/s41467-021-27768-6
10.1038/s41929-022-00761-y
10.1038/s41929-020-00547-0
10.1002/adma.202008376
10.1021/acs.jpcc.8b01928
10.1038/s41929-023-00937-0
10.1126/science.aax4608
10.1021/acsnano.2c09473
10.1021/acscatal.1c03501
10.1126/science.aay4217
10.1002/adfm.202300697
10.1039/D2EE00472K
10.1039/C8CP01319E
10.1016/j.susc.2016.08.006
10.1021/acscatal.1c05431
10.1002/ente.201600636
10.1002/anie.202211804
10.1039/D0TA02364G
10.1021/acsami.3c01012
10.1016/j.cej.2022.140942
10.1038/s41467-023-38506-5
10.1021/acssuschemeng.8b00793
10.1016/j.apcatb.2021.120538
10.1021/acs.accounts.8b00010
10.1016/j.nanoen.2022.108080
10.1016/j.checat.2023.100512
10.1021/jacs.7b06765
10.1021/acs.chemrev.0c00396
10.1002/anie.202200039
10.1007/s12598-021-01772-7
10.1016/j.joule.2021.12.011
10.1039/D2SC04794B
10.1021/jacs.6b07612
10.1016/j.xcrp.2022.100972
10.1002/adfm.202111504
10.1016/j.jcat.2022.02.014
10.1038/ncomms12123
10.1021/jacs.1c11500
10.1038/s41929-022-00803-5
10.1021/acscatal.2c02149
10.1039/D0EE03903A
10.1002/advs.202003579
10.1038/s41929-021-00655-5
10.1063/1.1718201
10.1002/adfm.202210938
10.1038/s41467-020-17690-8
10.1021/acscatal.0c03873
10.3390/catal11050594
10.1016/j.apcatb.2022.121681
10.1016/j.coelec.2022.100940
10.1039/c0cp02064h
10.1021/acsenergylett.2c02292
10.1002/ange.202017181
10.1039/D0NR07508F
10.1021/acssuschemeng.7b02380
10.1038/s41578-021-00356-2
10.1039/D1EE01495A
10.1021/acs.jpcc.1c07689
10.1039/C7EE03245E
10.1021/acssuschemeng.1c06295
10.1002/ange.202304634
10.1002/adma.201807166
10.1021/jacs.6b13287
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d3ee00964e
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 4758
ExternalDocumentID 10_1039_D3EE00964E
d3ee00964e
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c383t-ed21b0177117b2e14f33bb1cbc951d3ecf10e8caa747e7794eb851f5c9b656f13
ISSN 1754-5692
IngestDate Mon Jun 30 12:00:20 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 01:45:55 EDT 2025
Tue Dec 17 20:58:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-ed21b0177117b2e14f33bb1cbc951d3ecf10e8caa747e7794eb851f5c9b656f13
Notes Bin Chang received his PhD degree from Shandong University in 2020. Then, he worked as a postdoc under the supervision of Prof. Weijia Zhou at the University of Jinan (UJN) and Prof. Shuhui Sun at the Institut National de la Recherche Scientifique (INRS). He is currently a Postdoctoral Fellow in Huabin Zhang's group at KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST). His research interests focus on advanced catalysts for electrochemical energy conversion.
Huabin Zhang received his PhD degree in chemistry from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM-CAS). After finishing his postdoc research in Japan (Supervisor: Jinhua Ye) at the National Institute of Materials Science (NIMS) and Singapore (supervisor: Xiong Wen Lou) at Nanyang Technological University, Singapore, he joined KAUST serving as an Assistant Professor in January 2021. His research interests focus on advanced catalysis for sustainable energy.
Jinhua Ye received her PhD from the University of Tokyo in 1990. She is presently a Principal Investigator at the National Institute of Materials Science (NIMS) and a Professor of the Joint Doctoral Program at Hokkaido University, Japan. Her research interests focus on the research and development of photofunctional materials and their applications in the fields of environmental remediation and new energy production. She has published more than 600 high impact research papers with over 60 000 total citations (h index: 133). She is currently serving as the Associate Editor of RSC Catalysis Science & Technology, and Science Advances.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4510-0550
0000-0002-8105-8903
0000-0003-1900-2658
0000-0003-2656-9169
0000-0003-1601-2471
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2023/ee/d3ee00964e
PQID 2887040626
PQPubID 2047494
PageCount 45
ParticipantIDs crossref_primary_10_1039_D3EE00964E
proquest_journals_2887040626
crossref_citationtrail_10_1039_D3EE00964E
rsc_primary_d3ee00964e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-08
PublicationDateYYYYMMDD 2023-11-08
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-08
  day: 08
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (D3EE00964E/cit57/1) 2022; 32
Chan (D3EE00964E/cit221/1) 2015; 6
Chen (D3EE00964E/cit222/1) 2020; 2
Wang (D3EE00964E/cit104/1) 2021; 133
Chen (D3EE00964E/cit52/1) 2023; 27
Gabardo (D3EE00964E/cit305/1) 2019; 3
Chang (D3EE00964E/cit165/1) 2021; 125
Zuo (D3EE00964E/cit233/1) 2022; 12
Zhu (D3EE00964E/cit258/1) 2021; 14
Ren (D3EE00964E/cit101/1) 2023; 106
Huang (D3EE00964E/cit208/1) 2018; 11
Jia (D3EE00964E/cit134/1) 2022; 1
Qu (D3EE00964E/cit142/1) 2022; 16
Kakekhani (D3EE00964E/cit167/1) 2018; 57
Chang (D3EE00964E/cit55/1) 2023; 10
Monteiro (D3EE00964E/cit277/1) 2021; 4
Wang (D3EE00964E/cit310/1) 2022; 307
Dinh (D3EE00964E/cit111/1) 2018; 360
Gao (D3EE00964E/cit207/1) 2017; 7
Zhu (D3EE00964E/cit230/1) 2020; 5
Lu (D3EE00964E/cit235/1) 2020; 142
Li (D3EE00964E/cit112/1) 2022; 51
Mei (D3EE00964E/cit251/1) 2022; 12
Yu (D3EE00964E/cit107/1) 2021; 143
Li (D3EE00964E/cit186/1) 2022; 13
Adegoke (D3EE00964E/cit116/1) 2022; 24
Gusarov (D3EE00964E/cit225/1) 2020; 124
Suominen (D3EE00964E/cit122/1) 2021; 8
Larrazabal (D3EE00964E/cit84/1) 2022; 14
Li (D3EE00964E/cit114/1) 2021; 15
Han (D3EE00964E/cit41/1) 2022; 13
Preet (D3EE00964E/cit264/1) 2021; 11
Liu (D3EE00964E/cit232/1) 2022; 18
Fan (D3EE00964E/cit18/1) 2022; 6
Lin (D3EE00964E/cit8/1) 2022; 6
Li (D3EE00964E/cit67/1) 2022; 14
Gu (D3EE00964E/cit337/1) 2022; 5
Lin (D3EE00964E/cit80/1) 2021; 24
Liu (D3EE00964E/cit188/1) 2019; 10
Verma (D3EE00964E/cit344/1) 2017; 3
Garza (D3EE00964E/cit74/1) 2018; 8
Qin (D3EE00964E/cit17/1) 2023
Jin (D3EE00964E/cit341/1) 2021; 60
Fichthorn (D3EE00964E/cit259/1) 2021; 125
Tan (D3EE00964E/cit86/1) 2021; 89
Timoshenko (D3EE00964E/cit248/1) 2021; 121
Esmaeilirad (D3EE00964E/cit22/1) 2022; 317
Pham (D3EE00964E/cit35/1) 2022; 12
Park (D3EE00964E/cit323/1) 2020; 355
Zhang (D3EE00964E/cit206/1) 2020; 53
Qin (D3EE00964E/cit219/1) 2023; 145
Kim (D3EE00964E/cit334/1) 2022; 5
Huang (D3EE00964E/cit211/1) 2021; 372
Yin (D3EE00964E/cit301/1) 2019; 12
Xiong (D3EE00964E/cit127/1) 2022; 314
Zhang (D3EE00964E/cit85/1) 2020; 142
Sun (D3EE00964E/cit95/1) 2023; 67
Wang (D3EE00964E/cit327/1) 2018; 23
Liu (D3EE00964E/cit245/1) 2022; 43
Wang (D3EE00964E/cit72/1) 2019; 14
Rihm (D3EE00964E/cit11/1) 2023; 16
Chen (D3EE00964E/cit174/1) 2016; 6
Wang (D3EE00964E/cit266/1) 2019; 12
Jiang (D3EE00964E/cit175/1) 2018; 1
Wang (D3EE00964E/cit29/1) 2023
Kamat (D3EE00964E/cit285/1) 2022; 7
Zhang (D3EE00964E/cit9/1) 2021; 60
Morales-Guio (D3EE00964E/cit140/1) 2018; 1
Ryu (D3EE00964E/cit265/1) 2022; 43
Zhu (D3EE00964E/cit106/1) 2022; 144
Xu (D3EE00964E/cit192/1) 2020; 2
Shaw (D3EE00964E/cit205/1) 2011; 13
Zhang (D3EE00964E/cit64/1) 2020; 10
Kling (D3EE00964E/cit157/1) 2008; 59
Wei (D3EE00964E/cit54/1) 2023; 18
Hoang (D3EE00964E/cit307/1) 2018; 140
Li (D3EE00964E/cit93/1) 2021; 40
Du (D3EE00964E/cit103/1) 2021; 125
Ma (D3EE00964E/cit98/1) 2022; 12
Li (D3EE00964E/cit123/1) 2022; 8
Meng (D3EE00964E/cit143/1) 2023; 939
Cao (D3EE00964E/cit217/1) 2022; 12
Yu (D3EE00964E/cit282/1) 2019; 10
Prajapati (D3EE00964E/cit296/1) 2022; 15
Kibria (D3EE00964E/cit306/1) 2018; 30
Lu (D3EE00964E/cit117/1) 2022; 12
Beker (D3EE00964E/cit260/1) 2020; 12
Zhou (D3EE00964E/cit144/1) 2022; 5
Xiang (D3EE00964E/cit30/1) 2022; 9
Rossi (D3EE00964E/cit63/1) 2022; 55
Feng (D3EE00964E/cit257/1) 2022; 22
Dong (D3EE00964E/cit172/1) 2018; 122
Tian (D3EE00964E/cit170/1) 2022; 597
Qiu (D3EE00964E/cit59/1) 2022; 61
Garcia de Arquer (D3EE00964E/cit288/1) 2020; 367
Kim (D3EE00964E/cit322/1) 2016; 312
Wu (D3EE00964E/cit2/1) 2021; 33
Calle-Vallejo (D3EE00964E/cit177/1) 2013; 125
Qi (D3EE00964E/cit226/1) 2022; 12
Clark (D3EE00964E/cit181/1) 2018; 8
Nitopi (D3EE00964E/cit38/1) 2019; 119
Xu (D3EE00964E/cit332/1) 2022; 6
Yang (D3EE00964E/cit247/1) 2022; 144
Schneider (D3EE00964E/cit40/1) 2012; 41
Lai (D3EE00964E/cit14/1) 2022; 15
Alsunni (D3EE00964E/cit151/1) 2021; 125
Li (D3EE00964E/cit184/1) 2021; 19
Zhou (D3EE00964E/cit118/1) 2022; 61
Ren (D3EE00964E/cit281/1) 2020; 10
Jin (D3EE00964E/cit180/1) 2021; 133
Lees (D3EE00964E/cit302/1) 2021; 7
Ramos (D3EE00964E/cit147/1) 2023; 15
Ahmad (D3EE00964E/cit7/1) 2023; 14
Pang (D3EE00964E/cit60/1) 2022; 7
Neri (D3EE00964E/cit284/1) 2018; 1
Hitt (D3EE00964E/cit223/1) 2021; 12
Li (D3EE00964E/cit21/1) 2022; 3
Yuan (D3EE00964E/cit110/1) 2019; 33
Guan (D3EE00964E/cit153/1) 2021; 511
Zou (D3EE00964E/cit331/1) 2021; 9
Shi (D3EE00964E/cit163/1) 2016; 20
Park (D3EE00964E/cit300/1) 2018; 6
Resasco (D3EE00964E/cit273/1) 2018; 5
Du (D3EE00964E/cit145/1) 2023; 59
Woldu (D3EE00964E/cit68/1) 2022; 454
Joshi (D3EE00964E/cit237/1) 2022; 7
Salvatore (D3EE00964E/cit293/1) 2021; 6
Savino (D3EE00964E/cit336/1) 2021; 52
Xu (D3EE00964E/cit152/1) 2019; 119
Kornienko (D3EE00964E/cit250/1) 2021; 13
He (D3EE00964E/cit239/1) 2020; 11
Xue (D3EE00964E/cit290/1) 2021; 15
Creissen (D3EE00964E/cit61/1) 2022; 13
Li (D3EE00964E/cit109/1) 2017; 17
Zhang (D3EE00964E/cit280/1) 2020; 59
Shi (D3EE00964E/cit311/1) 2020; 11
Wei (D3EE00964E/cit43/1) 2023; 13
Deng (D3EE00964E/cit194/1) 2022; 13
Nam (D3EE00964E/cit325/1) 2022; 34
Lee (D3EE00964E/cit4/1) 2023; 6
Wan (D3EE00964E/cit135/1) 2022; 12
Rabiee (D3EE00964E/cit317/1) 2021; 298
Long (D3EE00964E/cit255/1) 2021; 1
Sun (D3EE00964E/cit89/1) 2022; 43
Mistry (D3EE00964E/cit253/1) 2016; 7
Ren (D3EE00964E/cit330/1) 2019; 365
Fang (D3EE00964E/cit146/1) 2023; 9
Jiang (D3EE00964E/cit309/1) 2017; 5
Verma (D3EE00964E/cit313/1) 2016; 18
Feng (D3EE00964E/cit3/1) 2022; 34
Gu (D3EE00964E/cit91/1) 2019; 3
Lv (D3EE00964E/cit42/1) 2023; 324
Raciti (D3EE00964E/cit289/1) 2021; 11
Dattila (D3EE00964E/cit23/1) 2022; 122
Goodpaster (D3EE00964E/cit155/1) 2016; 7
Han (D3EE00964E/cit24/1) 2023; 33
Zhuo (D3EE00964E/cit36/1) 2022; 61
Dattila (D3EE00964E/cit148/1) 2022; 122
Santatiwongchai (D3EE00964E/cit150/1) 2021; 11
Liu (D3EE00964E/cit349/1) 2021; 299
Wang (D3EE00964E/cit56/1) 2022; 13
Deng (D3EE00964E/cit201/1) 2021; 12
Yang (D3EE00964E/cit224/1) 2020; 8
Qiu (D3EE00964E/cit295/1) 2023; 456
Irkham (D3EE00964E/cit343/1) 2021; 9
Mota-Lima (D3EE00964E/cit279/1) 2021; 168
Xie (D3EE00964E/cit10/1) 2022; 5
Calvinho (D3EE00964E/cit51/1) 2021; 143
Wellendorff (D3EE00964E/cit200/1) 2012; 85
Zhang (D3EE00964E/cit12/1) 2023
Wu (D3EE00964E/cit73/1) 2021; 33
Wang (D3EE00964E/cit246/1) 2021; 1
Creissen (D3EE00964E/cit88/1) 2022; 13
Cheng (D3EE00964E/cit133/1) 2022; 43
Liu (D3EE00964E/cit220/1) 2021; 11
Zhang (D3EE00964E/cit218/1) 2022; 126
Lee (D3EE00964E/cit120/1) 2021; 12
Feng (D3EE00964E/cit166/1) 2019; 8
Raciti (D3EE00964E/cit178/1) 2018; 165
Nie (D3EE00964E/cit32/1) 2023; 135
Wen (D3EE00964E/cit132/1) 2022; 61
Esmaeilirad (D3EE00964E/cit333/1) 2021; 12
Weekes (D3EE00964E/cit324/1) 2018; 51
Perez-Gallent (D3EE00964E/cit202/1) 2017; 139
Giusi (D3EE00964E/cit27/1) 2022; 318
Cheng (D3EE00964E/cit164/1) 2015; 6
Grun (D3EE00964E/cit156/1) 2004; 120
Tang (D3EE00964E/cit113/1) 2022; 32
An (D3EE00964E/cit240/1) 2021; 60
Chen (D3EE00964E/cit229/1) 2020; 124
Ma (D3EE00964E/cit76/1) 2020; 3
Jiang (D3EE00964E/cit329/1) 2018; 11
Xiao (D3EE00964E/cit262/1) 2022; 307
Li (D3EE00964E/cit16/1) 2023
Zhang (D3EE00964E/cit46/1) 2023; 14
Lai (D3EE00964E/cit193/1) 2022; 32
Karmodak (D3EE00964E/cit149/1) 2022; 12
Huang (D3EE00964E/cit5/1) 2023; 135
Wu (D3EE00964E/cit65/1) 2021; 13
Nam (D3EE00964E/cit128/1) 2020; 142
Lin (D3EE00964E/cit249/1) 2020; 11
Zhang (D3EE00964E/cit62/1) 2023; 23
Dunwell (D3EE00964E/cit183/1) 2017; 139
Kutz (D3EE00964E/cit297/1) 2017; 5
Calvinho (D3EE00964E/cit141/1) 2018; 11
Shi (D3EE00964E/cit13/1) 2023; 13
Endrodi (D3EE00964E/cit328/1) 2019; 4
Biswas (D3EE00964E/cit335/1) 2022; 7
Shi (D3EE00964E/cit215/1) 2023; 13
Juneja (D3EE00964E/cit228/1) 2020; 8
Abdinejad (D3EE00964E/cit126/1) 2023; 13
Wang (D3EE00964E/cit195/1) 2018; 8
Kim (D3EE00964E/cit209/1) 2021; 32
Sha (D3EE00964E/cit283/1) 2022; 61
Zhu (D3EE00964E/cit261/1) 2018; 9
Yang (D3EE00964E/cit276/1) 2022; 61
Zhou (D3EE00964E/cit187/1) 2022; 134
De Luna (D3EE00964E/cit308/1) 2018; 1
Liu (D3EE00964E/cit326/1) 2022; 13
Sandberg (D3EE00964E/cit44/1) 2016; 654
Li (D3EE00964E/cit231/1) 2020; 13
Monteiro (D3EE00964E/cit263/1) 2021; 1
Yang (D3EE00964E/cit278/1) 2022; 61
Björketun (D3EE00964E/cit159/1) 2013; 555
Lakshmanan (D3EE00964E/cit66/1) 2022; 32
Lin (D3EE00964E/cit129/1) 2015; 349
Pan (D3EE00964E/cit338/1) 2022; 7
Li (D3EE00964E/cit269/1) 2022; 13
Ma (D3EE00964E/cit26/1) 2023; 17
Yu (D3EE00964E/cit124/1) 2023; 15
Wang (D3EE00964E/cit49/1) 2022; 13
Jiang (D3EE00964E/cit268/1) 2021; 57
Jiang (D3EE00964E/cit102/1) 2022; 9
Cheng (D3EE00964E/cit162/1) 2017; 114
Zhang (D3EE00964E/cit292/1) 2023; 135
Xie (D3EE00964E/cit131/1) 2022; 13
Zhang (D3EE00964E/cit346/1) 2021; 14
Jeong (D3EE00964E/cit214/1) 2022; 144
Chen (D3EE00964E/cit130/1) 2022; 61
Ikemiya (D3EE00964E/cit342/1) 2018; 6
Chen (D3EE00964E/cit244/1) 2022; 144
Yuan (D3EE00964E/cit242/1) 2021; 133
Ogura (D3EE00964E/cit204/1) 2013; 1
Ren (D3EE00964E/cit71/1) 2019; 58
Ali (D3EE00964E/cit158/1) 2022; 524
Wan (D3EE00964E/cit171/1) 2021; 14
Cao (D3EE00964E/cit241/1) 2021; 5
Ma (D3EE00964E/cit138/1) 2017; 139
Li (D3EE00964E/cit303/1) 2020; 577
Wang (D3EE00964E/cit139/1) 2022; 13
Liang (D3EE00964E/cit45/1) 2023; 14
Li (D3EE00964E/cit267/1) 2018; 1
Chen (D3EE00964E/cit216/1) 2016; 6
Li (D3EE00964E/cit316/1) 2021; 9
Han (D3EE00964E/cit347/1) 2022; 33
Arrigo (D3EE00964E/cit256/1) 2022; 236
Li (D3EE00964E/cit53/1) 2023; 15
Tan (D3EE00964E/cit99/1) 2023; 3
Lai (D3EE00964E/cit136/1) 2022; 32
Liu (D3EE00964E/cit161/1) 2017; 8
Dong (D3EE00964E/cit115/1) 2022; 303
Xu (D3EE00964E/cit90/1) 2020; 5
Abidi (D3EE00964E/cit190/1) 2022; 33
Fujita (D3EE00964E/cit19/1) 2022; 55
Nie (D3EE00964E/cit169/1) 2014; 312
Wang (D3EE00964E/cit97/1) 2021; 21
Ulissi (D3EE00964E/cit227/1) 2017; 8
Ma (D3EE00964E/cit34/1) 2021; 50
Zhao (D3EE00964E/cit70/1) 2020; 11
Löffler (D3EE00964E/cit213/1) 2020; 10
Vennekoetter (D3EE00964E/cit321/1) 2019; 364
Wang (D3EE00964E/cit254/1) 2022; 61
Noh (D3EE00964E/cit299/1) 2019; 52
Murata (D3EE00964E/cit196/1) 1991; 64
Liu (D3EE00964E/cit243/1) 2021; 125
Möller (D3EE00964E/cit286/1) 2021; 14
Ringe (D3EE00964E/cit270/1) 2019; 12
Niu (D3EE00964E/cit314/1) 2021; 14
Xie (D3EE00964E/cit137/1) 2022; 5
Pan (D3EE00964E/cit212/1) 2022; 7
Jung (D3EE00964E/cit252/1) 2019; 141
Jouny (D3EE00964E/cit315/1) 2018; 57
Chen (D3EE00964E/cit160/1) 2018; 9
Lv (D3EE00964E/cit81/1) 2022; 134
Li (D3EE00964E/cit1
References_xml – volume: 133
  start-page: 15472
  year: 2021
  ident: D3EE00964E/cit242/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202105118
– volume: 119
  start-page: 7610
  year: 2019
  ident: D3EE00964E/cit38/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 142
  start-page: 11417
  year: 2020
  ident: D3EE00964E/cit85/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01562
– volume: 7
  start-page: 1469
  year: 2022
  ident: D3EE00964E/cit285/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00606
– volume: 13
  start-page: 2202818
  year: 2022
  ident: D3EE00964E/cit100/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202818
– volume: 8
  start-page: 6560
  year: 2018
  ident: D3EE00964E/cit181/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01340
– volume: 307
  start-page: 120991
  year: 2022
  ident: D3EE00964E/cit310/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120991
– volume: 303
  start-page: 120897
  year: 2022
  ident: D3EE00964E/cit115/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120897
– volume: 11
  start-page: 7694
  year: 2021
  ident: D3EE00964E/cit238/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01478
– volume: 3
  start-page: 478
  year: 2020
  ident: D3EE00964E/cit76/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-020-0450-0
– volume: 126
  start-page: 3820
  year: 2022
  ident: D3EE00964E/cit191/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c10870
– volume: 6
  start-page: 15456
  year: 2018
  ident: D3EE00964E/cit300/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05428B
– volume: 59
  start-page: 4778
  year: 2023
  ident: D3EE00964E/cit145/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06943A
– volume: 10
  start-page: e2207187
  year: 2023
  ident: D3EE00964E/cit75/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202207187
– volume: 14
  start-page: e202101224
  year: 2021
  ident: D3EE00964E/cit171/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202101224
– volume: 3
  start-page: 1800449
  year: 2019
  ident: D3EE00964E/cit91/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800449
– volume: 9
  start-page: e202200341
  year: 2022
  ident: D3EE00964E/cit318/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202200341
– volume: 13
  start-page: 3158
  year: 2022
  ident: D3EE00964E/cit41/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30819-1
– volume: 61
  start-page: 6073
  year: 2022
  ident: D3EE00964E/cit118/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00148
– volume: 13
  start-page: 2204243
  year: 2023
  ident: D3EE00964E/cit15/1
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 2100023
  year: 2021
  ident: D3EE00964E/cit246/1
  publication-title: Small Sci.
  doi: 10.1002/smsc.202100023
– volume: 1
  start-page: 952
  year: 2018
  ident: D3EE00964E/cit284/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-018-0169-3
– volume: 43
  start-page: 104
  year: 2022
  ident: D3EE00964E/cit33/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63880-9
– volume: 139
  start-page: 16412
  year: 2017
  ident: D3EE00964E/cit202/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10142
– volume: 16
  start-page: 1697
  year: 2023
  ident: D3EE00964E/cit11/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03752A
– volume: 8
  start-page: 1490
  year: 2018
  ident: D3EE00964E/cit74/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03477
– volume: 60
  start-page: 16576
  year: 2021
  ident: D3EE00964E/cit240/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104114
– volume: 11
  start-page: 3525
  year: 2020
  ident: D3EE00964E/cit249/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17231-3
– volume: 12
  start-page: 15682
  year: 2021
  ident: D3EE00964E/cit319/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC05519D
– volume: 60
  start-page: 20627
  year: 2021
  ident: D3EE00964E/cit274/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101818
– volume: 1
  start-page: 100012
  year: 2022
  ident: D3EE00964E/cit134/1
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2021.10.003
– volume: 17
  start-page: 9338
  year: 2023
  ident: D3EE00964E/cit25/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c01059
– volume: 11
  start-page: 1248
  year: 2021
  ident: D3EE00964E/cit79/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04403
– volume: 5
  start-page: 623
  year: 2020
  ident: D3EE00964E/cit90/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0666-x
– volume: 34
  start-page: e2207088
  year: 2022
  ident: D3EE00964E/cit325/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207088
– volume: 52
  start-page: 101697
  year: 2021
  ident: D3EE00964E/cit336/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2021.101697
– volume: 12
  start-page: 4818
  year: 2022
  ident: D3EE00964E/cit149/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05750
– volume: 8
  start-page: 7445
  year: 2018
  ident: D3EE00964E/cit195/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01200
– volume: 125
  start-page: 10919
  year: 2021
  ident: D3EE00964E/cit165/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c00297
– volume: 9
  start-page: e2105292
  year: 2022
  ident: D3EE00964E/cit102/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105292
– volume: 143
  start-page: 6152
  year: 2021
  ident: D3EE00964E/cit168/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00880
– volume: 10
  start-page: 240
  year: 2023
  ident: D3EE00964E/cit55/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01977A
– volume: 34
  start-page: 2200180
  year: 2022
  ident: D3EE00964E/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200180
– volume: 2
  start-page: 2000058
  year: 2020
  ident: D3EE00964E/cit192/1
  publication-title: Small Structures
  doi: 10.1002/sstr.202000058
– volume: 1
  start-page: 658
  year: 2022
  ident: D3EE00964E/cit298/1
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-022-00129-x
– volume: 119
  start-page: 6631
  year: 2019
  ident: D3EE00964E/cit152/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00481
– volume: 60
  start-page: 16576
  year: 2021
  ident: D3EE00964E/cit234/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104114
– volume: 57
  start-page: 2165
  year: 2018
  ident: D3EE00964E/cit315/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03514
– volume: 12
  start-page: 2003990
  year: 2021
  ident: D3EE00964E/cit120/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003990
– volume: 59
  start-page: 463
  year: 2008
  ident: D3EE00964E/cit157/1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093532
– volume: 13
  start-page: 4301
  year: 2020
  ident: D3EE00964E/cit69/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01690J
– volume: 135
  start-page: e202216102
  year: 2023
  ident: D3EE00964E/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202216102
– start-page: e2301127
  year: 2023
  ident: D3EE00964E/cit16/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301127
– volume: 143
  start-page: 19919
  year: 2021
  ident: D3EE00964E/cit107/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09777
– volume: 24
  start-page: 100838
  year: 2022
  ident: D3EE00964E/cit116/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.100838
– volume: 125
  start-page: 7423
  year: 2013
  ident: D3EE00964E/cit177/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201301470
– volume: 5
  start-page: 1206
  year: 2020
  ident: D3EE00964E/cit203/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00482
– volume: 8
  start-page: 14621
  year: 2017
  ident: D3EE00964E/cit227/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14621
– volume: 134
  start-page: e202207252
  year: 2022
  ident: D3EE00964E/cit81/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202207252
– volume: 144
  start-page: 259
  year: 2022
  ident: D3EE00964E/cit82/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09508
– volume: 13
  start-page: 2280
  year: 2022
  ident: D3EE00964E/cit88/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30027-x
– volume: 3
  start-page: 111
  year: 2022
  ident: D3EE00964E/cit198/1
  publication-title: Smart Mater.
– volume: 15
  start-page: 1393
  year: 2021
  ident: D3EE00964E/cit290/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3675-6
– volume: 12
  start-page: 2103663
  year: 2022
  ident: D3EE00964E/cit35/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103663
– volume: 5
  start-page: 429
  year: 2021
  ident: D3EE00964E/cit37/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.011
– volume: 5
  start-page: 288
  year: 2022
  ident: D3EE00964E/cit334/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-022-00763-w
– volume: 138
  start-page: 483
  year: 2016
  ident: D3EE00964E/cit176/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11390
– volume: 14
  start-page: 1063
  year: 2019
  ident: D3EE00964E/cit72/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0551-6
– volume: 22
  start-page: 1656
  year: 2022
  ident: D3EE00964E/cit257/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04683
– volume: 12
  start-page: 2103383
  year: 2022
  ident: D3EE00964E/cit233/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103383
– volume: 7
  start-page: 78
  year: 2022
  ident: D3EE00964E/cit60/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02132
– volume: 7
  start-page: 1471
  year: 2016
  ident: D3EE00964E/cit155/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00358
– volume: 188
  start-page: 272
  year: 2016
  ident: D3EE00964E/cit312/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.02.010
– volume: 41
  start-page: 2036
  year: 2012
  ident: D3EE00964E/cit40/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15278E
– volume: 13
  start-page: 3754
  year: 2022
  ident: D3EE00964E/cit49/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31427-9
– volume: 11
  start-page: 9688
  year: 2021
  ident: D3EE00964E/cit150/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01486
– volume: 59
  start-page: 10527
  year: 2020
  ident: D3EE00964E/cit58/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000601
– volume: 52
  start-page: 2745
  year: 2019
  ident: D3EE00964E/cit299/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00355
– volume: 2
  start-page: 2551
  year: 2018
  ident: D3EE00964E/cit96/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.021
– volume: 6
  start-page: 339
  year: 2021
  ident: D3EE00964E/cit293/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00761-x
– volume: 61
  start-page: e202111021
  year: 2022
  ident: D3EE00964E/cit254/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202111021
– volume: 577
  start-page: 509
  year: 2020
  ident: D3EE00964E/cit303/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1782-2
– volume: 18
  start-page: 299
  year: 2023
  ident: D3EE00964E/cit54/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01286-y
– volume: 16
  start-page: 2170
  year: 2022
  ident: D3EE00964E/cit142/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4969-z
– volume: 67
  start-page: 102344
  year: 2023
  ident: D3EE00964E/cit95/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2022.102344
– volume: 10
  start-page: 20059
  year: 2022
  ident: D3EE00964E/cit83/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02709G
– volume: 1
  start-page: 1915
  year: 2021
  ident: D3EE00964E/cit263/1
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00289
– volume: 145
  start-page: 1897
  year: 2023
  ident: D3EE00964E/cit219/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11643
– volume: 140
  start-page: 5791
  year: 2018
  ident: D3EE00964E/cit307/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b01868
– start-page: e2301892
  year: 2023
  ident: D3EE00964E/cit29/1
  publication-title: Small
  doi: 10.1002/smll.202301892
– volume: 20
  start-page: 1424
  year: 2016
  ident: D3EE00964E/cit163/1
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.6b00103
– volume: 32
  start-page: 2111193
  year: 2022
  ident: D3EE00964E/cit136/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111193
– volume: 511
  start-page: 111725
  year: 2021
  ident: D3EE00964E/cit153/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2021.111725
– volume: 43
  start-page: 1547
  year: 2022
  ident: D3EE00964E/cit89/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)64000-7
– volume: 15
  start-page: 5105
  year: 2022
  ident: D3EE00964E/cit296/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03396H
– volume: 61
  start-page: e202116706
  year: 2022
  ident: D3EE00964E/cit276/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202116706
– volume: 14
  start-page: 4169
  year: 2021
  ident: D3EE00964E/cit314/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01664D
– volume: 581
  start-page: 178
  year: 2020
  ident: D3EE00964E/cit77/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2242-8
– volume: 17
  start-page: 1312
  year: 2017
  ident: D3EE00964E/cit109/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05287
– volume: 364
  start-page: 89
  year: 2019
  ident: D3EE00964E/cit321/1
  publication-title: Chem. Engin. J.
  doi: 10.1016/j.cej.2019.01.045
– volume: 939
  start-page: 168798
  year: 2023
  ident: D3EE00964E/cit143/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.168798
– volume: 5
  start-page: 1281
  year: 2020
  ident: D3EE00964E/cit230/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00305
– volume: 4
  start-page: 1770
  year: 2019
  ident: D3EE00964E/cit328/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01142
– volume: 124
  start-page: 22471
  year: 2020
  ident: D3EE00964E/cit229/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c05964
– volume: 60
  start-page: 20627
  year: 2021
  ident: D3EE00964E/cit341/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101818
– volume: 32
  start-page: 2113252
  year: 2022
  ident: D3EE00964E/cit57/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202113252
– volume: 7
  start-page: 602
  year: 2022
  ident: D3EE00964E/cit237/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02667
– volume: 1
  start-page: 103
  year: 2018
  ident: D3EE00964E/cit308/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-017-0018-9
– volume: 62
  start-page: e202215136
  year: 2023
  ident: D3EE00964E/cit20/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202215136
– volume: 122
  start-page: 11085
  year: 2022
  ident: D3EE00964E/cit23/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00690
– volume: 6
  start-page: 1333
  year: 2022
  ident: D3EE00964E/cit332/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.04.023
– volume: 19
  start-page: 1000427
  year: 2021
  ident: D3EE00964E/cit184/1
  publication-title: Mater. Today Phys.
– volume: 144
  start-page: 12673
  year: 2022
  ident: D3EE00964E/cit214/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02001
– volume: 142
  start-page: 15438
  year: 2020
  ident: D3EE00964E/cit235/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06779
– volume: 8
  start-page: 2148
  year: 2022
  ident: D3EE00964E/cit123/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.04.004
– volume: 7
  start-page: 2904
  year: 2022
  ident: D3EE00964E/cit335/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01454
– volume: 65
  start-page: 155
  year: 2021
  ident: D3EE00964E/cit339/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-021-1749-5
– volume: 142
  start-page: 21513
  year: 2020
  ident: D3EE00964E/cit128/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10774
– volume: 3
  start-page: 193
  year: 2017
  ident: D3EE00964E/cit344/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01096
– volume: 85
  start-page: 235149
  year: 2012
  ident: D3EE00964E/cit200/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.235149
– volume: 9
  start-page: 421
  year: 2018
  ident: D3EE00964E/cit261/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02925-6
– volume: 12
  start-page: 3001
  year: 2019
  ident: D3EE00964E/cit270/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01341E
– volume: 53
  start-page: 255
  year: 2020
  ident: D3EE00964E/cit206/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00496
– volume: 20
  start-page: 208
  year: 2017
  ident: D3EE00964E/cit345/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.04.011
– volume: 135
  start-page: e202302096
  year: 2023
  ident: D3EE00964E/cit47/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202302096
– volume: 2
  start-page: 553
  year: 2020
  ident: D3EE00964E/cit222/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12094
– volume: 33
  start-page: 452
  year: 2019
  ident: D3EE00964E/cit110/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.07.014
– volume: 24
  start-page: 102172
  year: 2021
  ident: D3EE00964E/cit80/1
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102172
– volume: 13
  start-page: 4711
  year: 2023
  ident: D3EE00964E/cit43/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00181
– volume: 55
  start-page: 629
  year: 2022
  ident: D3EE00964E/cit63/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00673
– volume: 125
  start-page: 3668
  year: 2021
  ident: D3EE00964E/cit259/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c10159
– volume: 13
  start-page: 136
  year: 2021
  ident: D3EE00964E/cit65/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00668-6
– volume: 139
  start-page: 47
  year: 2017
  ident: D3EE00964E/cit138/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10740
– volume: 372
  start-page: 1074
  year: 2021
  ident: D3EE00964E/cit272/1
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 27
  start-page: 101328
  year: 2023
  ident: D3EE00964E/cit52/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.101328
– volume: 125
  start-page: 2519
  year: 2013
  ident: D3EE00964E/cit78/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201208320
– volume: 360
  start-page: 783
  year: 2018
  ident: D3EE00964E/cit111/1
  publication-title: Science
  doi: 10.1126/science.aas9100
– volume: 14
  start-page: 5995
  year: 2021
  ident: D3EE00964E/cit286/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01696B
– volume: 5
  start-page: 564
  year: 2022
  ident: D3EE00964E/cit10/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-022-00788-1
– volume: 13
  start-page: 2203506
  year: 2023
  ident: D3EE00964E/cit13/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203506
– volume: 318
  start-page: 121845
  year: 2022
  ident: D3EE00964E/cit27/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121845
– volume: 9
  start-page: 3202
  year: 2018
  ident: D3EE00964E/cit160/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05511-y
– volume: 10
  start-page: 12403
  year: 2020
  ident: D3EE00964E/cit48/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02915
– volume: 18
  start-page: e2104205
  year: 2022
  ident: D3EE00964E/cit232/1
  publication-title: Small
  doi: 10.1002/smll.202104205
– volume: 60
  start-page: 23427
  year: 2021
  ident: D3EE00964E/cit294/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202108313
– volume: 12
  start-page: 5067
  year: 2021
  ident: D3EE00964E/cit333/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25295-y
– volume: 6
  start-page: 4767
  year: 2015
  ident: D3EE00964E/cit164/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02247
– volume: 43
  start-page: 59
  year: 2022
  ident: D3EE00964E/cit265/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63948-7
– volume: 8
  start-page: 17507
  year: 2020
  ident: D3EE00964E/cit224/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06203K
– volume: 60
  start-page: 13177
  year: 2021
  ident: D3EE00964E/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014112
– volume: 13
  start-page: 3754
  year: 2022
  ident: D3EE00964E/cit139/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31427-9
– volume: 57
  start-page: 7222
  year: 2018
  ident: D3EE00964E/cit167/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00902
– volume: 15
  start-page: 3056
  year: 2021
  ident: D3EE00964E/cit114/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3962-2
– volume: 5
  start-page: 1064
  year: 2018
  ident: D3EE00964E/cit273/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701316
– volume: 76
  start-page: 105049
  year: 2020
  ident: D3EE00964E/cit119/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105049
– volume: 168
  start-page: 086502
  year: 2021
  ident: D3EE00964E/cit279/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac085d
– volume: 10
  start-page: 2022
  year: 2019
  ident: D3EE00964E/cit282/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10084-5
– volume: 12
  start-page: 1364
  year: 2022
  ident: D3EE00964E/cit117/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04825
– volume: 6
  start-page: 7133
  year: 2016
  ident: D3EE00964E/cit174/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02299
– volume: 124
  start-page: 10079
  year: 2020
  ident: D3EE00964E/cit225/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c03101
– volume: 6
  start-page: 205
  year: 2022
  ident: D3EE00964E/cit18/1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.002
– volume: 13
  start-page: 1877
  year: 2022
  ident: D3EE00964E/cit31/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29428-9
– volume: 61
  start-page: e202204967
  year: 2022
  ident: D3EE00964E/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202204967
– volume: 32
  start-page: 2109310
  year: 2022
  ident: D3EE00964E/cit66/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202109310
– volume: 13
  start-page: 1965
  year: 2022
  ident: D3EE00964E/cit186/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29698-3
– volume: 312
  start-page: 108
  year: 2014
  ident: D3EE00964E/cit169/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.01.013
– volume: 6
  start-page: 294
  year: 2022
  ident: D3EE00964E/cit8/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.01.001
– volume: 12
  start-page: 794
  year: 2021
  ident: D3EE00964E/cit275/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20961-7
– volume: 12
  start-page: 2455
  year: 2019
  ident: D3EE00964E/cit301/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01204D
– volume: 125
  start-page: 23773
  year: 2021
  ident: D3EE00964E/cit151/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07484
– volume: 355
  start-page: 340
  year: 2020
  ident: D3EE00964E/cit323/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.06.066
– volume: 15
  start-page: 113
  year: 2023
  ident: D3EE00964E/cit53/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01092-8
– volume: 59
  start-page: 18095
  year: 2020
  ident: D3EE00964E/cit280/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009498
– volume: 143
  start-page: 21275
  year: 2021
  ident: D3EE00964E/cit51/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03428
– volume: 372
  start-page: 1074
  year: 2021
  ident: D3EE00964E/cit211/1
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 13
  start-page: 3748
  year: 2020
  ident: D3EE00964E/cit231/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01706J
– volume: 57
  start-page: 6011
  year: 2021
  ident: D3EE00964E/cit268/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC01974K
– volume: 122
  start-page: 3719
  year: 2018
  ident: D3EE00964E/cit182/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11316
– volume: 10
  start-page: 32
  year: 2019
  ident: D3EE00964E/cit188/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07970-9
– volume: 7
  start-page: 5112
  year: 2017
  ident: D3EE00964E/cit207/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01416
– volume: 3
  start-page: 2777
  year: 2019
  ident: D3EE00964E/cit305/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.021
– volume: 12
  start-page: 8676
  year: 2022
  ident: D3EE00964E/cit251/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01885
– volume: 11
  start-page: 593
  year: 2020
  ident: D3EE00964E/cit348/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14402-0
– volume: 23
  start-page: 152
  year: 2018
  ident: D3EE00964E/cit327/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.11.010
– volume: 324
  start-page: 122272
  year: 2023
  ident: D3EE00964E/cit42/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122272
– volume: 18
  start-page: 7075
  year: 2016
  ident: D3EE00964E/cit313/1
  publication-title: Phys. Chem.
– volume: 8
  start-page: 15438
  year: 2017
  ident: D3EE00964E/cit161/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15438
– volume: 5
  start-page: 564
  year: 2022
  ident: D3EE00964E/cit137/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-022-00788-1
– volume: 14
  start-page: 7779
  year: 2022
  ident: D3EE00964E/cit84/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18856
– volume: 7
  start-page: 406
  year: 2021
  ident: D3EE00964E/cit173/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.018
– volume: 306
  start-page: 121111
  year: 2022
  ident: D3EE00964E/cit87/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121111
– volume: 122
  start-page: 11085
  year: 2022
  ident: D3EE00964E/cit148/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00690
– volume: 508
  start-page: 504
  year: 2014
  ident: D3EE00964E/cit185/1
  publication-title: Nature
  doi: 10.1038/nature13249
– volume: 8
  start-page: 210
  year: 2019
  ident: D3EE00964E/cit166/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05183
– volume: 32
  start-page: 2111193
  year: 2022
  ident: D3EE00964E/cit193/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111193
– start-page: e362
  year: 2023
  ident: D3EE00964E/cit12/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.362
– volume: 1
  start-page: 43
  year: 2013
  ident: D3EE00964E/cit204/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2013.03.003
– volume: 51
  start-page: 1234
  year: 2022
  ident: D3EE00964E/cit112/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00893E
– volume: 1
  start-page: 111
  year: 2018
  ident: D3EE00964E/cit175/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-017-0009-x
– volume: 1
  start-page: 764
  year: 2018
  ident: D3EE00964E/cit140/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-018-0139-9
– volume: 312
  start-page: 192
  year: 2016
  ident: D3EE00964E/cit322/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.02.043
– volume: 5
  start-page: e2100700
  year: 2021
  ident: D3EE00964E/cit241/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202100700
– volume: 141
  start-page: 4624
  year: 2019
  ident: D3EE00964E/cit252/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11237
– volume: 58
  start-page: 15036
  year: 2019
  ident: D3EE00964E/cit71/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909610
– volume: 9
  start-page: 19369
  year: 2021
  ident: D3EE00964E/cit316/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03636J
– volume: 6
  start-page: 7133
  year: 2016
  ident: D3EE00964E/cit216/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02299
– volume: 21
  start-page: 980
  year: 2021
  ident: D3EE00964E/cit97/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04004
– volume: 143
  start-page: 15335
  year: 2021
  ident: D3EE00964E/cit50/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06877
– volume: 126
  start-page: 3820
  year: 2022
  ident: D3EE00964E/cit218/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c10870
– volume: 144
  start-page: 1589
  year: 2022
  ident: D3EE00964E/cit271/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10171
– volume: 524
  start-page: 112285
  year: 2022
  ident: D3EE00964E/cit158/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2022.112285
– volume: 9
  start-page: 460
  year: 2023
  ident: D3EE00964E/cit146/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.10.017
– volume: 79
  start-page: 369
  year: 2021
  ident: D3EE00964E/cit287/1
  publication-title: Acta Chim. Sin.
  doi: 10.6023/A20110540
– volume: 314
  start-page: 121498
  year: 2022
  ident: D3EE00964E/cit127/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121498
– volume: 55
  start-page: 504
  year: 2022
  ident: D3EE00964E/cit210/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00680
– volume: 236
  start-page: 126
  year: 2022
  ident: D3EE00964E/cit256/1
  publication-title: Faraday Discuss.
  doi: 10.1039/D1FD00121C
– volume: 11
  start-page: 3028
  year: 2020
  ident: D3EE00964E/cit311/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16847-9
– volume: 11
  start-page: 10825
  year: 2017
  ident: D3EE00964E/cit125/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03738
– volume: 135
  start-page: e202302789
  year: 2023
  ident: D3EE00964E/cit292/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202302789
– volume: 12
  start-page: 1114
  year: 2021
  ident: D3EE00964E/cit223/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21342-w
– volume: 1
  start-page: 509
  year: 2021
  ident: D3EE00964E/cit255/1
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2021.07.012
– volume: 133
  start-page: 20795
  year: 2021
  ident: D3EE00964E/cit180/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202101818
– volume: 61
  start-page: e202206470
  year: 2022
  ident: D3EE00964E/cit59/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202206470
– volume: 61
  start-page: e202111700
  year: 2022
  ident: D3EE00964E/cit132/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202111700
– volume: 597
  start-page: 153724
  year: 2022
  ident: D3EE00964E/cit170/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153724
– volume: 10
  start-page: 2000882
  year: 2020
  ident: D3EE00964E/cit64/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000882
– volume: 61
  start-page: e202202607
  year: 2022
  ident: D3EE00964E/cit130/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202202607
– volume: 11
  start-page: 2550
  year: 2018
  ident: D3EE00964E/cit141/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00936H
– volume: 555
  start-page: 145
  year: 2013
  ident: D3EE00964E/cit159/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2012.11.025
– volume: 35
  start-page: 12869
  year: 2021
  ident: D3EE00964E/cit94/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01650
– volume: 11
  start-page: 3299
  year: 2018
  ident: D3EE00964E/cit208/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801078
– volume: 43
  start-page: 1697
  year: 2022
  ident: D3EE00964E/cit245/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)64006-8
– volume: 9
  start-page: 5298
  year: 2021
  ident: D3EE00964E/cit343/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08955
– volume: 11
  start-page: 2455
  year: 2020
  ident: D3EE00964E/cit70/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16381-8
– volume: 12
  start-page: 2741
  year: 2022
  ident: D3EE00964E/cit135/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05272
– volume: 12
  start-page: 22192
  year: 2020
  ident: D3EE00964E/cit260/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR04961A
– volume: 128
  start-page: 1472
  year: 2016
  ident: D3EE00964E/cit189/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201508851
– volume: 6
  start-page: 2745
  year: 2022
  ident: D3EE00964E/cit340/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.11.003
– volume: 6
  start-page: 2663
  year: 2015
  ident: D3EE00964E/cit221/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01043
– volume: 61
  start-page: e202116706
  year: 2022
  ident: D3EE00964E/cit278/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202116706
– volume: 55
  start-page: 616
  year: 2022
  ident: D3EE00964E/cit19/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00616
– volume: 125
  start-page: 9138
  year: 2021
  ident: D3EE00964E/cit103/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c01586
– volume: 14
  start-page: 1298
  year: 2023
  ident: D3EE00964E/cit46/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36926-x
– volume: 13
  start-page: 803
  year: 2022
  ident: D3EE00964E/cit194/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28436-z
– volume: 11
  start-page: 11945
  year: 2021
  ident: D3EE00964E/cit289/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02783
– volume: 58
  start-page: 16952
  year: 2019
  ident: D3EE00964E/cit108/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907935
– volume: 1
  start-page: 592
  year: 2018
  ident: D3EE00964E/cit267/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-018-0108-3
– volume: 43
  start-page: 451
  year: 2022
  ident: D3EE00964E/cit133/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63879-2
– volume: 12
  start-page: 2055
  year: 2019
  ident: D3EE00964E/cit266/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2310-2
– volume: 165
  start-page: 799
  year: 2018
  ident: D3EE00964E/cit178/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0521810jes
– volume: 144
  start-page: 12807
  year: 2022
  ident: D3EE00964E/cit244/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03875
– volume: 13
  start-page: 2203896
  year: 2023
  ident: D3EE00964E/cit215/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203896
– volume: 349
  start-page: 1208
  year: 2015
  ident: D3EE00964E/cit129/1
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 55
  start-page: 1900
  year: 2022
  ident: D3EE00964E/cit179/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.2c00080
– volume: 114
  start-page: 6685
  year: 2017
  ident: D3EE00964E/cit121/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1702405114
– volume: 14
  start-page: 134
  year: 2022
  ident: D3EE00964E/cit67/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00879-5
– volume: 64
  start-page: 123
  year: 1991
  ident: D3EE00964E/cit196/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.64.123
– volume: 144
  start-page: 8927
  year: 2022
  ident: D3EE00964E/cit247/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03662
– volume: 30
  start-page: e1804867
  year: 2018
  ident: D3EE00964E/cit306/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804867
– volume: 33
  start-page: e2202830
  year: 2022
  ident: D3EE00964E/cit347/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202830
– volume: 12
  start-page: 6606
  year: 2022
  ident: D3EE00964E/cit217/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01470
– volume: 8
  start-page: 2397
  year: 2021
  ident: D3EE00964E/cit122/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100345
– volume: 13
  start-page: 2300402
  year: 2023
  ident: D3EE00964E/cit126/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300402
– volume: 11
  start-page: 12336
  year: 2021
  ident: D3EE00964E/cit220/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01072
– volume: 50
  start-page: 12897
  year: 2021
  ident: D3EE00964E/cit34/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00535A
– volume: 23
  start-page: 2312
  year: 2023
  ident: D3EE00964E/cit62/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c05112
– volume: 13
  start-page: 3080
  year: 2022
  ident: D3EE00964E/cit269/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30733-6
– volume: 454
  start-page: 214340
  year: 2022
  ident: D3EE00964E/cit68/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214340
– volume: 134
  start-page: e202205832
  year: 2022
  ident: D3EE00964E/cit187/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202205832
– volume: 14
  start-page: 474
  year: 2023
  ident: D3EE00964E/cit45/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35993-4
– volume: 299
  start-page: 120661
  year: 2021
  ident: D3EE00964E/cit349/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120661
– volume: 10
  start-page: 6735
  year: 2020
  ident: D3EE00964E/cit213/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01388
– volume: 50
  start-page: 4993
  year: 2021
  ident: D3EE00964E/cit39/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00071J
– volume: 307
  start-page: 121164
  year: 2022
  ident: D3EE00964E/cit262/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121164
– volume: 114
  start-page: 1795
  year: 2017
  ident: D3EE00964E/cit162/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1612106114
– volume: 32
  start-page: 2107349
  year: 2021
  ident: D3EE00964E/cit209/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107349
– volume: 12
  start-page: 1580
  year: 2021
  ident: D3EE00964E/cit92/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21901-1
– volume: 3
  start-page: 100097
  year: 2023
  ident: D3EE00964E/cit105/1
  publication-title: eScience
  doi: 10.1016/j.esci.2023.100097
– volume: 89
  start-page: 106460
  year: 2021
  ident: D3EE00964E/cit86/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106460
– volume: 60
  start-page: 16576
  year: 2021
  ident: D3EE00964E/cit236/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104114
– volume: 13
  start-page: 63
  year: 2022
  ident: D3EE00964E/cit131/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27768-6
– volume: 5
  start-page: 268
  year: 2022
  ident: D3EE00964E/cit337/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-022-00761-y
– volume: 4
  start-page: 20
  year: 2020
  ident: D3EE00964E/cit291/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-020-00547-0
– volume: 33
  start-page: 2008376
  year: 2021
  ident: D3EE00964E/cit2/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008376
– volume: 122
  start-page: 11392
  year: 2018
  ident: D3EE00964E/cit172/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01928
– volume: 6
  start-page: 310
  year: 2023
  ident: D3EE00964E/cit4/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-023-00937-0
– volume: 365
  start-page: 367
  year: 2019
  ident: D3EE00964E/cit330/1
  publication-title: Science
  doi: 10.1126/science.aax4608
– volume: 17
  start-page: 2387
  year: 2023
  ident: D3EE00964E/cit26/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09473
– volume: 12
  start-page: 331
  year: 2021
  ident: D3EE00964E/cit201/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03501
– volume: 367
  start-page: 661
  year: 2020
  ident: D3EE00964E/cit288/1
  publication-title: Science
  doi: 10.1126/science.aay4217
– start-page: 2300697
  year: 2023
  ident: D3EE00964E/cit17/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300697
– volume: 15
  start-page: 3603
  year: 2022
  ident: D3EE00964E/cit14/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00472K
– volume: 20
  start-page: 16973
  year: 2018
  ident: D3EE00964E/cit304/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01319E
– volume: 15
  start-page: 14470
  year: 2023
  ident: D3EE00964E/cit147/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 654
  start-page: 56
  year: 2016
  ident: D3EE00964E/cit44/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2016.08.006
– volume: 12
  start-page: 4792
  year: 2022
  ident: D3EE00964E/cit98/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05431
– volume: 5
  start-page: 929
  year: 2017
  ident: D3EE00964E/cit297/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600636
– volume: 62
  start-page: e202211804
  year: 2023
  ident: D3EE00964E/cit6/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202211804
– volume: 8
  start-page: 8716
  year: 2020
  ident: D3EE00964E/cit228/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02364G
– volume: 15
  start-page: 24346
  year: 2023
  ident: D3EE00964E/cit124/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c01012
– volume: 456
  start-page: 140942
  year: 2023
  ident: D3EE00964E/cit295/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140942
– volume: 14
  start-page: 2821
  year: 2023
  ident: D3EE00964E/cit7/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38506-5
– volume: 6
  start-page: 8108
  year: 2018
  ident: D3EE00964E/cit342/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00793
– volume: 298
  start-page: 121362
  year: 2021
  ident: D3EE00964E/cit317/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120538
– volume: 51
  start-page: 910
  year: 2018
  ident: D3EE00964E/cit324/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00010
– volume: 106
  start-page: 108080
  year: 2023
  ident: D3EE00964E/cit101/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108080
– volume: 3
  start-page: 100512
  year: 2023
  ident: D3EE00964E/cit99/1
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2023.100512
– volume: 139
  start-page: 11277
  year: 2017
  ident: D3EE00964E/cit199/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06765
– volume: 121
  start-page: 882
  year: 2021
  ident: D3EE00964E/cit248/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00396
– volume: 13
  start-page: 2280
  year: 2022
  ident: D3EE00964E/cit61/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30027-x
– volume: 61
  start-page: e202200039
  year: 2022
  ident: D3EE00964E/cit283/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202200039
– volume: 40
  start-page: 3442
  year: 2021
  ident: D3EE00964E/cit93/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01772-7
– volume: 6
  start-page: 92
  year: 2022
  ident: D3EE00964E/cit1/1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.011
– volume: 13
  start-page: 12673
  year: 2022
  ident: D3EE00964E/cit56/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC04794B
– volume: 138
  start-page: 13006
  year: 2016
  ident: D3EE00964E/cit197/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07612
– volume: 3
  start-page: 100972
  year: 2022
  ident: D3EE00964E/cit21/1
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.100972
– volume: 32
  start-page: 2111504
  year: 2022
  ident: D3EE00964E/cit113/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111504
– volume: 408
  start-page: 1
  year: 2022
  ident: D3EE00964E/cit320/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2022.02.014
– volume: 7
  start-page: 12123
  year: 2016
  ident: D3EE00964E/cit253/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12123
– volume: 144
  start-page: 2829
  year: 2022
  ident: D3EE00964E/cit106/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11500
– volume: 5
  start-page: 545
  year: 2022
  ident: D3EE00964E/cit144/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-022-00803-5
– volume: 12
  start-page: 8269
  year: 2022
  ident: D3EE00964E/cit226/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02149
– volume: 14
  start-page: 1928
  year: 2021
  ident: D3EE00964E/cit258/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03903A
– volume: 8
  start-page: 2003579
  year: 2021
  ident: D3EE00964E/cit28/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202003579
– volume: 9
  start-page: 911
  year: 2022
  ident: D3EE00964E/cit30/1
  publication-title: Environ. Sci.: Nano
– volume: 4
  start-page: 654
  year: 2021
  ident: D3EE00964E/cit277/1
  publication-title: Natl. Catal.
  doi: 10.1038/s41929-021-00655-5
– volume: 120
  start-page: 9648
  year: 2004
  ident: D3EE00964E/cit156/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1718201
– volume: 33
  start-page: 2210938
  year: 2023
  ident: D3EE00964E/cit24/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210938
– volume: 11
  start-page: 3844
  year: 2020
  ident: D3EE00964E/cit239/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17690-8
– volume: 10
  start-page: 13171
  year: 2020
  ident: D3EE00964E/cit281/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03873
– volume: 11
  start-page: 594
  year: 2021
  ident: D3EE00964E/cit264/1
  publication-title: Catalysts
  doi: 10.3390/catal11050594
– volume: 317
  start-page: 121681
  year: 2022
  ident: D3EE00964E/cit22/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121681
– volume: 33
  start-page: 100940
  year: 2022
  ident: D3EE00964E/cit190/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2022.100940
– volume: 13
  start-page: 5242
  year: 2011
  ident: D3EE00964E/cit205/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02064h
– volume: 7
  start-page: 4224
  year: 2022
  ident: D3EE00964E/cit212/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02292
– volume: 133
  start-page: 17394
  year: 2021
  ident: D3EE00964E/cit104/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202017181
– volume: 7
  start-page: 4224
  year: 2022
  ident: D3EE00964E/cit338/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02292
– volume: 13
  start-page: 1507
  year: 2021
  ident: D3EE00964E/cit250/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR07508F
– volume: 5
  start-page: 8529
  year: 2017
  ident: D3EE00964E/cit309/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02380
– volume: 7
  start-page: 55
  year: 2021
  ident: D3EE00964E/cit302/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00356-2
– volume: 14
  start-page: 4998
  year: 2021
  ident: D3EE00964E/cit346/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01495A
– volume: 125
  start-page: 24289
  year: 2021
  ident: D3EE00964E/cit243/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07689
– volume: 33
  start-page: e2008376
  year: 2021
  ident: D3EE00964E/cit73/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008376
– volume: 11
  start-page: 893
  year: 2018
  ident: D3EE00964E/cit329/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03245E
– volume: 9
  start-page: 16394
  year: 2021
  ident: D3EE00964E/cit331/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c06295
– volume: 135
  start-page: e202304634
  year: 2023
  ident: D3EE00964E/cit5/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202304634
– volume: 31
  start-page: e1807166
  year: 2019
  ident: D3EE00964E/cit154/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807166
– volume: 139
  start-page: 3774
  year: 2017
  ident: D3EE00964E/cit183/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13287
– volume: 13
  start-page: 1877
  year: 2022
  ident: D3EE00964E/cit326/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29428-9
SSID ssj0062079
Score 2.7145562
SecondaryResourceType review_article
Snippet Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production....
Electrocatalytic CO2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4714
SubjectTerms Carbon dioxide
Catalysts
Chemical reduction
Design optimization
Electrochemistry
Electrolytes
Interface reactions
Intermediates
Ionic liquids
Machine learning
Mass transfer
Reaction intermediates
Title Electrochemical reduction of carbon dioxide to multicarbon (C) products: challenges and perspectives
URI https://www.proquest.com/docview/2887040626
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp-7I9lN3K0ssQbIOV4C662Ir71mTewgZjDy3tm7FkiRlGnKYujPyM_eIdy5attH3o9mLMwTJY5_O56VwQemeIUobHJjAhiEAuYwVyMGfBRDLBlZBEKJtt8T2aX_CvV-HVYPDHy1q6reSJWj9YV_I_XAUa8LWukv0HznYvBQLcA3_hChyG66N4nDQzbJQr-l_VfVidCaiylYS7vCh_F7kdkGGTB1tyfXg7ou_pdFTHBZZN31ebHqfceJWme_Oyr8a82QjjN0WDNXK8YjlXYtnjZeYi0tOiw-GPljQvW71pD5rWxbU1pbN11qV9XLpwdiFLP0BBma3U82WqCHkQRs3IuxPt0cQ42hDEkQ844olV0KDcU9FcNO3e74n_Mau7p35iSVK7ZjzplZw72L-j-7qMRHsWz-K0X7uFdii4HiA7d86-Tb9cOv0e0bHt4Nh9lmt6y-KP_epNM6f3XbZWbrCMNWDOn6Hd1vPAZw2MnqOBXrxAT71-lC_RzzuAwh2gcGlwgxzcAgpXJfYAhT_MMB3hY-ygdIp7IGEAEvaB9ApdfE7OZ_OgHcURKDZhVaBzSiQIb0GIkFQTbhiTkiipwELPmVaGjPVEZRl4p1qAjNcSTHkTqliCw2AI20Pbi3KhXyOshTawrVkeGzAt-UTmhuRUU64yzqWIh-jY7Vyq2j719biUX-l9Hg3R2-7ZZdOd5cGnDh0D0vbvvUkpaFdQYODPD9EeMKVbD1-j7Tq9_6i3H6AnPeoP0Xa1utVHYKhW8k2LnL9drJF7
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+reduction+of+carbon+dioxide+to+multicarbon+%28C+2%2B+%29+products%3A+challenges+and+perspectives&rft.jtitle=Energy+%26+environmental+science&rft.au=Chang%2C+Bin&rft.au=Pang%2C+Hong&rft.au=Raziq%2C+Fazal&rft.au=Wang%2C+Sibo&rft.date=2023-11-08&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=16&rft.issue=11&rft.spage=4714&rft.epage=4758&rft_id=info:doi/10.1039%2FD3EE00964E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3EE00964E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon