Electrochemical reduction of carbon dioxide to multicarbon (C) products: challenges and perspectives
Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C 2+ ) compounds with higher energy density are desirable value-added products. Herein, we revie...
Saved in:
Published in | Energy & environmental science Vol. 16; no. 11; pp. 4714 - 4758 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic CO
2
reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C
2+
) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C
2+
products. We start with the elaboration of the most recent advancement of carbon-carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO
2
activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C
2+
product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several
in situ
/
operando
techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C
2+
selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C
2+
products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling.
This review analyzes advanced catalysts and C
2+
synthesis mechanisms based on theoretical explorations and
in situ
/
operando
characterizations. Triphasic interface optimization is discussed for the potential of industry-compatible stability. |
---|---|
AbstractList | Electrocatalytic CO
2
reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C
2+
) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C
2+
products. We start with the elaboration of the most recent advancement of carbon-carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO
2
activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C
2+
product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several
in situ
/
operando
techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C
2+
selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C
2+
products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling.
This review analyzes advanced catalysts and C
2+
synthesis mechanisms based on theoretical explorations and
in situ
/
operando
characterizations. Triphasic interface optimization is discussed for the potential of industry-compatible stability. Electrocatalytic CO2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C2+) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C2+ products. We start with the elaboration of the most recent advancement of carbon–carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO2 activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C2+ product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several in situ/operando techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C2+ selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C2+ products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling. Electrocatalytic CO 2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C 2+ ) compounds with higher energy density are desirable value-added products. Herein, we review and discuss the recent progress and challenges in preparing C 2+ products. We start with the elaboration of the most recent advancement of carbon–carbon coupling results and the newly proposed mechanisms, which are much more complicated than that of single-carbon products. The complex scenarios involved in the initial CO 2 activation process, the catalyst micro/nanostructure design, and mass transfer conditions optimization have been thoroughly discussed. In addition, we also propose the synergistic realization of high C 2+ product selectivity through the rational design of the catalyst and elaborate on the influence of electrolytes (anion/cation/pH/ionic liquid) using theoretical calculation analysis and machine learning prediction. Several in situ / operando techniques have been elaborated for tracking the structural evolution and recording the reaction intermediates during electrocatalysis. Additional insights into the triphasic interfacial reaction systems with improved C 2+ selectivity are also provided. By presenting these advances and future challenges with potential solutions related to the integral development of electrochemical reduction of carbon dioxide to C 2+ products, we hope to shed some light on the forthcoming research on electrochemical carbon dioxide recycling. |
Author | Ye, Jinhua Pang, Hong Zhang, Huabin Raziq, Fazal Huang, Kuo-Wei Wang, Sibo Chang, Bin |
AuthorAffiliation | King Abdullah University of Science and Technology (KAUST) Fuzhou University Tsukuba College of Chemistry Chemistry Program International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS)1-1 Namiki Physical Science and Engineering Division KAUST Catalysis Center (KCC) State Key Laboratory of Photocatalysis on Energy and Environment |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Photocatalysis on Energy and Environment – sequence: 0 name: Physical Science and Engineering Division – sequence: 0 name: Tsukuba – sequence: 0 name: College of Chemistry – sequence: 0 name: Chemistry Program – sequence: 0 name: King Abdullah University of Science and Technology (KAUST) – sequence: 0 name: KAUST Catalysis Center (KCC) – sequence: 0 name: International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS)1-1 Namiki – sequence: 0 name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Bin surname: Chang fullname: Chang, Bin – sequence: 2 givenname: Hong surname: Pang fullname: Pang, Hong – sequence: 3 givenname: Fazal surname: Raziq fullname: Raziq, Fazal – sequence: 4 givenname: Sibo surname: Wang fullname: Wang, Sibo – sequence: 5 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei – sequence: 6 givenname: Jinhua surname: Ye fullname: Ye, Jinhua – sequence: 7 givenname: Huabin surname: Zhang fullname: Zhang, Huabin |
BookMark | eNptkd9LwzAQx4NMcJu--C4EfFGhmjRt0_o2Zv0BA1_0uSTp1WV0TU1S0f_ezE0F8emO43Pfu_veBI060wFCx5RcUsKKq5oBEFJkCeyhMeVpEqWcZKPvPCviAzRxbkVIFhNejFFdtqC8NWoJa61Eiy3Ug_LadNg0WAkrQ1Zr865rwN7g9dB6vSufzc9xb82Gd9dYLUXbQvcCDouuxj1Y1wdp_QbuEO03onVwtItT9HxbPs3vo8Xj3cN8togUy5mPoI6pJJRzSrmMgSYNY1JSJVWR0nCZaiiBXAnBEw6cFwnIPKVNqgqZpVlD2RSdbnXDVq8DOF-tzGC7MLKK85yTJFydBepiSylrnLPQVL3Va2E_KkqqjYvVDSvLLxfLAJM_sNJebPzxVuj2_5aTbYt16kf69zHsExlrgVc |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_109881 crossref_primary_10_1021_acs_inorgchem_3c04239 crossref_primary_10_1039_D5NJ00797F crossref_primary_10_1021_acs_iecr_4c03238 crossref_primary_10_1039_D4EE01301H crossref_primary_10_1039_D4CY00101J crossref_primary_10_1016_S1872_2067_24_60209_3 crossref_primary_10_1016_j_cej_2024_158067 crossref_primary_10_1002_cssc_202401173 crossref_primary_10_1007_s12598_024_02846_y crossref_primary_10_1016_j_apcatb_2024_124967 crossref_primary_10_1039_D4CS00563E crossref_primary_10_1039_D4TA06805J crossref_primary_10_1016_j_jre_2025_02_009 crossref_primary_10_1002_adma_202419547 crossref_primary_10_1016_j_cclet_2024_110276 crossref_primary_10_1016_j_jcis_2024_06_016 crossref_primary_10_3389_fenrg_2024_1340622 crossref_primary_10_1002_cctc_202301335 crossref_primary_10_1016_j_apcatb_2025_125133 crossref_primary_10_1002_advs_202416597 crossref_primary_10_1021_acsami_4c21988 crossref_primary_10_1007_s12598_024_02840_4 crossref_primary_10_1016_j_nanoms_2024_09_001 crossref_primary_10_1039_D4EE02697G crossref_primary_10_1002_anie_202422357 crossref_primary_10_1039_D4SU00121D crossref_primary_10_1007_s40820_023_01214_2 crossref_primary_10_1002_ange_202404676 crossref_primary_10_1002_sstr_202300495 crossref_primary_10_1016_j_jechem_2024_11_032 crossref_primary_10_1007_s11426_023_1941_0 crossref_primary_10_1021_acsami_4c04632 crossref_primary_10_1002_cssc_202400871 crossref_primary_10_1002_smll_202311060 crossref_primary_10_1021_acsenergylett_4c03186 crossref_primary_10_1016_j_chempr_2023_08_008 crossref_primary_10_1002_ece2_23 crossref_primary_10_1002_ange_202422357 crossref_primary_10_1002_idm2_12157 crossref_primary_10_1002_smll_202406906 crossref_primary_10_1038_s41565_025_01892_6 crossref_primary_10_1016_j_jechem_2024_12_022 crossref_primary_10_1002_smll_202409186 crossref_primary_10_1007_s11426_024_2148_2 crossref_primary_10_1021_acs_nanolett_4c03863 crossref_primary_10_20517_energymater_2024_237 crossref_primary_10_1002_cey2_491 crossref_primary_10_1021_acs_jpcc_4c00021 crossref_primary_10_1016_j_cej_2025_161736 crossref_primary_10_1039_D4EE03743J crossref_primary_10_1039_D4SC00967C crossref_primary_10_1002_anie_202401821 crossref_primary_10_1021_acscatal_4c02465 crossref_primary_10_1002_adma_202310912 crossref_primary_10_1016_j_jechem_2024_09_059 crossref_primary_10_1039_D4CP03161J crossref_primary_10_1016_j_cherd_2023_08_045 crossref_primary_10_1002_chem_202400352 crossref_primary_10_1016_j_nanoms_2024_05_005 crossref_primary_10_1021_acs_iecr_4c03428 crossref_primary_10_1126_sciadv_adi6119 crossref_primary_10_1021_jacsau_4c00583 crossref_primary_10_1039_D3CC05577A crossref_primary_10_1002_ange_202401821 crossref_primary_10_1016_j_isci_2024_109313 crossref_primary_10_1039_D4CC03875D crossref_primary_10_1002_adfm_202411195 crossref_primary_10_1021_jacs_4c03830 crossref_primary_10_1016_j_enchem_2024_100130 crossref_primary_10_1021_acs_est_4c02066 crossref_primary_10_1039_D3GC03893A crossref_primary_10_1002_adfm_202416117 crossref_primary_10_1002_cnma_202400070 crossref_primary_10_1039_D4CS00186A crossref_primary_10_1002_ange_202316264 crossref_primary_10_1007_s11705_025_2527_4 crossref_primary_10_1039_D4CP01622J crossref_primary_10_1016_j_apcato_2025_207036 crossref_primary_10_1021_acsami_4c08499 crossref_primary_10_1021_jacs_4c10472 crossref_primary_10_1016_j_jcis_2024_09_198 crossref_primary_10_1002_advs_202309865 crossref_primary_10_1038_s41467_025_57573_4 crossref_primary_10_1007_s40843_024_3165_6 crossref_primary_10_1021_jacs_4c17295 crossref_primary_10_1002_smll_202400700 crossref_primary_10_1002_anie_202413832 crossref_primary_10_1007_s12598_024_02919_y crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1007_s12274_023_6334_2 crossref_primary_10_1016_j_ccr_2024_215983 crossref_primary_10_1021_acs_energyfuels_4c02546 crossref_primary_10_1007_s11426_024_2326_7 crossref_primary_10_1021_acsmaterialslett_4c02064 crossref_primary_10_1002_anie_202316264 crossref_primary_10_1002_anie_202404676 crossref_primary_10_1016_j_apsusc_2024_162086 crossref_primary_10_1007_s11708_024_0950_8 crossref_primary_10_1021_acsnano_5c01268 crossref_primary_10_1021_acsnano_5c00696 crossref_primary_10_1021_acs_chemrev_4c00282 crossref_primary_10_1016_j_nanoen_2023_108994 crossref_primary_10_1021_acsami_4c16371 crossref_primary_10_1039_D4QI01353K crossref_primary_10_1002_cplu_202400069 crossref_primary_10_1021_acsami_3c18285 crossref_primary_10_1002_adma_202415799 crossref_primary_10_1016_j_gee_2025_01_003 crossref_primary_10_1016_j_mtcomm_2025_112016 crossref_primary_10_1016_j_cjche_2024_10_025 crossref_primary_10_1016_j_mser_2025_100967 crossref_primary_10_1021_acs_energyfuels_4c00410 crossref_primary_10_1002_cctc_202400601 crossref_primary_10_1021_acsaem_4c01896 crossref_primary_10_1039_D4SE00533C crossref_primary_10_1021_acscatal_4c05286 crossref_primary_10_1002_aenm_202500177 crossref_primary_10_1039_D4CY00767K crossref_primary_10_1002_aenm_202405726 crossref_primary_10_15243_jdmlm_2024_121_6949 crossref_primary_10_1021_acscatal_4c07987 crossref_primary_10_1016_j_cej_2025_159809 crossref_primary_10_1039_D3GC04920E crossref_primary_10_1002_ente_202400178 crossref_primary_10_1016_j_jechem_2024_01_060 crossref_primary_10_1016_j_nanoen_2024_109660 crossref_primary_10_1021_acs_accounts_4c00417 crossref_primary_10_1002_celc_202400664 crossref_primary_10_1002_smll_202500538 crossref_primary_10_1016_j_jes_2024_03_012 crossref_primary_10_1002_cctc_202401049 crossref_primary_10_1002_adfm_202410186 crossref_primary_10_1002_advs_202308228 crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1016_j_apcatb_2024_124428 crossref_primary_10_1002_cssc_202402120 crossref_primary_10_1016_j_apcatb_2024_124822 crossref_primary_10_1021_acscatal_4c06065 crossref_primary_10_1002_rpm_20240011 crossref_primary_10_1039_D4SE01065E crossref_primary_10_1039_D4TA06722C crossref_primary_10_1002_cctc_202401604 crossref_primary_10_1021_jacs_4c04031 crossref_primary_10_1002_ange_202413832 crossref_primary_10_1039_D4NR05259E crossref_primary_10_1002_smtd_202500005 crossref_primary_10_1016_j_watres_2024_122317 crossref_primary_10_1039_D4EE01748J crossref_primary_10_1016_j_jece_2024_114445 crossref_primary_10_1021_jacs_4c04848 crossref_primary_10_3390_catal15030237 crossref_primary_10_1002_adma_202414169 crossref_primary_10_1016_j_ccst_2024_100355 crossref_primary_10_1039_D4SE01515K crossref_primary_10_1007_s12274_024_6870_4 crossref_primary_10_1016_j_jcis_2024_12_245 crossref_primary_10_1002_smll_202409259 crossref_primary_10_1016_j_cej_2024_156694 crossref_primary_10_1016_j_apcatb_2024_124933 crossref_primary_10_1016_j_checat_2025_101322 crossref_primary_10_1039_D4CC03964E crossref_primary_10_1016_j_jechem_2025_02_017 crossref_primary_10_1002_cssc_202402755 crossref_primary_10_1039_D4TA05059B crossref_primary_10_3390_molecules28248154 crossref_primary_10_1039_D3QM01179H crossref_primary_10_1016_j_jmst_2024_09_032 |
Cites_doi | 10.1002/ange.202105118 10.1021/acs.chemrev.8b00705 10.1021/jacs.0c01562 10.1021/acsenergylett.2c00606 10.1002/aenm.202202818 10.1021/acscatal.8b01340 10.1016/j.apcatb.2021.120991 10.1016/j.apcatb.2021.120897 10.1021/acscatal.1c01478 10.1038/s41929-020-0450-0 10.1021/acs.jpcc.1c10870 10.1039/C8TA05428B 10.1039/D2CC06943A 10.1002/advs.202207187 10.1002/cctc.202101224 10.1002/smtd.201800449 10.1002/celc.202200341 10.1038/s41467-022-30819-1 10.1021/acs.inorgchem.2c00148 10.1002/smsc.202100023 10.1038/s41929-018-0169-3 10.1016/S1872-2067(21)63880-9 10.1021/jacs.7b10142 10.1039/D2EE03752A 10.1021/acscatal.7b03477 10.1002/anie.202104114 10.1038/s41467-020-17231-3 10.1039/D1SC05519D 10.1002/anie.202101818 10.1016/j.apmate.2021.10.003 10.1021/acsnano.3c01059 10.1021/acscatal.0c04403 10.1038/s41560-020-0666-x 10.1002/adma.202207088 10.1016/j.jcou.2021.101697 10.1021/acscatal.1c05750 10.1021/acscatal.8b01200 10.1021/acs.jpcc.1c00297 10.1002/advs.202105292 10.1021/jacs.1c00880 10.1039/D2QI01977A 10.1002/adma.202200180 10.1002/sstr.202000058 10.1038/s44160-022-00129-x 10.1021/acs.chemrev.8b00481 10.1021/acs.iecr.7b03514 10.1002/aenm.202003990 10.1146/annurev.physchem.59.032607.093532 10.1039/D0EE01690J 10.1002/ange.202216102 10.1002/adma.202301127 10.1021/jacs.1c09777 10.1016/j.mtchem.2022.100838 10.1002/ange.201301470 10.1021/acsenergylett.0c00482 10.1038/ncomms14621 10.1002/ange.202207252 10.1021/jacs.1c09508 10.1038/s41467-022-30027-x 10.1007/s12274-021-3675-6 10.1002/aenm.202103663 10.1016/j.joule.2020.12.011 10.1038/s41929-022-00763-w 10.1021/jacs.5b11390 10.1038/s41565-019-0551-6 10.1021/acs.nanolett.1c04683 10.1002/aenm.202103383 10.1021/acsenergylett.1c02132 10.1021/acs.jpclett.6b00358 10.1016/j.apcatb.2016.02.010 10.1039/C1CS15278E 10.1038/s41467-022-31427-9 10.1021/acscatal.1c01486 10.1002/anie.202000601 10.1021/acs.accounts.9b00355 10.1016/j.joule.2018.09.021 10.1038/s41560-020-00761-x 10.1002/anie.202111021 10.1038/s41586-019-1782-2 10.1038/s41565-022-01286-y 10.1007/s12274-022-4969-z 10.1016/j.jcou.2022.102344 10.1039/D2TA02709G 10.1021/jacsau.1c00289 10.1021/jacs.2c11643 10.1021/jacs.8b01868 10.1002/smll.202301892 10.1021/acs.oprd.6b00103 10.1002/adfm.202111193 10.1016/j.mcat.2021.111725 10.1016/S1872-2067(21)64000-7 10.1039/D2EE03396H 10.1002/anie.202116706 10.1039/D1EE01664D 10.1038/s41586-020-2242-8 10.1021/acs.nanolett.6b05287 10.1016/j.cej.2019.01.045 10.1016/j.jallcom.2023.168798 10.1021/acsenergylett.0c00305 10.1021/acsenergylett.9b01142 10.1021/acs.jpcc.0c05964 10.1002/adfm.202113252 10.1021/acsenergylett.1c02667 10.1038/s41929-017-0018-9 10.1002/anie.202215136 10.1021/acs.chemrev.1c00690 10.1016/j.joule.2022.04.023 10.1021/jacs.2c02001 10.1021/jacs.0c06779 10.1016/j.chempr.2022.04.004 10.1021/acsenergylett.2c01454 10.1007/s40843-021-1749-5 10.1021/jacs.0c10774 10.1021/acsenergylett.7b01096 10.1103/PhysRevB.85.235149 10.1038/s41467-018-02925-6 10.1039/C9EE01341E 10.1021/acs.accounts.9b00496 10.1016/j.jcou.2017.04.011 10.1002/ange.202302096 10.1002/inf2.12094 10.1016/j.jcou.2019.07.014 10.1016/j.isci.2021.102172 10.1021/acscatal.3c00181 10.1021/acs.accounts.1c00673 10.1021/acs.jpcc.0c10159 10.1007/s40820-021-00668-6 10.1021/jacs.6b10740 10.1126/science.abg6582 10.1016/j.mtchem.2022.101328 10.1002/ange.201208320 10.1126/science.aas9100 10.1039/D1EE01696B 10.1038/s41929-022-00788-1 10.1002/aenm.202203506 10.1016/j.apcatb.2022.121845 10.1038/s41467-018-05511-y 10.1021/acscatal.0c02915 10.1002/smll.202104205 10.1002/anie.202108313 10.1038/s41467-021-25295-y 10.1021/acs.jpclett.5b02247 10.1016/S1872-2067(21)63948-7 10.1039/D0TA06203K 10.1002/anie.202014112 10.1021/acs.inorgchem.8b00902 10.1007/s12274-021-3962-2 10.1002/celc.201701316 10.1016/j.nanoen.2020.105049 10.1149/1945-7111/ac085d 10.1038/s41467-019-10084-5 10.1021/acscatal.1c04825 10.1021/acscatal.6b02299 10.1021/acs.jpcc.0c03101 10.1016/j.joule.2021.12.002 10.1038/s41467-022-29428-9 10.1002/anie.202204967 10.1002/adfm.202109310 10.1038/s41467-022-29698-3 10.1016/j.jcat.2014.01.013 10.1016/j.joule.2022.01.001 10.1038/s41467-021-20961-7 10.1039/C9EE01204D 10.1021/acs.jpcc.1c07484 10.1016/j.cattod.2019.06.066 10.1007/s40820-023-01092-8 10.1002/anie.202009498 10.1021/jacs.1c03428 10.1039/D0EE01706J 10.1039/D1CC01974K 10.1021/acs.jpcc.7b11316 10.1038/s41467-018-07970-9 10.1021/acscatal.7b01416 10.1016/j.joule.2019.07.021 10.1021/acscatal.2c01885 10.1038/s41467-020-14402-0 10.1016/j.jcou.2017.11.010 10.1016/j.apcatb.2022.122272 10.1038/ncomms15438 10.1021/acsami.1c18856 10.1016/j.chempr.2020.10.018 10.1016/j.apcatb.2022.121111 10.1038/nature13249 10.1021/acssuschemeng.9b05183 10.1002/cey2.362 10.1016/j.jcou.2013.03.003 10.1039/D1CS00893E 10.1038/s41929-017-0009-x 10.1038/s41929-018-0139-9 10.1016/j.jpowsour.2016.02.043 10.1002/smtd.202100700 10.1021/jacs.8b11237 10.1002/anie.201909610 10.1039/D1TA03636J 10.1021/acs.nanolett.0c04004 10.1021/jacs.1c06877 10.1021/jacs.1c10171 10.1016/j.mcat.2022.112285 10.1016/j.chempr.2022.10.017 10.6023/A20110540 10.1016/j.apcatb.2022.121498 10.1021/acs.accounts.1c00680 10.1039/D1FD00121C 10.1038/s41467-020-16847-9 10.1021/acsnano.7b03738 10.1002/ange.202302789 10.1038/s41467-021-21342-w 10.1016/j.checat.2021.07.012 10.1002/ange.202101818 10.1002/anie.202206470 10.1002/anie.202111700 10.1016/j.apsusc.2022.153724 10.1002/aenm.202000882 10.1002/anie.202202607 10.1039/C8EE00936H 10.1016/j.cplett.2012.11.025 10.1021/acs.energyfuels.1c01650 10.1002/cssc.201801078 10.1016/S1872-2067(21)64006-8 10.1021/acssuschemeng.0c08955 10.1038/s41467-020-16381-8 10.1021/acscatal.1c05272 10.1039/D0NR04961A 10.1002/ange.201508851 10.1016/j.joule.2022.11.003 10.1021/acs.jpclett.5b01043 10.1021/acs.accounts.1c00616 10.1021/acs.jpcc.1c01586 10.1038/s41467-023-36926-x 10.1038/s41467-022-28436-z 10.1021/acscatal.1c02783 10.1002/anie.201907935 10.1038/s41929-018-0108-3 10.1016/S1872-2067(21)63879-2 10.1007/s12274-019-2310-2 10.1149/2.0521810jes 10.1021/jacs.2c03875 10.1002/aenm.202203896 10.1126/science.aac8343 10.1021/acs.accounts.2c00080 10.1073/pnas.1702405114 10.1007/s40820-022-00879-5 10.1246/bcsj.64.123 10.1021/jacs.2c03662 10.1002/adma.201804867 10.1002/adma.202202830 10.1021/acscatal.2c01470 10.1002/celc.202100345 10.1002/aenm.202300402 10.1021/acscatal.1c01072 10.1039/D1CS00535A 10.1021/acs.nanolett.2c05112 10.1038/s41467-022-30733-6 10.1016/j.ccr.2021.214340 10.1002/ange.202205832 10.1038/s41467-023-35993-4 10.1016/j.apcatb.2021.120661 10.1021/acscatal.0c01388 10.1039/D0CS00071J 10.1016/j.apcatb.2022.121164 10.1073/pnas.1612106114 10.1002/adfm.202107349 10.1038/s41467-021-21901-1 10.1016/j.esci.2023.100097 10.1016/j.nanoen.2021.106460 10.1038/s41467-021-27768-6 10.1038/s41929-022-00761-y 10.1038/s41929-020-00547-0 10.1002/adma.202008376 10.1021/acs.jpcc.8b01928 10.1038/s41929-023-00937-0 10.1126/science.aax4608 10.1021/acsnano.2c09473 10.1021/acscatal.1c03501 10.1126/science.aay4217 10.1002/adfm.202300697 10.1039/D2EE00472K 10.1039/C8CP01319E 10.1016/j.susc.2016.08.006 10.1021/acscatal.1c05431 10.1002/ente.201600636 10.1002/anie.202211804 10.1039/D0TA02364G 10.1021/acsami.3c01012 10.1016/j.cej.2022.140942 10.1038/s41467-023-38506-5 10.1021/acssuschemeng.8b00793 10.1016/j.apcatb.2021.120538 10.1021/acs.accounts.8b00010 10.1016/j.nanoen.2022.108080 10.1016/j.checat.2023.100512 10.1021/jacs.7b06765 10.1021/acs.chemrev.0c00396 10.1002/anie.202200039 10.1007/s12598-021-01772-7 10.1016/j.joule.2021.12.011 10.1039/D2SC04794B 10.1021/jacs.6b07612 10.1016/j.xcrp.2022.100972 10.1002/adfm.202111504 10.1016/j.jcat.2022.02.014 10.1038/ncomms12123 10.1021/jacs.1c11500 10.1038/s41929-022-00803-5 10.1021/acscatal.2c02149 10.1039/D0EE03903A 10.1002/advs.202003579 10.1038/s41929-021-00655-5 10.1063/1.1718201 10.1002/adfm.202210938 10.1038/s41467-020-17690-8 10.1021/acscatal.0c03873 10.3390/catal11050594 10.1016/j.apcatb.2022.121681 10.1016/j.coelec.2022.100940 10.1039/c0cp02064h 10.1021/acsenergylett.2c02292 10.1002/ange.202017181 10.1039/D0NR07508F 10.1021/acssuschemeng.7b02380 10.1038/s41578-021-00356-2 10.1039/D1EE01495A 10.1021/acs.jpcc.1c07689 10.1039/C7EE03245E 10.1021/acssuschemeng.1c06295 10.1002/ange.202304634 10.1002/adma.201807166 10.1021/jacs.6b13287 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d3ee00964e |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 4758 |
ExternalDocumentID | 10_1039_D3EE00964E d3ee00964e |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c383t-ed21b0177117b2e14f33bb1cbc951d3ecf10e8caa747e7794eb851f5c9b656f13 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:00:20 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 01:45:55 EDT 2025 Tue Dec 17 20:58:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-ed21b0177117b2e14f33bb1cbc951d3ecf10e8caa747e7794eb851f5c9b656f13 |
Notes | Bin Chang received his PhD degree from Shandong University in 2020. Then, he worked as a postdoc under the supervision of Prof. Weijia Zhou at the University of Jinan (UJN) and Prof. Shuhui Sun at the Institut National de la Recherche Scientifique (INRS). He is currently a Postdoctoral Fellow in Huabin Zhang's group at KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST). His research interests focus on advanced catalysts for electrochemical energy conversion. Huabin Zhang received his PhD degree in chemistry from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM-CAS). After finishing his postdoc research in Japan (Supervisor: Jinhua Ye) at the National Institute of Materials Science (NIMS) and Singapore (supervisor: Xiong Wen Lou) at Nanyang Technological University, Singapore, he joined KAUST serving as an Assistant Professor in January 2021. His research interests focus on advanced catalysis for sustainable energy. Jinhua Ye received her PhD from the University of Tokyo in 1990. She is presently a Principal Investigator at the National Institute of Materials Science (NIMS) and a Professor of the Joint Doctoral Program at Hokkaido University, Japan. Her research interests focus on the research and development of photofunctional materials and their applications in the fields of environmental remediation and new energy production. She has published more than 600 high impact research papers with over 60 000 total citations (h index: 133). She is currently serving as the Associate Editor of RSC Catalysis Science & Technology, and Science Advances. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4510-0550 0000-0002-8105-8903 0000-0003-1900-2658 0000-0003-2656-9169 0000-0003-1601-2471 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2023/ee/d3ee00964e |
PQID | 2887040626 |
PQPubID | 2047494 |
PageCount | 45 |
ParticipantIDs | crossref_primary_10_1039_D3EE00964E proquest_journals_2887040626 crossref_citationtrail_10_1039_D3EE00964E rsc_primary_d3ee00964e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-08 |
PublicationDateYYYYMMDD | 2023-11-08 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lin (D3EE00964E/cit57/1) 2022; 32 Chan (D3EE00964E/cit221/1) 2015; 6 Chen (D3EE00964E/cit222/1) 2020; 2 Wang (D3EE00964E/cit104/1) 2021; 133 Chen (D3EE00964E/cit52/1) 2023; 27 Gabardo (D3EE00964E/cit305/1) 2019; 3 Chang (D3EE00964E/cit165/1) 2021; 125 Zuo (D3EE00964E/cit233/1) 2022; 12 Zhu (D3EE00964E/cit258/1) 2021; 14 Ren (D3EE00964E/cit101/1) 2023; 106 Huang (D3EE00964E/cit208/1) 2018; 11 Jia (D3EE00964E/cit134/1) 2022; 1 Qu (D3EE00964E/cit142/1) 2022; 16 Kakekhani (D3EE00964E/cit167/1) 2018; 57 Chang (D3EE00964E/cit55/1) 2023; 10 Monteiro (D3EE00964E/cit277/1) 2021; 4 Wang (D3EE00964E/cit310/1) 2022; 307 Dinh (D3EE00964E/cit111/1) 2018; 360 Gao (D3EE00964E/cit207/1) 2017; 7 Zhu (D3EE00964E/cit230/1) 2020; 5 Lu (D3EE00964E/cit235/1) 2020; 142 Li (D3EE00964E/cit112/1) 2022; 51 Mei (D3EE00964E/cit251/1) 2022; 12 Yu (D3EE00964E/cit107/1) 2021; 143 Li (D3EE00964E/cit186/1) 2022; 13 Adegoke (D3EE00964E/cit116/1) 2022; 24 Gusarov (D3EE00964E/cit225/1) 2020; 124 Suominen (D3EE00964E/cit122/1) 2021; 8 Larrazabal (D3EE00964E/cit84/1) 2022; 14 Li (D3EE00964E/cit114/1) 2021; 15 Han (D3EE00964E/cit41/1) 2022; 13 Preet (D3EE00964E/cit264/1) 2021; 11 Liu (D3EE00964E/cit232/1) 2022; 18 Fan (D3EE00964E/cit18/1) 2022; 6 Lin (D3EE00964E/cit8/1) 2022; 6 Li (D3EE00964E/cit67/1) 2022; 14 Gu (D3EE00964E/cit337/1) 2022; 5 Lin (D3EE00964E/cit80/1) 2021; 24 Liu (D3EE00964E/cit188/1) 2019; 10 Verma (D3EE00964E/cit344/1) 2017; 3 Garza (D3EE00964E/cit74/1) 2018; 8 Qin (D3EE00964E/cit17/1) 2023 Jin (D3EE00964E/cit341/1) 2021; 60 Fichthorn (D3EE00964E/cit259/1) 2021; 125 Tan (D3EE00964E/cit86/1) 2021; 89 Timoshenko (D3EE00964E/cit248/1) 2021; 121 Esmaeilirad (D3EE00964E/cit22/1) 2022; 317 Pham (D3EE00964E/cit35/1) 2022; 12 Park (D3EE00964E/cit323/1) 2020; 355 Zhang (D3EE00964E/cit206/1) 2020; 53 Qin (D3EE00964E/cit219/1) 2023; 145 Kim (D3EE00964E/cit334/1) 2022; 5 Huang (D3EE00964E/cit211/1) 2021; 372 Yin (D3EE00964E/cit301/1) 2019; 12 Xiong (D3EE00964E/cit127/1) 2022; 314 Zhang (D3EE00964E/cit85/1) 2020; 142 Sun (D3EE00964E/cit95/1) 2023; 67 Wang (D3EE00964E/cit327/1) 2018; 23 Liu (D3EE00964E/cit245/1) 2022; 43 Wang (D3EE00964E/cit72/1) 2019; 14 Rihm (D3EE00964E/cit11/1) 2023; 16 Chen (D3EE00964E/cit174/1) 2016; 6 Wang (D3EE00964E/cit266/1) 2019; 12 Jiang (D3EE00964E/cit175/1) 2018; 1 Wang (D3EE00964E/cit29/1) 2023 Kamat (D3EE00964E/cit285/1) 2022; 7 Zhang (D3EE00964E/cit9/1) 2021; 60 Morales-Guio (D3EE00964E/cit140/1) 2018; 1 Ryu (D3EE00964E/cit265/1) 2022; 43 Zhu (D3EE00964E/cit106/1) 2022; 144 Xu (D3EE00964E/cit192/1) 2020; 2 Shaw (D3EE00964E/cit205/1) 2011; 13 Zhang (D3EE00964E/cit64/1) 2020; 10 Kling (D3EE00964E/cit157/1) 2008; 59 Wei (D3EE00964E/cit54/1) 2023; 18 Hoang (D3EE00964E/cit307/1) 2018; 140 Li (D3EE00964E/cit93/1) 2021; 40 Du (D3EE00964E/cit103/1) 2021; 125 Ma (D3EE00964E/cit98/1) 2022; 12 Li (D3EE00964E/cit123/1) 2022; 8 Meng (D3EE00964E/cit143/1) 2023; 939 Cao (D3EE00964E/cit217/1) 2022; 12 Yu (D3EE00964E/cit282/1) 2019; 10 Prajapati (D3EE00964E/cit296/1) 2022; 15 Kibria (D3EE00964E/cit306/1) 2018; 30 Lu (D3EE00964E/cit117/1) 2022; 12 Beker (D3EE00964E/cit260/1) 2020; 12 Zhou (D3EE00964E/cit144/1) 2022; 5 Xiang (D3EE00964E/cit30/1) 2022; 9 Rossi (D3EE00964E/cit63/1) 2022; 55 Feng (D3EE00964E/cit257/1) 2022; 22 Dong (D3EE00964E/cit172/1) 2018; 122 Tian (D3EE00964E/cit170/1) 2022; 597 Qiu (D3EE00964E/cit59/1) 2022; 61 Garcia de Arquer (D3EE00964E/cit288/1) 2020; 367 Kim (D3EE00964E/cit322/1) 2016; 312 Wu (D3EE00964E/cit2/1) 2021; 33 Calle-Vallejo (D3EE00964E/cit177/1) 2013; 125 Qi (D3EE00964E/cit226/1) 2022; 12 Clark (D3EE00964E/cit181/1) 2018; 8 Nitopi (D3EE00964E/cit38/1) 2019; 119 Xu (D3EE00964E/cit332/1) 2022; 6 Yang (D3EE00964E/cit247/1) 2022; 144 Schneider (D3EE00964E/cit40/1) 2012; 41 Lai (D3EE00964E/cit14/1) 2022; 15 Alsunni (D3EE00964E/cit151/1) 2021; 125 Li (D3EE00964E/cit184/1) 2021; 19 Zhou (D3EE00964E/cit118/1) 2022; 61 Ren (D3EE00964E/cit281/1) 2020; 10 Jin (D3EE00964E/cit180/1) 2021; 133 Lees (D3EE00964E/cit302/1) 2021; 7 Ramos (D3EE00964E/cit147/1) 2023; 15 Ahmad (D3EE00964E/cit7/1) 2023; 14 Pang (D3EE00964E/cit60/1) 2022; 7 Neri (D3EE00964E/cit284/1) 2018; 1 Hitt (D3EE00964E/cit223/1) 2021; 12 Li (D3EE00964E/cit21/1) 2022; 3 Yuan (D3EE00964E/cit110/1) 2019; 33 Guan (D3EE00964E/cit153/1) 2021; 511 Zou (D3EE00964E/cit331/1) 2021; 9 Shi (D3EE00964E/cit163/1) 2016; 20 Park (D3EE00964E/cit300/1) 2018; 6 Resasco (D3EE00964E/cit273/1) 2018; 5 Du (D3EE00964E/cit145/1) 2023; 59 Woldu (D3EE00964E/cit68/1) 2022; 454 Joshi (D3EE00964E/cit237/1) 2022; 7 Salvatore (D3EE00964E/cit293/1) 2021; 6 Savino (D3EE00964E/cit336/1) 2021; 52 Xu (D3EE00964E/cit152/1) 2019; 119 Kornienko (D3EE00964E/cit250/1) 2021; 13 He (D3EE00964E/cit239/1) 2020; 11 Xue (D3EE00964E/cit290/1) 2021; 15 Creissen (D3EE00964E/cit61/1) 2022; 13 Li (D3EE00964E/cit109/1) 2017; 17 Zhang (D3EE00964E/cit280/1) 2020; 59 Shi (D3EE00964E/cit311/1) 2020; 11 Wei (D3EE00964E/cit43/1) 2023; 13 Deng (D3EE00964E/cit194/1) 2022; 13 Nam (D3EE00964E/cit325/1) 2022; 34 Lee (D3EE00964E/cit4/1) 2023; 6 Wan (D3EE00964E/cit135/1) 2022; 12 Rabiee (D3EE00964E/cit317/1) 2021; 298 Long (D3EE00964E/cit255/1) 2021; 1 Sun (D3EE00964E/cit89/1) 2022; 43 Mistry (D3EE00964E/cit253/1) 2016; 7 Ren (D3EE00964E/cit330/1) 2019; 365 Fang (D3EE00964E/cit146/1) 2023; 9 Jiang (D3EE00964E/cit309/1) 2017; 5 Verma (D3EE00964E/cit313/1) 2016; 18 Feng (D3EE00964E/cit3/1) 2022; 34 Gu (D3EE00964E/cit91/1) 2019; 3 Lv (D3EE00964E/cit42/1) 2023; 324 Raciti (D3EE00964E/cit289/1) 2021; 11 Dattila (D3EE00964E/cit23/1) 2022; 122 Goodpaster (D3EE00964E/cit155/1) 2016; 7 Han (D3EE00964E/cit24/1) 2023; 33 Zhuo (D3EE00964E/cit36/1) 2022; 61 Dattila (D3EE00964E/cit148/1) 2022; 122 Santatiwongchai (D3EE00964E/cit150/1) 2021; 11 Liu (D3EE00964E/cit349/1) 2021; 299 Wang (D3EE00964E/cit56/1) 2022; 13 Deng (D3EE00964E/cit201/1) 2021; 12 Yang (D3EE00964E/cit224/1) 2020; 8 Qiu (D3EE00964E/cit295/1) 2023; 456 Irkham (D3EE00964E/cit343/1) 2021; 9 Mota-Lima (D3EE00964E/cit279/1) 2021; 168 Xie (D3EE00964E/cit10/1) 2022; 5 Calvinho (D3EE00964E/cit51/1) 2021; 143 Wellendorff (D3EE00964E/cit200/1) 2012; 85 Zhang (D3EE00964E/cit12/1) 2023 Wu (D3EE00964E/cit73/1) 2021; 33 Wang (D3EE00964E/cit246/1) 2021; 1 Creissen (D3EE00964E/cit88/1) 2022; 13 Cheng (D3EE00964E/cit133/1) 2022; 43 Liu (D3EE00964E/cit220/1) 2021; 11 Zhang (D3EE00964E/cit218/1) 2022; 126 Lee (D3EE00964E/cit120/1) 2021; 12 Feng (D3EE00964E/cit166/1) 2019; 8 Raciti (D3EE00964E/cit178/1) 2018; 165 Nie (D3EE00964E/cit32/1) 2023; 135 Wen (D3EE00964E/cit132/1) 2022; 61 Esmaeilirad (D3EE00964E/cit333/1) 2021; 12 Weekes (D3EE00964E/cit324/1) 2018; 51 Perez-Gallent (D3EE00964E/cit202/1) 2017; 139 Giusi (D3EE00964E/cit27/1) 2022; 318 Cheng (D3EE00964E/cit164/1) 2015; 6 Grun (D3EE00964E/cit156/1) 2004; 120 Tang (D3EE00964E/cit113/1) 2022; 32 An (D3EE00964E/cit240/1) 2021; 60 Chen (D3EE00964E/cit229/1) 2020; 124 Ma (D3EE00964E/cit76/1) 2020; 3 Jiang (D3EE00964E/cit329/1) 2018; 11 Xiao (D3EE00964E/cit262/1) 2022; 307 Li (D3EE00964E/cit16/1) 2023 Zhang (D3EE00964E/cit46/1) 2023; 14 Lai (D3EE00964E/cit193/1) 2022; 32 Karmodak (D3EE00964E/cit149/1) 2022; 12 Huang (D3EE00964E/cit5/1) 2023; 135 Wu (D3EE00964E/cit65/1) 2021; 13 Nam (D3EE00964E/cit128/1) 2020; 142 Lin (D3EE00964E/cit249/1) 2020; 11 Zhang (D3EE00964E/cit62/1) 2023; 23 Dunwell (D3EE00964E/cit183/1) 2017; 139 Kutz (D3EE00964E/cit297/1) 2017; 5 Calvinho (D3EE00964E/cit141/1) 2018; 11 Shi (D3EE00964E/cit13/1) 2023; 13 Endrodi (D3EE00964E/cit328/1) 2019; 4 Biswas (D3EE00964E/cit335/1) 2022; 7 Shi (D3EE00964E/cit215/1) 2023; 13 Juneja (D3EE00964E/cit228/1) 2020; 8 Abdinejad (D3EE00964E/cit126/1) 2023; 13 Wang (D3EE00964E/cit195/1) 2018; 8 Kim (D3EE00964E/cit209/1) 2021; 32 Sha (D3EE00964E/cit283/1) 2022; 61 Zhu (D3EE00964E/cit261/1) 2018; 9 Yang (D3EE00964E/cit276/1) 2022; 61 Zhou (D3EE00964E/cit187/1) 2022; 134 De Luna (D3EE00964E/cit308/1) 2018; 1 Liu (D3EE00964E/cit326/1) 2022; 13 Sandberg (D3EE00964E/cit44/1) 2016; 654 Li (D3EE00964E/cit231/1) 2020; 13 Monteiro (D3EE00964E/cit263/1) 2021; 1 Yang (D3EE00964E/cit278/1) 2022; 61 Björketun (D3EE00964E/cit159/1) 2013; 555 Lakshmanan (D3EE00964E/cit66/1) 2022; 32 Lin (D3EE00964E/cit129/1) 2015; 349 Pan (D3EE00964E/cit338/1) 2022; 7 Li (D3EE00964E/cit269/1) 2022; 13 Ma (D3EE00964E/cit26/1) 2023; 17 Yu (D3EE00964E/cit124/1) 2023; 15 Wang (D3EE00964E/cit49/1) 2022; 13 Jiang (D3EE00964E/cit268/1) 2021; 57 Jiang (D3EE00964E/cit102/1) 2022; 9 Cheng (D3EE00964E/cit162/1) 2017; 114 Zhang (D3EE00964E/cit292/1) 2023; 135 Xie (D3EE00964E/cit131/1) 2022; 13 Zhang (D3EE00964E/cit346/1) 2021; 14 Jeong (D3EE00964E/cit214/1) 2022; 144 Chen (D3EE00964E/cit130/1) 2022; 61 Ikemiya (D3EE00964E/cit342/1) 2018; 6 Chen (D3EE00964E/cit244/1) 2022; 144 Yuan (D3EE00964E/cit242/1) 2021; 133 Ogura (D3EE00964E/cit204/1) 2013; 1 Ren (D3EE00964E/cit71/1) 2019; 58 Ali (D3EE00964E/cit158/1) 2022; 524 Wan (D3EE00964E/cit171/1) 2021; 14 Cao (D3EE00964E/cit241/1) 2021; 5 Ma (D3EE00964E/cit138/1) 2017; 139 Li (D3EE00964E/cit303/1) 2020; 577 Wang (D3EE00964E/cit139/1) 2022; 13 Liang (D3EE00964E/cit45/1) 2023; 14 Li (D3EE00964E/cit267/1) 2018; 1 Chen (D3EE00964E/cit216/1) 2016; 6 Li (D3EE00964E/cit316/1) 2021; 9 Han (D3EE00964E/cit347/1) 2022; 33 Arrigo (D3EE00964E/cit256/1) 2022; 236 Li (D3EE00964E/cit53/1) 2023; 15 Tan (D3EE00964E/cit99/1) 2023; 3 Lai (D3EE00964E/cit136/1) 2022; 32 Liu (D3EE00964E/cit161/1) 2017; 8 Dong (D3EE00964E/cit115/1) 2022; 303 Xu (D3EE00964E/cit90/1) 2020; 5 Abidi (D3EE00964E/cit190/1) 2022; 33 Fujita (D3EE00964E/cit19/1) 2022; 55 Nie (D3EE00964E/cit169/1) 2014; 312 Wang (D3EE00964E/cit97/1) 2021; 21 Ulissi (D3EE00964E/cit227/1) 2017; 8 Ma (D3EE00964E/cit34/1) 2021; 50 Zhao (D3EE00964E/cit70/1) 2020; 11 Löffler (D3EE00964E/cit213/1) 2020; 10 Vennekoetter (D3EE00964E/cit321/1) 2019; 364 Wang (D3EE00964E/cit254/1) 2022; 61 Noh (D3EE00964E/cit299/1) 2019; 52 Murata (D3EE00964E/cit196/1) 1991; 64 Liu (D3EE00964E/cit243/1) 2021; 125 Möller (D3EE00964E/cit286/1) 2021; 14 Ringe (D3EE00964E/cit270/1) 2019; 12 Niu (D3EE00964E/cit314/1) 2021; 14 Xie (D3EE00964E/cit137/1) 2022; 5 Pan (D3EE00964E/cit212/1) 2022; 7 Jung (D3EE00964E/cit252/1) 2019; 141 Jouny (D3EE00964E/cit315/1) 2018; 57 Chen (D3EE00964E/cit160/1) 2018; 9 Lv (D3EE00964E/cit81/1) 2022; 134 Li (D3EE00964E/cit1 |
References_xml | – volume: 133 start-page: 15472 year: 2021 ident: D3EE00964E/cit242/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202105118 – volume: 119 start-page: 7610 year: 2019 ident: D3EE00964E/cit38/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 142 start-page: 11417 year: 2020 ident: D3EE00964E/cit85/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01562 – volume: 7 start-page: 1469 year: 2022 ident: D3EE00964E/cit285/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00606 – volume: 13 start-page: 2202818 year: 2022 ident: D3EE00964E/cit100/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202818 – volume: 8 start-page: 6560 year: 2018 ident: D3EE00964E/cit181/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01340 – volume: 307 start-page: 120991 year: 2022 ident: D3EE00964E/cit310/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120991 – volume: 303 start-page: 120897 year: 2022 ident: D3EE00964E/cit115/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120897 – volume: 11 start-page: 7694 year: 2021 ident: D3EE00964E/cit238/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01478 – volume: 3 start-page: 478 year: 2020 ident: D3EE00964E/cit76/1 publication-title: Natl. Catal. doi: 10.1038/s41929-020-0450-0 – volume: 126 start-page: 3820 year: 2022 ident: D3EE00964E/cit191/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c10870 – volume: 6 start-page: 15456 year: 2018 ident: D3EE00964E/cit300/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05428B – volume: 59 start-page: 4778 year: 2023 ident: D3EE00964E/cit145/1 publication-title: Chem. Commun. doi: 10.1039/D2CC06943A – volume: 10 start-page: e2207187 year: 2023 ident: D3EE00964E/cit75/1 publication-title: Adv. Sci. doi: 10.1002/advs.202207187 – volume: 14 start-page: e202101224 year: 2021 ident: D3EE00964E/cit171/1 publication-title: ChemCatChem doi: 10.1002/cctc.202101224 – volume: 3 start-page: 1800449 year: 2019 ident: D3EE00964E/cit91/1 publication-title: Small Methods doi: 10.1002/smtd.201800449 – volume: 9 start-page: e202200341 year: 2022 ident: D3EE00964E/cit318/1 publication-title: ChemElectroChem doi: 10.1002/celc.202200341 – volume: 13 start-page: 3158 year: 2022 ident: D3EE00964E/cit41/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30819-1 – volume: 61 start-page: 6073 year: 2022 ident: D3EE00964E/cit118/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00148 – volume: 13 start-page: 2204243 year: 2023 ident: D3EE00964E/cit15/1 publication-title: Adv. Energy Mater. – volume: 1 start-page: 2100023 year: 2021 ident: D3EE00964E/cit246/1 publication-title: Small Sci. doi: 10.1002/smsc.202100023 – volume: 1 start-page: 952 year: 2018 ident: D3EE00964E/cit284/1 publication-title: Natl. Catal. doi: 10.1038/s41929-018-0169-3 – volume: 43 start-page: 104 year: 2022 ident: D3EE00964E/cit33/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63880-9 – volume: 139 start-page: 16412 year: 2017 ident: D3EE00964E/cit202/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10142 – volume: 16 start-page: 1697 year: 2023 ident: D3EE00964E/cit11/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03752A – volume: 8 start-page: 1490 year: 2018 ident: D3EE00964E/cit74/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03477 – volume: 60 start-page: 16576 year: 2021 ident: D3EE00964E/cit240/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104114 – volume: 11 start-page: 3525 year: 2020 ident: D3EE00964E/cit249/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17231-3 – volume: 12 start-page: 15682 year: 2021 ident: D3EE00964E/cit319/1 publication-title: Chem. Sci. doi: 10.1039/D1SC05519D – volume: 60 start-page: 20627 year: 2021 ident: D3EE00964E/cit274/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101818 – volume: 1 start-page: 100012 year: 2022 ident: D3EE00964E/cit134/1 publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2021.10.003 – volume: 17 start-page: 9338 year: 2023 ident: D3EE00964E/cit25/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c01059 – volume: 11 start-page: 1248 year: 2021 ident: D3EE00964E/cit79/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04403 – volume: 5 start-page: 623 year: 2020 ident: D3EE00964E/cit90/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0666-x – volume: 34 start-page: e2207088 year: 2022 ident: D3EE00964E/cit325/1 publication-title: Adv. Mater. doi: 10.1002/adma.202207088 – volume: 52 start-page: 101697 year: 2021 ident: D3EE00964E/cit336/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101697 – volume: 12 start-page: 4818 year: 2022 ident: D3EE00964E/cit149/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05750 – volume: 8 start-page: 7445 year: 2018 ident: D3EE00964E/cit195/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01200 – volume: 125 start-page: 10919 year: 2021 ident: D3EE00964E/cit165/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c00297 – volume: 9 start-page: e2105292 year: 2022 ident: D3EE00964E/cit102/1 publication-title: Adv. Sci. doi: 10.1002/advs.202105292 – volume: 143 start-page: 6152 year: 2021 ident: D3EE00964E/cit168/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00880 – volume: 10 start-page: 240 year: 2023 ident: D3EE00964E/cit55/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01977A – volume: 34 start-page: 2200180 year: 2022 ident: D3EE00964E/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.202200180 – volume: 2 start-page: 2000058 year: 2020 ident: D3EE00964E/cit192/1 publication-title: Small Structures doi: 10.1002/sstr.202000058 – volume: 1 start-page: 658 year: 2022 ident: D3EE00964E/cit298/1 publication-title: Nat. Synth. doi: 10.1038/s44160-022-00129-x – volume: 119 start-page: 6631 year: 2019 ident: D3EE00964E/cit152/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00481 – volume: 60 start-page: 16576 year: 2021 ident: D3EE00964E/cit234/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104114 – volume: 57 start-page: 2165 year: 2018 ident: D3EE00964E/cit315/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03514 – volume: 12 start-page: 2003990 year: 2021 ident: D3EE00964E/cit120/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003990 – volume: 59 start-page: 463 year: 2008 ident: D3EE00964E/cit157/1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093532 – volume: 13 start-page: 4301 year: 2020 ident: D3EE00964E/cit69/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01690J – volume: 135 start-page: e202216102 year: 2023 ident: D3EE00964E/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202216102 – start-page: e2301127 year: 2023 ident: D3EE00964E/cit16/1 publication-title: Adv. Mater. doi: 10.1002/adma.202301127 – volume: 143 start-page: 19919 year: 2021 ident: D3EE00964E/cit107/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09777 – volume: 24 start-page: 100838 year: 2022 ident: D3EE00964E/cit116/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.100838 – volume: 125 start-page: 7423 year: 2013 ident: D3EE00964E/cit177/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201301470 – volume: 5 start-page: 1206 year: 2020 ident: D3EE00964E/cit203/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00482 – volume: 8 start-page: 14621 year: 2017 ident: D3EE00964E/cit227/1 publication-title: Nat. Commun. doi: 10.1038/ncomms14621 – volume: 134 start-page: e202207252 year: 2022 ident: D3EE00964E/cit81/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202207252 – volume: 144 start-page: 259 year: 2022 ident: D3EE00964E/cit82/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09508 – volume: 13 start-page: 2280 year: 2022 ident: D3EE00964E/cit88/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30027-x – volume: 3 start-page: 111 year: 2022 ident: D3EE00964E/cit198/1 publication-title: Smart Mater. – volume: 15 start-page: 1393 year: 2021 ident: D3EE00964E/cit290/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3675-6 – volume: 12 start-page: 2103663 year: 2022 ident: D3EE00964E/cit35/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103663 – volume: 5 start-page: 429 year: 2021 ident: D3EE00964E/cit37/1 publication-title: Joule doi: 10.1016/j.joule.2020.12.011 – volume: 5 start-page: 288 year: 2022 ident: D3EE00964E/cit334/1 publication-title: Natl. Catal. doi: 10.1038/s41929-022-00763-w – volume: 138 start-page: 483 year: 2016 ident: D3EE00964E/cit176/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11390 – volume: 14 start-page: 1063 year: 2019 ident: D3EE00964E/cit72/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0551-6 – volume: 22 start-page: 1656 year: 2022 ident: D3EE00964E/cit257/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04683 – volume: 12 start-page: 2103383 year: 2022 ident: D3EE00964E/cit233/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103383 – volume: 7 start-page: 78 year: 2022 ident: D3EE00964E/cit60/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02132 – volume: 7 start-page: 1471 year: 2016 ident: D3EE00964E/cit155/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00358 – volume: 188 start-page: 272 year: 2016 ident: D3EE00964E/cit312/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.02.010 – volume: 41 start-page: 2036 year: 2012 ident: D3EE00964E/cit40/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15278E – volume: 13 start-page: 3754 year: 2022 ident: D3EE00964E/cit49/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31427-9 – volume: 11 start-page: 9688 year: 2021 ident: D3EE00964E/cit150/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01486 – volume: 59 start-page: 10527 year: 2020 ident: D3EE00964E/cit58/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000601 – volume: 52 start-page: 2745 year: 2019 ident: D3EE00964E/cit299/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00355 – volume: 2 start-page: 2551 year: 2018 ident: D3EE00964E/cit96/1 publication-title: Joule doi: 10.1016/j.joule.2018.09.021 – volume: 6 start-page: 339 year: 2021 ident: D3EE00964E/cit293/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00761-x – volume: 61 start-page: e202111021 year: 2022 ident: D3EE00964E/cit254/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202111021 – volume: 577 start-page: 509 year: 2020 ident: D3EE00964E/cit303/1 publication-title: Nature doi: 10.1038/s41586-019-1782-2 – volume: 18 start-page: 299 year: 2023 ident: D3EE00964E/cit54/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01286-y – volume: 16 start-page: 2170 year: 2022 ident: D3EE00964E/cit142/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4969-z – volume: 67 start-page: 102344 year: 2023 ident: D3EE00964E/cit95/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2022.102344 – volume: 10 start-page: 20059 year: 2022 ident: D3EE00964E/cit83/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02709G – volume: 1 start-page: 1915 year: 2021 ident: D3EE00964E/cit263/1 publication-title: JACS Au doi: 10.1021/jacsau.1c00289 – volume: 145 start-page: 1897 year: 2023 ident: D3EE00964E/cit219/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11643 – volume: 140 start-page: 5791 year: 2018 ident: D3EE00964E/cit307/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01868 – start-page: e2301892 year: 2023 ident: D3EE00964E/cit29/1 publication-title: Small doi: 10.1002/smll.202301892 – volume: 20 start-page: 1424 year: 2016 ident: D3EE00964E/cit163/1 publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.6b00103 – volume: 32 start-page: 2111193 year: 2022 ident: D3EE00964E/cit136/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111193 – volume: 511 start-page: 111725 year: 2021 ident: D3EE00964E/cit153/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2021.111725 – volume: 43 start-page: 1547 year: 2022 ident: D3EE00964E/cit89/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)64000-7 – volume: 15 start-page: 5105 year: 2022 ident: D3EE00964E/cit296/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03396H – volume: 61 start-page: e202116706 year: 2022 ident: D3EE00964E/cit276/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202116706 – volume: 14 start-page: 4169 year: 2021 ident: D3EE00964E/cit314/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01664D – volume: 581 start-page: 178 year: 2020 ident: D3EE00964E/cit77/1 publication-title: Nature doi: 10.1038/s41586-020-2242-8 – volume: 17 start-page: 1312 year: 2017 ident: D3EE00964E/cit109/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05287 – volume: 364 start-page: 89 year: 2019 ident: D3EE00964E/cit321/1 publication-title: Chem. Engin. J. doi: 10.1016/j.cej.2019.01.045 – volume: 939 start-page: 168798 year: 2023 ident: D3EE00964E/cit143/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.168798 – volume: 5 start-page: 1281 year: 2020 ident: D3EE00964E/cit230/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00305 – volume: 4 start-page: 1770 year: 2019 ident: D3EE00964E/cit328/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01142 – volume: 124 start-page: 22471 year: 2020 ident: D3EE00964E/cit229/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c05964 – volume: 60 start-page: 20627 year: 2021 ident: D3EE00964E/cit341/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101818 – volume: 32 start-page: 2113252 year: 2022 ident: D3EE00964E/cit57/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202113252 – volume: 7 start-page: 602 year: 2022 ident: D3EE00964E/cit237/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02667 – volume: 1 start-page: 103 year: 2018 ident: D3EE00964E/cit308/1 publication-title: Natl. Catal. doi: 10.1038/s41929-017-0018-9 – volume: 62 start-page: e202215136 year: 2023 ident: D3EE00964E/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202215136 – volume: 122 start-page: 11085 year: 2022 ident: D3EE00964E/cit23/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00690 – volume: 6 start-page: 1333 year: 2022 ident: D3EE00964E/cit332/1 publication-title: Joule doi: 10.1016/j.joule.2022.04.023 – volume: 19 start-page: 1000427 year: 2021 ident: D3EE00964E/cit184/1 publication-title: Mater. Today Phys. – volume: 144 start-page: 12673 year: 2022 ident: D3EE00964E/cit214/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02001 – volume: 142 start-page: 15438 year: 2020 ident: D3EE00964E/cit235/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06779 – volume: 8 start-page: 2148 year: 2022 ident: D3EE00964E/cit123/1 publication-title: Chem doi: 10.1016/j.chempr.2022.04.004 – volume: 7 start-page: 2904 year: 2022 ident: D3EE00964E/cit335/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01454 – volume: 65 start-page: 155 year: 2021 ident: D3EE00964E/cit339/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-021-1749-5 – volume: 142 start-page: 21513 year: 2020 ident: D3EE00964E/cit128/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10774 – volume: 3 start-page: 193 year: 2017 ident: D3EE00964E/cit344/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01096 – volume: 85 start-page: 235149 year: 2012 ident: D3EE00964E/cit200/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.235149 – volume: 9 start-page: 421 year: 2018 ident: D3EE00964E/cit261/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02925-6 – volume: 12 start-page: 3001 year: 2019 ident: D3EE00964E/cit270/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01341E – volume: 53 start-page: 255 year: 2020 ident: D3EE00964E/cit206/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00496 – volume: 20 start-page: 208 year: 2017 ident: D3EE00964E/cit345/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.04.011 – volume: 135 start-page: e202302096 year: 2023 ident: D3EE00964E/cit47/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202302096 – volume: 2 start-page: 553 year: 2020 ident: D3EE00964E/cit222/1 publication-title: InfoMat doi: 10.1002/inf2.12094 – volume: 33 start-page: 452 year: 2019 ident: D3EE00964E/cit110/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.07.014 – volume: 24 start-page: 102172 year: 2021 ident: D3EE00964E/cit80/1 publication-title: iScience doi: 10.1016/j.isci.2021.102172 – volume: 13 start-page: 4711 year: 2023 ident: D3EE00964E/cit43/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c00181 – volume: 55 start-page: 629 year: 2022 ident: D3EE00964E/cit63/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00673 – volume: 125 start-page: 3668 year: 2021 ident: D3EE00964E/cit259/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c10159 – volume: 13 start-page: 136 year: 2021 ident: D3EE00964E/cit65/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00668-6 – volume: 139 start-page: 47 year: 2017 ident: D3EE00964E/cit138/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10740 – volume: 372 start-page: 1074 year: 2021 ident: D3EE00964E/cit272/1 publication-title: Science doi: 10.1126/science.abg6582 – volume: 27 start-page: 101328 year: 2023 ident: D3EE00964E/cit52/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101328 – volume: 125 start-page: 2519 year: 2013 ident: D3EE00964E/cit78/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201208320 – volume: 360 start-page: 783 year: 2018 ident: D3EE00964E/cit111/1 publication-title: Science doi: 10.1126/science.aas9100 – volume: 14 start-page: 5995 year: 2021 ident: D3EE00964E/cit286/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01696B – volume: 5 start-page: 564 year: 2022 ident: D3EE00964E/cit10/1 publication-title: Natl. Catal. doi: 10.1038/s41929-022-00788-1 – volume: 13 start-page: 2203506 year: 2023 ident: D3EE00964E/cit13/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203506 – volume: 318 start-page: 121845 year: 2022 ident: D3EE00964E/cit27/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121845 – volume: 9 start-page: 3202 year: 2018 ident: D3EE00964E/cit160/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05511-y – volume: 10 start-page: 12403 year: 2020 ident: D3EE00964E/cit48/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02915 – volume: 18 start-page: e2104205 year: 2022 ident: D3EE00964E/cit232/1 publication-title: Small doi: 10.1002/smll.202104205 – volume: 60 start-page: 23427 year: 2021 ident: D3EE00964E/cit294/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202108313 – volume: 12 start-page: 5067 year: 2021 ident: D3EE00964E/cit333/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25295-y – volume: 6 start-page: 4767 year: 2015 ident: D3EE00964E/cit164/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02247 – volume: 43 start-page: 59 year: 2022 ident: D3EE00964E/cit265/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63948-7 – volume: 8 start-page: 17507 year: 2020 ident: D3EE00964E/cit224/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06203K – volume: 60 start-page: 13177 year: 2021 ident: D3EE00964E/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014112 – volume: 13 start-page: 3754 year: 2022 ident: D3EE00964E/cit139/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31427-9 – volume: 57 start-page: 7222 year: 2018 ident: D3EE00964E/cit167/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00902 – volume: 15 start-page: 3056 year: 2021 ident: D3EE00964E/cit114/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3962-2 – volume: 5 start-page: 1064 year: 2018 ident: D3EE00964E/cit273/1 publication-title: ChemElectroChem doi: 10.1002/celc.201701316 – volume: 76 start-page: 105049 year: 2020 ident: D3EE00964E/cit119/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105049 – volume: 168 start-page: 086502 year: 2021 ident: D3EE00964E/cit279/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac085d – volume: 10 start-page: 2022 year: 2019 ident: D3EE00964E/cit282/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10084-5 – volume: 12 start-page: 1364 year: 2022 ident: D3EE00964E/cit117/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c04825 – volume: 6 start-page: 7133 year: 2016 ident: D3EE00964E/cit174/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02299 – volume: 124 start-page: 10079 year: 2020 ident: D3EE00964E/cit225/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c03101 – volume: 6 start-page: 205 year: 2022 ident: D3EE00964E/cit18/1 publication-title: Joule doi: 10.1016/j.joule.2021.12.002 – volume: 13 start-page: 1877 year: 2022 ident: D3EE00964E/cit31/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29428-9 – volume: 61 start-page: e202204967 year: 2022 ident: D3EE00964E/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202204967 – volume: 32 start-page: 2109310 year: 2022 ident: D3EE00964E/cit66/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109310 – volume: 13 start-page: 1965 year: 2022 ident: D3EE00964E/cit186/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29698-3 – volume: 312 start-page: 108 year: 2014 ident: D3EE00964E/cit169/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.01.013 – volume: 6 start-page: 294 year: 2022 ident: D3EE00964E/cit8/1 publication-title: Joule doi: 10.1016/j.joule.2022.01.001 – volume: 12 start-page: 794 year: 2021 ident: D3EE00964E/cit275/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20961-7 – volume: 12 start-page: 2455 year: 2019 ident: D3EE00964E/cit301/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01204D – volume: 125 start-page: 23773 year: 2021 ident: D3EE00964E/cit151/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07484 – volume: 355 start-page: 340 year: 2020 ident: D3EE00964E/cit323/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.06.066 – volume: 15 start-page: 113 year: 2023 ident: D3EE00964E/cit53/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01092-8 – volume: 59 start-page: 18095 year: 2020 ident: D3EE00964E/cit280/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009498 – volume: 143 start-page: 21275 year: 2021 ident: D3EE00964E/cit51/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03428 – volume: 372 start-page: 1074 year: 2021 ident: D3EE00964E/cit211/1 publication-title: Science doi: 10.1126/science.abg6582 – volume: 13 start-page: 3748 year: 2020 ident: D3EE00964E/cit231/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01706J – volume: 57 start-page: 6011 year: 2021 ident: D3EE00964E/cit268/1 publication-title: Chem. Commun. doi: 10.1039/D1CC01974K – volume: 122 start-page: 3719 year: 2018 ident: D3EE00964E/cit182/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b11316 – volume: 10 start-page: 32 year: 2019 ident: D3EE00964E/cit188/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07970-9 – volume: 7 start-page: 5112 year: 2017 ident: D3EE00964E/cit207/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01416 – volume: 3 start-page: 2777 year: 2019 ident: D3EE00964E/cit305/1 publication-title: Joule doi: 10.1016/j.joule.2019.07.021 – volume: 12 start-page: 8676 year: 2022 ident: D3EE00964E/cit251/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c01885 – volume: 11 start-page: 593 year: 2020 ident: D3EE00964E/cit348/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14402-0 – volume: 23 start-page: 152 year: 2018 ident: D3EE00964E/cit327/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.11.010 – volume: 324 start-page: 122272 year: 2023 ident: D3EE00964E/cit42/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122272 – volume: 18 start-page: 7075 year: 2016 ident: D3EE00964E/cit313/1 publication-title: Phys. Chem. – volume: 8 start-page: 15438 year: 2017 ident: D3EE00964E/cit161/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15438 – volume: 5 start-page: 564 year: 2022 ident: D3EE00964E/cit137/1 publication-title: Natl. Catal. doi: 10.1038/s41929-022-00788-1 – volume: 14 start-page: 7779 year: 2022 ident: D3EE00964E/cit84/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18856 – volume: 7 start-page: 406 year: 2021 ident: D3EE00964E/cit173/1 publication-title: Chem doi: 10.1016/j.chempr.2020.10.018 – volume: 306 start-page: 121111 year: 2022 ident: D3EE00964E/cit87/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121111 – volume: 122 start-page: 11085 year: 2022 ident: D3EE00964E/cit148/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00690 – volume: 508 start-page: 504 year: 2014 ident: D3EE00964E/cit185/1 publication-title: Nature doi: 10.1038/nature13249 – volume: 8 start-page: 210 year: 2019 ident: D3EE00964E/cit166/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b05183 – volume: 32 start-page: 2111193 year: 2022 ident: D3EE00964E/cit193/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111193 – start-page: e362 year: 2023 ident: D3EE00964E/cit12/1 publication-title: Carbon Energy doi: 10.1002/cey2.362 – volume: 1 start-page: 43 year: 2013 ident: D3EE00964E/cit204/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2013.03.003 – volume: 51 start-page: 1234 year: 2022 ident: D3EE00964E/cit112/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00893E – volume: 1 start-page: 111 year: 2018 ident: D3EE00964E/cit175/1 publication-title: Natl. Catal. doi: 10.1038/s41929-017-0009-x – volume: 1 start-page: 764 year: 2018 ident: D3EE00964E/cit140/1 publication-title: Natl. Catal. doi: 10.1038/s41929-018-0139-9 – volume: 312 start-page: 192 year: 2016 ident: D3EE00964E/cit322/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.02.043 – volume: 5 start-page: e2100700 year: 2021 ident: D3EE00964E/cit241/1 publication-title: Small Methods doi: 10.1002/smtd.202100700 – volume: 141 start-page: 4624 year: 2019 ident: D3EE00964E/cit252/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11237 – volume: 58 start-page: 15036 year: 2019 ident: D3EE00964E/cit71/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909610 – volume: 9 start-page: 19369 year: 2021 ident: D3EE00964E/cit316/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03636J – volume: 6 start-page: 7133 year: 2016 ident: D3EE00964E/cit216/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02299 – volume: 21 start-page: 980 year: 2021 ident: D3EE00964E/cit97/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04004 – volume: 143 start-page: 15335 year: 2021 ident: D3EE00964E/cit50/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06877 – volume: 126 start-page: 3820 year: 2022 ident: D3EE00964E/cit218/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c10870 – volume: 144 start-page: 1589 year: 2022 ident: D3EE00964E/cit271/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10171 – volume: 524 start-page: 112285 year: 2022 ident: D3EE00964E/cit158/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2022.112285 – volume: 9 start-page: 460 year: 2023 ident: D3EE00964E/cit146/1 publication-title: Chem doi: 10.1016/j.chempr.2022.10.017 – volume: 79 start-page: 369 year: 2021 ident: D3EE00964E/cit287/1 publication-title: Acta Chim. Sin. doi: 10.6023/A20110540 – volume: 314 start-page: 121498 year: 2022 ident: D3EE00964E/cit127/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121498 – volume: 55 start-page: 504 year: 2022 ident: D3EE00964E/cit210/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00680 – volume: 236 start-page: 126 year: 2022 ident: D3EE00964E/cit256/1 publication-title: Faraday Discuss. doi: 10.1039/D1FD00121C – volume: 11 start-page: 3028 year: 2020 ident: D3EE00964E/cit311/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16847-9 – volume: 11 start-page: 10825 year: 2017 ident: D3EE00964E/cit125/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b03738 – volume: 135 start-page: e202302789 year: 2023 ident: D3EE00964E/cit292/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202302789 – volume: 12 start-page: 1114 year: 2021 ident: D3EE00964E/cit223/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21342-w – volume: 1 start-page: 509 year: 2021 ident: D3EE00964E/cit255/1 publication-title: Chem. Catal. doi: 10.1016/j.checat.2021.07.012 – volume: 133 start-page: 20795 year: 2021 ident: D3EE00964E/cit180/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202101818 – volume: 61 start-page: e202206470 year: 2022 ident: D3EE00964E/cit59/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202206470 – volume: 61 start-page: e202111700 year: 2022 ident: D3EE00964E/cit132/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202111700 – volume: 597 start-page: 153724 year: 2022 ident: D3EE00964E/cit170/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153724 – volume: 10 start-page: 2000882 year: 2020 ident: D3EE00964E/cit64/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000882 – volume: 61 start-page: e202202607 year: 2022 ident: D3EE00964E/cit130/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202202607 – volume: 11 start-page: 2550 year: 2018 ident: D3EE00964E/cit141/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00936H – volume: 555 start-page: 145 year: 2013 ident: D3EE00964E/cit159/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2012.11.025 – volume: 35 start-page: 12869 year: 2021 ident: D3EE00964E/cit94/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01650 – volume: 11 start-page: 3299 year: 2018 ident: D3EE00964E/cit208/1 publication-title: ChemSusChem doi: 10.1002/cssc.201801078 – volume: 43 start-page: 1697 year: 2022 ident: D3EE00964E/cit245/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)64006-8 – volume: 9 start-page: 5298 year: 2021 ident: D3EE00964E/cit343/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c08955 – volume: 11 start-page: 2455 year: 2020 ident: D3EE00964E/cit70/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16381-8 – volume: 12 start-page: 2741 year: 2022 ident: D3EE00964E/cit135/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05272 – volume: 12 start-page: 22192 year: 2020 ident: D3EE00964E/cit260/1 publication-title: Nanoscale doi: 10.1039/D0NR04961A – volume: 128 start-page: 1472 year: 2016 ident: D3EE00964E/cit189/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201508851 – volume: 6 start-page: 2745 year: 2022 ident: D3EE00964E/cit340/1 publication-title: Joule doi: 10.1016/j.joule.2022.11.003 – volume: 6 start-page: 2663 year: 2015 ident: D3EE00964E/cit221/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01043 – volume: 61 start-page: e202116706 year: 2022 ident: D3EE00964E/cit278/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202116706 – volume: 55 start-page: 616 year: 2022 ident: D3EE00964E/cit19/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00616 – volume: 125 start-page: 9138 year: 2021 ident: D3EE00964E/cit103/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c01586 – volume: 14 start-page: 1298 year: 2023 ident: D3EE00964E/cit46/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36926-x – volume: 13 start-page: 803 year: 2022 ident: D3EE00964E/cit194/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28436-z – volume: 11 start-page: 11945 year: 2021 ident: D3EE00964E/cit289/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02783 – volume: 58 start-page: 16952 year: 2019 ident: D3EE00964E/cit108/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907935 – volume: 1 start-page: 592 year: 2018 ident: D3EE00964E/cit267/1 publication-title: Natl. Catal. doi: 10.1038/s41929-018-0108-3 – volume: 43 start-page: 451 year: 2022 ident: D3EE00964E/cit133/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63879-2 – volume: 12 start-page: 2055 year: 2019 ident: D3EE00964E/cit266/1 publication-title: Nano Res. doi: 10.1007/s12274-019-2310-2 – volume: 165 start-page: 799 year: 2018 ident: D3EE00964E/cit178/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0521810jes – volume: 144 start-page: 12807 year: 2022 ident: D3EE00964E/cit244/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03875 – volume: 13 start-page: 2203896 year: 2023 ident: D3EE00964E/cit215/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203896 – volume: 349 start-page: 1208 year: 2015 ident: D3EE00964E/cit129/1 publication-title: Science doi: 10.1126/science.aac8343 – volume: 55 start-page: 1900 year: 2022 ident: D3EE00964E/cit179/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.2c00080 – volume: 114 start-page: 6685 year: 2017 ident: D3EE00964E/cit121/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1702405114 – volume: 14 start-page: 134 year: 2022 ident: D3EE00964E/cit67/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00879-5 – volume: 64 start-page: 123 year: 1991 ident: D3EE00964E/cit196/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.64.123 – volume: 144 start-page: 8927 year: 2022 ident: D3EE00964E/cit247/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03662 – volume: 30 start-page: e1804867 year: 2018 ident: D3EE00964E/cit306/1 publication-title: Adv. Mater. doi: 10.1002/adma.201804867 – volume: 33 start-page: e2202830 year: 2022 ident: D3EE00964E/cit347/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202830 – volume: 12 start-page: 6606 year: 2022 ident: D3EE00964E/cit217/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c01470 – volume: 8 start-page: 2397 year: 2021 ident: D3EE00964E/cit122/1 publication-title: ChemElectroChem doi: 10.1002/celc.202100345 – volume: 13 start-page: 2300402 year: 2023 ident: D3EE00964E/cit126/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300402 – volume: 11 start-page: 12336 year: 2021 ident: D3EE00964E/cit220/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01072 – volume: 50 start-page: 12897 year: 2021 ident: D3EE00964E/cit34/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00535A – volume: 23 start-page: 2312 year: 2023 ident: D3EE00964E/cit62/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c05112 – volume: 13 start-page: 3080 year: 2022 ident: D3EE00964E/cit269/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30733-6 – volume: 454 start-page: 214340 year: 2022 ident: D3EE00964E/cit68/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214340 – volume: 134 start-page: e202205832 year: 2022 ident: D3EE00964E/cit187/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202205832 – volume: 14 start-page: 474 year: 2023 ident: D3EE00964E/cit45/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-35993-4 – volume: 299 start-page: 120661 year: 2021 ident: D3EE00964E/cit349/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120661 – volume: 10 start-page: 6735 year: 2020 ident: D3EE00964E/cit213/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c01388 – volume: 50 start-page: 4993 year: 2021 ident: D3EE00964E/cit39/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00071J – volume: 307 start-page: 121164 year: 2022 ident: D3EE00964E/cit262/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121164 – volume: 114 start-page: 1795 year: 2017 ident: D3EE00964E/cit162/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1612106114 – volume: 32 start-page: 2107349 year: 2021 ident: D3EE00964E/cit209/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107349 – volume: 12 start-page: 1580 year: 2021 ident: D3EE00964E/cit92/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21901-1 – volume: 3 start-page: 100097 year: 2023 ident: D3EE00964E/cit105/1 publication-title: eScience doi: 10.1016/j.esci.2023.100097 – volume: 89 start-page: 106460 year: 2021 ident: D3EE00964E/cit86/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106460 – volume: 60 start-page: 16576 year: 2021 ident: D3EE00964E/cit236/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104114 – volume: 13 start-page: 63 year: 2022 ident: D3EE00964E/cit131/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27768-6 – volume: 5 start-page: 268 year: 2022 ident: D3EE00964E/cit337/1 publication-title: Natl. Catal. doi: 10.1038/s41929-022-00761-y – volume: 4 start-page: 20 year: 2020 ident: D3EE00964E/cit291/1 publication-title: Natl. Catal. doi: 10.1038/s41929-020-00547-0 – volume: 33 start-page: 2008376 year: 2021 ident: D3EE00964E/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008376 – volume: 122 start-page: 11392 year: 2018 ident: D3EE00964E/cit172/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01928 – volume: 6 start-page: 310 year: 2023 ident: D3EE00964E/cit4/1 publication-title: Natl. Catal. doi: 10.1038/s41929-023-00937-0 – volume: 365 start-page: 367 year: 2019 ident: D3EE00964E/cit330/1 publication-title: Science doi: 10.1126/science.aax4608 – volume: 17 start-page: 2387 year: 2023 ident: D3EE00964E/cit26/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c09473 – volume: 12 start-page: 331 year: 2021 ident: D3EE00964E/cit201/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03501 – volume: 367 start-page: 661 year: 2020 ident: D3EE00964E/cit288/1 publication-title: Science doi: 10.1126/science.aay4217 – start-page: 2300697 year: 2023 ident: D3EE00964E/cit17/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300697 – volume: 15 start-page: 3603 year: 2022 ident: D3EE00964E/cit14/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00472K – volume: 20 start-page: 16973 year: 2018 ident: D3EE00964E/cit304/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01319E – volume: 15 start-page: 14470 year: 2023 ident: D3EE00964E/cit147/1 publication-title: ACS Appl. Mater. Interfaces – volume: 654 start-page: 56 year: 2016 ident: D3EE00964E/cit44/1 publication-title: Surf. Sci. doi: 10.1016/j.susc.2016.08.006 – volume: 12 start-page: 4792 year: 2022 ident: D3EE00964E/cit98/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05431 – volume: 5 start-page: 929 year: 2017 ident: D3EE00964E/cit297/1 publication-title: Energy Technol. doi: 10.1002/ente.201600636 – volume: 62 start-page: e202211804 year: 2023 ident: D3EE00964E/cit6/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202211804 – volume: 8 start-page: 8716 year: 2020 ident: D3EE00964E/cit228/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02364G – volume: 15 start-page: 24346 year: 2023 ident: D3EE00964E/cit124/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c01012 – volume: 456 start-page: 140942 year: 2023 ident: D3EE00964E/cit295/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140942 – volume: 14 start-page: 2821 year: 2023 ident: D3EE00964E/cit7/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38506-5 – volume: 6 start-page: 8108 year: 2018 ident: D3EE00964E/cit342/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00793 – volume: 298 start-page: 121362 year: 2021 ident: D3EE00964E/cit317/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120538 – volume: 51 start-page: 910 year: 2018 ident: D3EE00964E/cit324/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00010 – volume: 106 start-page: 108080 year: 2023 ident: D3EE00964E/cit101/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108080 – volume: 3 start-page: 100512 year: 2023 ident: D3EE00964E/cit99/1 publication-title: Chem. Catal. doi: 10.1016/j.checat.2023.100512 – volume: 139 start-page: 11277 year: 2017 ident: D3EE00964E/cit199/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06765 – volume: 121 start-page: 882 year: 2021 ident: D3EE00964E/cit248/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00396 – volume: 13 start-page: 2280 year: 2022 ident: D3EE00964E/cit61/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30027-x – volume: 61 start-page: e202200039 year: 2022 ident: D3EE00964E/cit283/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202200039 – volume: 40 start-page: 3442 year: 2021 ident: D3EE00964E/cit93/1 publication-title: Rare Met. doi: 10.1007/s12598-021-01772-7 – volume: 6 start-page: 92 year: 2022 ident: D3EE00964E/cit1/1 publication-title: Joule doi: 10.1016/j.joule.2021.12.011 – volume: 13 start-page: 12673 year: 2022 ident: D3EE00964E/cit56/1 publication-title: Chem. Sci. doi: 10.1039/D2SC04794B – volume: 138 start-page: 13006 year: 2016 ident: D3EE00964E/cit197/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07612 – volume: 3 start-page: 100972 year: 2022 ident: D3EE00964E/cit21/1 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.100972 – volume: 32 start-page: 2111504 year: 2022 ident: D3EE00964E/cit113/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111504 – volume: 408 start-page: 1 year: 2022 ident: D3EE00964E/cit320/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2022.02.014 – volume: 7 start-page: 12123 year: 2016 ident: D3EE00964E/cit253/1 publication-title: Nat. Commun. doi: 10.1038/ncomms12123 – volume: 144 start-page: 2829 year: 2022 ident: D3EE00964E/cit106/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11500 – volume: 5 start-page: 545 year: 2022 ident: D3EE00964E/cit144/1 publication-title: Natl. Catal. doi: 10.1038/s41929-022-00803-5 – volume: 12 start-page: 8269 year: 2022 ident: D3EE00964E/cit226/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02149 – volume: 14 start-page: 1928 year: 2021 ident: D3EE00964E/cit258/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03903A – volume: 8 start-page: 2003579 year: 2021 ident: D3EE00964E/cit28/1 publication-title: Adv. Sci. doi: 10.1002/advs.202003579 – volume: 9 start-page: 911 year: 2022 ident: D3EE00964E/cit30/1 publication-title: Environ. Sci.: Nano – volume: 4 start-page: 654 year: 2021 ident: D3EE00964E/cit277/1 publication-title: Natl. Catal. doi: 10.1038/s41929-021-00655-5 – volume: 120 start-page: 9648 year: 2004 ident: D3EE00964E/cit156/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1718201 – volume: 33 start-page: 2210938 year: 2023 ident: D3EE00964E/cit24/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210938 – volume: 11 start-page: 3844 year: 2020 ident: D3EE00964E/cit239/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17690-8 – volume: 10 start-page: 13171 year: 2020 ident: D3EE00964E/cit281/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03873 – volume: 11 start-page: 594 year: 2021 ident: D3EE00964E/cit264/1 publication-title: Catalysts doi: 10.3390/catal11050594 – volume: 317 start-page: 121681 year: 2022 ident: D3EE00964E/cit22/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121681 – volume: 33 start-page: 100940 year: 2022 ident: D3EE00964E/cit190/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2022.100940 – volume: 13 start-page: 5242 year: 2011 ident: D3EE00964E/cit205/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02064h – volume: 7 start-page: 4224 year: 2022 ident: D3EE00964E/cit212/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02292 – volume: 133 start-page: 17394 year: 2021 ident: D3EE00964E/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202017181 – volume: 7 start-page: 4224 year: 2022 ident: D3EE00964E/cit338/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02292 – volume: 13 start-page: 1507 year: 2021 ident: D3EE00964E/cit250/1 publication-title: Nanoscale doi: 10.1039/D0NR07508F – volume: 5 start-page: 8529 year: 2017 ident: D3EE00964E/cit309/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02380 – volume: 7 start-page: 55 year: 2021 ident: D3EE00964E/cit302/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00356-2 – volume: 14 start-page: 4998 year: 2021 ident: D3EE00964E/cit346/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01495A – volume: 125 start-page: 24289 year: 2021 ident: D3EE00964E/cit243/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07689 – volume: 33 start-page: e2008376 year: 2021 ident: D3EE00964E/cit73/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008376 – volume: 11 start-page: 893 year: 2018 ident: D3EE00964E/cit329/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03245E – volume: 9 start-page: 16394 year: 2021 ident: D3EE00964E/cit331/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c06295 – volume: 135 start-page: e202304634 year: 2023 ident: D3EE00964E/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202304634 – volume: 31 start-page: e1807166 year: 2019 ident: D3EE00964E/cit154/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807166 – volume: 139 start-page: 3774 year: 2017 ident: D3EE00964E/cit183/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13287 – volume: 13 start-page: 1877 year: 2022 ident: D3EE00964E/cit326/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29428-9 |
SSID | ssj0062079 |
Score | 2.7145562 |
SecondaryResourceType | review_article |
Snippet | Electrocatalytic CO
2
reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production.... Electrocatalytic CO2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4714 |
SubjectTerms | Carbon dioxide Catalysts Chemical reduction Design optimization Electrochemistry Electrolytes Interface reactions Intermediates Ionic liquids Machine learning Mass transfer Reaction intermediates |
Title | Electrochemical reduction of carbon dioxide to multicarbon (C) products: challenges and perspectives |
URI | https://www.proquest.com/docview/2887040626 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp-7I9lN3K0ssQbIOV4C662Ir71mTewgZjDy3tm7FkiRlGnKYujPyM_eIdy5attH3o9mLMwTJY5_O56VwQemeIUobHJjAhiEAuYwVyMGfBRDLBlZBEKJtt8T2aX_CvV-HVYPDHy1q6reSJWj9YV_I_XAUa8LWukv0HznYvBQLcA3_hChyG66N4nDQzbJQr-l_VfVidCaiylYS7vCh_F7kdkGGTB1tyfXg7ou_pdFTHBZZN31ebHqfceJWme_Oyr8a82QjjN0WDNXK8YjlXYtnjZeYi0tOiw-GPljQvW71pD5rWxbU1pbN11qV9XLpwdiFLP0BBma3U82WqCHkQRs3IuxPt0cQ42hDEkQ844olV0KDcU9FcNO3e74n_Mau7p35iSVK7ZjzplZw72L-j-7qMRHsWz-K0X7uFdii4HiA7d86-Tb9cOv0e0bHt4Nh9lmt6y-KP_epNM6f3XbZWbrCMNWDOn6Hd1vPAZw2MnqOBXrxAT71-lC_RzzuAwh2gcGlwgxzcAgpXJfYAhT_MMB3hY-ygdIp7IGEAEvaB9ApdfE7OZ_OgHcURKDZhVaBzSiQIb0GIkFQTbhiTkiipwELPmVaGjPVEZRl4p1qAjNcSTHkTqliCw2AI20Pbi3KhXyOshTawrVkeGzAt-UTmhuRUU64yzqWIh-jY7Vyq2j719biUX-l9Hg3R2-7ZZdOd5cGnDh0D0vbvvUkpaFdQYODPD9EeMKVbD1-j7Tq9_6i3H6AnPeoP0Xa1utVHYKhW8k2LnL9drJF7 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+reduction+of+carbon+dioxide+to+multicarbon+%28C+2%2B+%29+products%3A+challenges+and+perspectives&rft.jtitle=Energy+%26+environmental+science&rft.au=Chang%2C+Bin&rft.au=Pang%2C+Hong&rft.au=Raziq%2C+Fazal&rft.au=Wang%2C+Sibo&rft.date=2023-11-08&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=16&rft.issue=11&rft.spage=4714&rft.epage=4758&rft_id=info:doi/10.1039%2FD3EE00964E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3EE00964E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |