An application of prophet regions to optimal stopping with a random number of observations

Let X 1 ,X 2 , ... be any sequence of nonnegative integrable random variables, and let N∈{1,2 , ...} be a random variable with known distribution, independent of X 1 ,X 2 , ... The optimal stopping value sup t E(X t I(N≥ t)) is considered for two players: one who has advance knowledge of the value o...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 53; no. 4; pp. 331 - 338
Main Author Allaart, Pieter C.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 01.08.2004
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0233-1934
1029-4945
DOI10.1080/02331930410001716829

Cover

Abstract Let X 1 ,X 2 , ... be any sequence of nonnegative integrable random variables, and let N∈{1,2 , ...} be a random variable with known distribution, independent of X 1 ,X 2 , ... The optimal stopping value sup t E(X t I(N≥ t)) is considered for two players: one who has advance knowledge of the value of N, and another who does not. Sharp ratio and difference inequalities relating the two players' optimal values are given in a number of settings. The key to the proofs is an application of a prophet region for arbitrarily dependent random variables by Hill and Kertz [T.P. Hill and R.P. Kertz (1983). Stop rule inequalities for uniformly bounded sequences of random variables. Trans. Amer. Math. Soc., 278, 197-207].
AbstractList Let X 1 ,X 2 , ... be any sequence of nonnegative integrable random variables, and let N∈{1,2 , ...} be a random variable with known distribution, independent of X 1 ,X 2 , ... The optimal stopping value sup t E(X t I(N≥ t)) is considered for two players: one who has advance knowledge of the value of N, and another who does not. Sharp ratio and difference inequalities relating the two players' optimal values are given in a number of settings. The key to the proofs is an application of a prophet region for arbitrarily dependent random variables by Hill and Kertz [T.P. Hill and R.P. Kertz (1983). Stop rule inequalities for uniformly bounded sequences of random variables. Trans. Amer. Math. Soc., 278, 197-207].
Let X1, X2,... be any sequence of nonnegative integrable random variables, and let N epsilon {1, 2,...} be a random variable with known distribution, independent of X1, X2,... The optimal stopping value sup, E(X1I(N greater than or equal to t)) is considered for two players: one who has advance knowledge of the value of N, and another who does not. Sharp ration and difference inequalities relating the two players' optimal values are given in a number of settings. The key to the proofs is an application of a prophet region for arbitrarily dependent random variables by Hill and Kertz (1983). Stop rule inequalities for uniformly bounded sequences of random variables.
Author Allaart, Pieter C.
Author_xml – sequence: 1
  givenname: Pieter C.
  surname: Allaart
  fullname: Allaart, Pieter C.
BookMark eNqNkEtPAyEYRYnRxLb6D1wQ96O85oEb0zS-kiZudOOGMDNMSzMFBGrtv5e2rkyjrkjgnPvx3SE4NtYoAC4wusKoQteIUIo5RQwjhHCJi4rwIzDAiPCMcZYfg8EWyRLDTsEwhAVCBBeEDcDb2EDpXK8bGbU10HbQeevmKkKvZukmwGihdVEvZQ9DtM5pM4NrHedQQi9Na5fQrJa18lvX1kH5j11UOAMnneyDOv8-R-D1_u5l8phNnx-eJuNp1tCKxkw1jBBcY5J3CpesLnKsypqXPD1wJlmNqpzUhWRY5rSVLZF52dJC8oYkjjE6Apf73PTx95UKUSzsyps0UhDMGS2LkieI7aHG2xC86oTzaSW_ERiJbYniUIlJu_mhNTru1ote6v4v-XYva9NZv5Rr6_tWRLnpre9SdY0Ogv5v_C8Jh0QRPyP9AvGjnrI
CODEN OPTZDQ
CitedBy_id crossref_primary_10_1080_07362990600629140
crossref_primary_10_1081_SAP_200056671
Cites_doi 10.1214/aop/1176992175
10.1214/aos/1024691094
10.2307/3212720
10.1081/SQA-120025030
10.1090/conm/125/1160620
10.1214/aop/1176993237
10.1081/SQA-120022089
10.1007/BF00535745
10.1007/BF00538887
10.1214/aop/1176990548
10.1137/1117078
10.1007/978-3-322-84825-3
10.1090/S0002-9947-1983-0697070-7
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2004
Copyright Taylor & Francis Group Aug 2004
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2004
– notice: Copyright Taylor & Francis Group Aug 2004
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331930410001716829
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 338
ExternalDocumentID 695528051
10_1080_02331930410001716829
10051660
Genre Feature
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACGEE
ADYSH
AEUMN
AFRVT
AGCQS
AGLEN
AIYEW
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c383t-ec4221b125fe174b651e7b979ec494a4b0852b6a41a53dad2a57d36a9c2e7b443
ISSN 0233-1934
IngestDate Wed Aug 13 07:34:11 EDT 2025
Tue Jul 01 03:52:06 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Wed Dec 25 09:03:09 EST 2024
Mon May 13 12:09:11 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-ec4221b125fe174b651e7b979ec494a4b0852b6a41a53dad2a57d36a9c2e7b443
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 219437679
PQPubID 27961
PageCount 8
ParticipantIDs proquest_journals_219437679
crossref_citationtrail_10_1080_02331930410001716829
crossref_primary_10_1080_02331930410001716829
informaworld_taylorfrancis_310_1080_02331930410001716829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 8/1/2004
2004-08-00
20040801
PublicationDateYYYYMMDD 2004-08-01
PublicationDate_xml – month: 08
  year: 2004
  text: 8/1/2004
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2004
Publisher Taylor & Francis Group
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis LLC
References Hill TP (bib9) 1992; 125
Krengel U (bib11) 1978
bib14
bib12
bib13
bib10
Schmitz N (bib15) 2000
bib7
bib8
bib5
bib3
bib4
bib1
bib2
Harten F (bib6) 1997
References_xml – ident: bib4
  doi: 10.1214/aop/1176992175
– ident: bib2
  doi: 10.1214/aos/1024691094
– ident: bib13
  doi: 10.2307/3212720
– ident: bib1
  doi: 10.1081/SQA-120025030
– volume: 125
  start-page: 191
  year: 1992
  ident: bib9
  publication-title: Contemp. Math.
  doi: 10.1090/conm/125/1160620
– ident: bib3
  doi: 10.1214/aop/1176993237
– ident: bib14
  doi: 10.1081/SQA-120022089
– ident: bib7
  doi: 10.1007/BF00535745
– ident: bib5
  doi: 10.1007/BF00538887
– ident: bib10
  doi: 10.1214/aop/1176990548
– ident: bib12
  doi: 10.1137/1117078
– volume-title: Prophet Theory
  year: 2000
  ident: bib15
– volume-title: Prophetentheorie
  year: 1997
  ident: bib6
  doi: 10.1007/978-3-322-84825-3
– ident: bib8
  doi: 10.1090/S0002-9947-1983-0697070-7
– volume-title: Probability on Banach Spaces, Marcel Dekker
  year: 1978
  ident: bib11
SSID ssj0021624
Score 1.6232989
Snippet Let X 1 ,X 2 , ... be any sequence of nonnegative integrable random variables, and let N∈{1,2 , ...} be a random variable with known distribution, independent...
Let X1, X2,... be any sequence of nonnegative integrable random variables, and let N epsilon {1, 2,...} be a random variable with known distribution,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms AMS 2000 Subject Classifications: 60G40
Game theory
Mathematical models
Optimal stopping
Optimization
Prophet inequality
Random horizon
Random variables
Studies
Title An application of prophet regions to optimal stopping with a random number of observations
URI https://www.tandfonline.com/doi/abs/10.1080/02331930410001716829
https://www.proquest.com/docview/219437679
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXQ7gUOiE9RFpAP3KqgJnac-Jhl0w1om0TBhWovkeO6EhIUBEFC_HrGsZNN1ap8XKIqjp028zKecf3eIPQyVkZkjM-8TSypR6VinvQ32vOVYmxGFIQIZkF_kbNsSd-uwtVNMc6OXdI2r9Svg7yS_7EqnAO7GpbsP1h2GBROwGewLxzBwnD8Kxsn-TQpy54MbDbwlFVRZqmYVullRw8WxbQoxZuF0TwQhcnhLyFnFxn4gyrJL4rFNF8uztPK9C3O36XVe8srHsesBXiVz46uOeAD0CMt26f8aHbUuNXWfv2ADrvXrMXFXimPoVyx9UIBIR5EeTbr19ZLmj0zlFsdyN6NWs1fBxc68omOkrXnq93mRhgfhp9R32n3xG4FZEcaOy_q-fLqqhbpSuy2dlMx42EYxDNDpT8Nosj8X3-aZBfXH4bc22ddfePh1_QsSiOzfuAb7EQpOxq2e3N2F4iIe-iuyyBwYuFwH93S2wfozkhX8iG6TnI8AgYu5tgBAztgYFFgBwzcAwMbYOAEW2BgCwzTdwyMR2g5T8XrzHNFNDxFYtJ6WtEg8BuIYzcass-Ghb6OGh5xaOBU0gZi7qBhkvoyJGu5DmQYrQmTXAVwHaXkMTrZftnqJwjHxG9gXoWgTjU0iDhXOtIzroz4_Dpi4QSR_qHVyinMm0Inn2q_F6I98KgnyBt6fbUKK3-4noztUbcdgDcWuwd71O3PdoLiI73I8Rue9Rav3cv_vYaJnhohJP70aOsZun3zzj1DJ-23H_o5RLFt88Ih9DdnuYLG
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RONAeWl4VaVrwgashXnu96yNCRCkkOYGEuKxsr1dIlGxEHKnqr-94H1FCaZDa83q8D49nvpkdfwNwktpAMqZ6tEi1oEJbSTUrHGXWStnjFiFCSOiPxnJwK67u4raacNaUVYYYuqiJIipbHTZ3SEa3JXFn6GdQczAQZw3fSxqpd7AVI3QPSs5740XMxWTV1zZIUBQR7em5v8yy4p1WuEv_sNWVA-p_AtM-el138ng69-bU_nrB6vhf77YDHxt4Ss5rfdqFDTfZgw9LpIX7cH8-IUu_vUlZEHym6YPzJHR5QC0mviQlmqInnCkQF4QjWSQkfIkm6Brz8onUjUiCbGkWeeHZAdz2L28uBrTp0EAtRraeOiuiiBkESYXD0MbImLnEqEThBSW0MAjoIiO1YDrmuc4jHSc5l1rZCMcJwT_D5qScuEMgKWcGjTYiBmtElChlXeJ6ygZm8zyRcQd4uzKZbejLQxeNHxlrWU5f-XIdoAupaU3f8cZ4vrzoma_SJkXd4-RVicz_9B1I10jx9TfstmqVNdZjlqEXEYFlR33594mPYXtwMxpmw-_j6y68rwuOQt3iV9j0z3P3DbGUN0fVbvkNDsoNRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZYkBB74Lloh2cOXAOTJk2bIwJGPEccQEJcqiRNhQQzHS1BWvHrcfoYDc-V2HPj9BHH_uw6nwF2UhtIxlSXFqkWVGgrqWaFo8xaKbvcIkQICf2Lvjy-Fqc38c3EKf5QVhli6KImiqhsddjco7xoK-L20M2g4mAczhq6lzRSP2BGIjoJRX282x-HXExWbW2DBEUR0R6e-2SWV87pFXXpO1Nd-Z_eAuj2yeuyk_vdJ2927fMbUsf_ebVFmG_AKdmvtWkJptxwGX5OUBauwO3-kEz89CZlQfCRRnfOk9DjAXWY-JKUaIgGOFOgLQgHskhI9xJN0DHm5YDUbUiCbGnGWeHHX3DdO7o6OKZNfwZqMa711FkRRcwgRCocBjZGxswlRiUKLyihhUE4FxmpBdMxz3Ue6TjJudTKRjhOCL4K08Ny6H4DSTkzaLIRL1gjokQp6xLXVTbwmueJjDvA24XJbENeHnpoPGSs5Tj94Mt1gI6lRjV5xz_G88k1z3yVNCnqDicfSmT-r-9A-oUU__qG661WZY3teMzQh4jAsaPWvj_xNsxeHvay85P-2TrM1dVGoWhxA6b9nye3iUDKm61qr7wAoIML6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AN+APPLICATION+OF+PROPHET+REGIONS+TO+OPTIMAL+STOPPING+WITH+A+RANDOM+NUMBER+OF+OBSERVATIONS&rft.jtitle=Optimization&rft.au=Allaart%2C+Pieter+C&rft.date=2004-08-01&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=53&rft.issue=4&rft.spage=331&rft_id=info:doi/10.1080%2F02331930410001716829&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=695528051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon