Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates
The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α ph...
Saved in:
Published in | Materials Vol. 14; no. 22; p. 6750 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma14226750 |
Cover
Loading…
Abstract | The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α phase and the evolution of the β sub-grain size are quantitatively analyzed. A unified constitutive model is constructed to characterize the hot deformation features of the Ti-55511 alloy. In the established model, the work hardening effect is taken into account by involving the coupled effects of the equiaxed and lamellar α phases, as well as β substructures. The dynamic softening mechanisms including the dynamic recovery (DRV), DRX and dynamic spheroidization mechanisms are also considered. The material parameters are optimized by the multi-objective algorithm in the MATLAB toolbox. The consistency between the predicted and experimental data indicates that the developed unified model can accurately describe the flow features and microstructure evolution of the hot compressed Ti-55511 at stepped strain rates. |
---|---|
AbstractList | The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α phase and the evolution of the β sub-grain size are quantitatively analyzed. A unified constitutive model is constructed to characterize the hot deformation features of the Ti-55511 alloy. In the established model, the work hardening effect is taken into account by involving the coupled effects of the equiaxed and lamellar α phases, as well as β substructures. The dynamic softening mechanisms including the dynamic recovery (DRV), DRX and dynamic spheroidization mechanisms are also considered. The material parameters are optimized by the multi-objective algorithm in the MATLAB toolbox. The consistency between the predicted and experimental data indicates that the developed unified model can accurately describe the flow features and microstructure evolution of the hot compressed Ti-55511 at stepped strain rates. The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α phase and the evolution of the β sub-grain size are quantitatively analyzed. A unified constitutive model is constructed to characterize the hot deformation features of the Ti-55511 alloy. In the established model, the work hardening effect is taken into account by involving the coupled effects of the equiaxed and lamellar α phases, as well as β substructures. The dynamic softening mechanisms including the dynamic recovery (DRV), DRX and dynamic spheroidization mechanisms are also considered. The material parameters are optimized by the multi-objective algorithm in the MATLAB toolbox. The consistency between the predicted and experimental data indicates that the developed unified model can accurately describe the flow features and microstructure evolution of the hot compressed Ti-55511 at stepped strain rates.The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α phase and the evolution of the β sub-grain size are quantitatively analyzed. A unified constitutive model is constructed to characterize the hot deformation features of the Ti-55511 alloy. In the established model, the work hardening effect is taken into account by involving the coupled effects of the equiaxed and lamellar α phases, as well as β substructures. The dynamic softening mechanisms including the dynamic recovery (DRV), DRX and dynamic spheroidization mechanisms are also considered. The material parameters are optimized by the multi-objective algorithm in the MATLAB toolbox. The consistency between the predicted and experimental data indicates that the developed unified model can accurately describe the flow features and microstructure evolution of the hot compressed Ti-55511 at stepped strain rates. |
Author | Zhang, Song Lin, Yong-Cheng He, Dao-Guang Chen, Zi-Jian Su, Gang Yun, Zhong |
AuthorAffiliation | 3 State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China 2 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; daoguanghe@csu.edu.cn 1 Light Alloy Research Institute, Central South University, Changsha 410083, China; sugang@csu.edu.cn (G.S.); 203801010@csu.edu.cn (S.Z.); zjchen@csu.edu.cn (Z.-J.C.) |
AuthorAffiliation_xml | – name: 1 Light Alloy Research Institute, Central South University, Changsha 410083, China; sugang@csu.edu.cn (G.S.); 203801010@csu.edu.cn (S.Z.); zjchen@csu.edu.cn (Z.-J.C.) – name: 3 State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China – name: 2 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; daoguanghe@csu.edu.cn |
Author_xml | – sequence: 1 givenname: Gang surname: Su fullname: Su, Gang – sequence: 2 givenname: Zhong surname: Yun fullname: Yun, Zhong – sequence: 3 givenname: Yong-Cheng orcidid: 0000-0001-9033-1564 surname: Lin fullname: Lin, Yong-Cheng – sequence: 4 givenname: Dao-Guang orcidid: 0000-0001-9359-0051 surname: He fullname: He, Dao-Guang – sequence: 5 givenname: Song surname: Zhang fullname: Zhang, Song – sequence: 6 givenname: Zi-Jian surname: Chen fullname: Chen, Zi-Jian |
BookMark | eNptkdtqFjEUhYNUbK298QkC3khhak5zyI1QfuoBWgTbXodMZkdTMsmYZH7o25uhRW0xN9mwv6y9s9ZrdBBiAITeUnLGuSQfZk0FY13fkhfoiErZNVQKcfBPfYhOcr4j9XBOByZfoUMuBs5oy45QuHImxVzSasqaAF_so1-LiwHrMGGNb4OzDia8iyEXV2prD_gqTuBxtPjGNW3bUorPvY_3FZqXBDlXXhd8XWBZanldknYBf9cF8hv00mqf4eTxPka3ny5udl-ay2-fv-7OLxvDB14aGIXlctSajIwQpo0BxqRs9TT00PN-tMNAh4lZ0lvQ7WioFRyEpJLrUYqWH6OPD7rLOs4wGQh1Ca-W5Gad7lXUTj3tBPdT_Yh7NXSM076vAu8fBVL8tUIuanbZgPc6QFyzYh0RhFUPt1nvnqF3cU2hfm-jGCVMdrRSpw_UZndOYP8sQ4naklR_k6wweQYbV_QWy-al_9-T35QZoSY |
CitedBy_id | crossref_primary_10_1007_s11665_024_09954_x crossref_primary_10_3390_ma15010007 crossref_primary_10_1007_s11665_022_06828_y crossref_primary_10_1088_2053_1591_aced38 crossref_primary_10_1515_htmp_2022_0242 crossref_primary_10_1007_s11665_022_07337_8 crossref_primary_10_1016_j_jallcom_2024_174191 crossref_primary_10_1007_s11665_023_09039_1 crossref_primary_10_3390_ma15114030 crossref_primary_10_1007_s11665_023_08494_0 crossref_primary_10_3390_met13050929 crossref_primary_10_1007_s11665_023_08955_6 crossref_primary_10_1177_02670836251318581 crossref_primary_10_1007_s11665_022_07630_6 crossref_primary_10_1016_j_vacuum_2022_111749 crossref_primary_10_3390_ma15010146 crossref_primary_10_1007_s11665_023_08059_1 crossref_primary_10_1007_s00339_023_06934_1 crossref_primary_10_1007_s11665_022_07111_w crossref_primary_10_1088_2053_1591_ac49bd crossref_primary_10_1557_s43578_023_01097_4 crossref_primary_10_1016_S1003_6326_23_66360_5 crossref_primary_10_1016_j_jmrt_2024_12_105 crossref_primary_10_3390_ma17164026 crossref_primary_10_1016_j_jmrt_2023_03_204 crossref_primary_10_1007_s11665_022_07267_5 crossref_primary_10_1016_j_mtcomm_2022_103973 crossref_primary_10_1016_j_cossms_2022_100992 crossref_primary_10_1016_j_jallcom_2022_164909 crossref_primary_10_1016_j_jmapro_2023_03_039 crossref_primary_10_1016_j_jmrt_2023_06_008 |
Cites_doi | 10.1016/S0022-5096(00)00069-7 10.1016/j.matchar.2018.09.036 10.1016/0025-5416(70)90081-9 10.1007/s00339-016-0333-z 10.1016/j.ijplas.2020.102862 10.1557/jmr.2016.430 10.1016/j.matdes.2010.11.048 10.1016/j.msea.2020.139282 10.1016/j.jallcom.2018.05.252 10.1016/j.msea.2017.11.127 10.1016/j.vacuum.2018.08.020 10.1016/j.vacuum.2016.12.022 10.1088/2053-1591/ab5252 10.1016/j.mtcomm.2021.102009 10.1557/jmr.2015.368 10.3390/ma13194289 10.1016/0001-6160(81)90112-7 10.1007/s11665-018-3300-3 10.3390/met9121277 10.1016/S0921-5093(98)01156-3 10.1016/j.msea.2014.07.050 10.1016/j.jmrt.2019.12.070 10.1016/j.msea.2017.05.113 10.1002/adem.201800510 10.1016/j.vacuum.2019.108878 10.1016/j.jallcom.2019.04.319 10.1007/s12598-020-01643-7 10.1155/2021/6699514 10.1016/j.ijplas.2011.12.006 10.1016/j.jallcom.2018.03.120 10.1016/j.matdes.2016.09.007 10.1016/j.msea.2016.12.043 10.1016/j.vacuum.2018.06.059 10.1016/j.jallcom.2014.02.110 10.1016/j.matchar.2020.110471 10.1016/j.msea.2016.03.044 10.1016/j.matdes.2015.01.009 10.3390/ma12213520 10.1016/j.matdes.2018.05.022 10.1016/j.msea.2020.139692 10.3390/ma13061282 10.1007/s11665-018-3402-y 10.1016/j.jmatprotec.2003.11.027 10.1016/j.msea.2017.05.109 10.3390/ma14082021 10.1016/j.engfracmech.2021.108027 10.1016/j.matchar.2019.03.034 10.1007/s11431-019-9548-x 10.3103/S1067821216070099 10.1016/j.vacuum.2019.01.008 10.1016/j.matdes.2013.02.033 10.1088/2053-1591/ab59b5 10.1016/j.ijplas.2020.102809 10.1016/j.ijplas.2010.06.005 10.1016/S1003-6326(19)65186-1 10.1007/s11665-021-05660-0 10.1103/PhysRevB.2.3952 10.1063/1.1750872 10.1016/j.jmapro.2019.01.021 10.1002/adem.201900930 10.1016/j.msea.2017.10.062 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma14226750 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8623177 10_3390_ma14226750 |
GeographicLocations | Czech Republic |
GeographicLocations_xml | – name: Czech Republic |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c383t-eb4f39baa0b2002acce22995ad87e737bf8818d2f07fea5bc1f43e49193ab9453 |
IEDL.DBID | 8FG |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:27:09 EDT 2025 Fri Jul 11 16:54:54 EDT 2025 Fri Jul 25 11:54:32 EDT 2025 Tue Jul 01 03:41:54 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-eb4f39baa0b2002acce22995ad87e737bf8818d2f07fea5bc1f43e49193ab9453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9359-0051 0000-0001-9033-1564 |
OpenAccessLink | https://www.proquest.com/docview/2602102961?pq-origsite=%requestingapplication% |
PMID | 34832152 |
PQID | 2602102961 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8623177 proquest_miscellaneous_2604022155 proquest_journals_2602102961 crossref_primary_10_3390_ma14226750 crossref_citationtrail_10_3390_ma14226750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211109 |
PublicationDateYYYYMMDD | 2021-11-09 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211109 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Li (ref_35) 2018; 748 Buzolin (ref_45) 2021; 136 (ref_29) 1970; 5 Tang (ref_13) 2020; 134 ref_11 He (ref_15) 2018; 154 Brown (ref_53) 2012; 32–33 Mosleh (ref_33) 2020; 7 Bobbili (ref_41) 2018; 762 Xia (ref_42) 2020; 30 Ning (ref_8) 2015; 28 Zhu (ref_10) 2020; 63 Chen (ref_23) 2019; 38 Pradhan (ref_44) 2017; 700 Yao (ref_58) 2021; 257 Momeni (ref_47) 2019; 161 Lin (ref_6) 2020; 782 Xiao (ref_17) 2020; 790 Souza (ref_19) 2018; 27 Gao (ref_34) 2014; 600 Wang (ref_21) 2021; 26 ref_22 Lin (ref_31) 2016; 122 Varshni (ref_54) 1970; B2 Mecking (ref_30) 1981; 29 Ding (ref_32) 2021; 2021 Li (ref_61) 2016; 111 Pang (ref_59) 2020; 167 Castro (ref_25) 2004; 146 Gornakova (ref_38) 2018; 27 Jiang (ref_52) 2020; 22 Lin (ref_4) 2019; 169 Chen (ref_62) 2018; 155 Bodunrin (ref_40) 2020; 9 Liang (ref_12) 2014; 615 Lin (ref_24) 2011; 32 Momeni (ref_48) 2016; 31 ref_39 Tang (ref_16) 2016; 662 Lin (ref_20) 2018; 157 Nasser (ref_51) 2001; 49 Quan (ref_27) 2013; 50 Wang (ref_9) 2018; 712 Horstemeyer (ref_28) 2010; 26 Bobbili (ref_18) 2017; 700 Lin (ref_26) 2017; 137 Semiatin (ref_55) 1999; 263 Avrami (ref_56) 1941; 9 Balasundar (ref_2) 2017; 684 Yang (ref_7) 2021; 40 Lin (ref_60) 2019; 795 ref_43 Gornakova (ref_37) 2016; 57 Lin (ref_57) 2019; 6 ref_1 Mozumder (ref_46) 2018; 146 Kumar (ref_5) 2021; 30 Wang (ref_3) 2019; 151 Hadadzadeh (ref_49) 2018; 709 Lin (ref_14) 2015; 30 Kocks (ref_50) 1975; 19 Gornakova (ref_36) 2018; 20 |
References_xml | – volume: 49 start-page: 1823 year: 2001 ident: ref_51 article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures publication-title: J. Mech. Pys. Solids. doi: 10.1016/S0022-5096(00)00069-7 – volume: 146 start-page: 1 year: 2018 ident: ref_46 article-title: Flow characteristics and hot workability studies of a Ni-containing Fe’Mn’Al’C lightweight duplex steel publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.09.036 – volume: 5 start-page: 193 year: 1970 ident: ref_29 article-title: A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations publication-title: Mater. Sci. Eng. A doi: 10.1016/0025-5416(70)90081-9 – volume: 122 start-page: 1 year: 2016 ident: ref_31 article-title: A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions publication-title: Appl. Phys. A doi: 10.1007/s00339-016-0333-z – volume: 136 start-page: 102862 year: 2021 ident: ref_45 article-title: A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102862 – volume: 31 start-page: 3900 year: 2016 ident: ref_48 article-title: Flow softening behavior of Ti–13V–11Cr–3Al beta Ti alloy in double-hit hot compression tests publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.430 – volume: 32 start-page: 1733 year: 2011 ident: ref_24 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.11.048 – volume: 782 start-page: 139282 year: 2020 ident: ref_6 article-title: Spheroidization and dynamic recrystallization mechanisms of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139282 – volume: 762 start-page: 842 year: 2018 ident: ref_41 article-title: Physically-based constitutive model for flow behavior of a Ti-22Al-25Nb alloy at high strain rates publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.252 – volume: 712 start-page: 440 year: 2018 ident: ref_9 article-title: Dynamic restoration and deformation heterogeneity during hot deformation of a duplex-structure TC21 titanium alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.11.127 – volume: 157 start-page: 83 year: 2018 ident: ref_20 article-title: Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α+β regime publication-title: Vacuum doi: 10.1016/j.vacuum.2018.08.020 – volume: 137 start-page: 104 year: 2017 ident: ref_26 article-title: Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy publication-title: Vacuum doi: 10.1016/j.vacuum.2016.12.022 – volume: 6 start-page: 1165h2 year: 2019 ident: ref_57 article-title: Effects of solution temperature and cooling rate on phases and mechanical properties of a forged Ti-55511 alloy publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab5252 – volume: 26 start-page: 102009 year: 2021 ident: ref_21 article-title: Hot deformation behaviors of low-alloyed ultrahigh strength steel 30CrMnSiNi2A: Microstructure evolution and constitutive modeling publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2021.102009 – volume: 30 start-page: 3784 year: 2015 ident: ref_14 article-title: A unified physically based constitutive model for describing strain hardening effect and dynamic recovery behavior of a Ni-based superalloy publication-title: J. Mater. Res. doi: 10.1557/jmr.2015.368 – ident: ref_22 doi: 10.3390/ma13194289 – volume: 29 start-page: 1865 year: 1981 ident: ref_30 article-title: Kinetics of Flow and Strain-Hardening publication-title: Acta Metall. doi: 10.1016/0001-6160(81)90112-7 – volume: 27 start-page: 4989 year: 2018 ident: ref_38 article-title: Grain boundary wetting by a second solid phase in Ti-Fe alloys publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-018-3300-3 – ident: ref_39 doi: 10.3390/met9121277 – volume: 263 start-page: 257 year: 1999 ident: ref_55 article-title: Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(98)01156-3 – volume: 615 start-page: 42 year: 2014 ident: ref_12 article-title: The Construction of Constitutive Model and Identification of Dynamic Softening Mechanism of High-Temperature Deformation of Ti–5Al–5Mo–5V–1Cr–1Fe Alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.07.050 – volume: 9 start-page: 2376 year: 2020 ident: ref_40 article-title: Flow stress prediction using hyperbolic-sine Arrhenius constants optimised by simplegeneralised reduced gradient refinement publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.12.070 – volume: 700 start-page: 82 year: 2017 ident: ref_18 article-title: Constitutive modeling and fracture behavior of a biomedical Ti–13Nb-13Zr alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.05.113 – volume: 20 start-page: 1800510 year: 2018 ident: ref_36 article-title: Coarsening of (αTi) + (βTi) microstructure in the Ti–Al–V Alloy at constant temperature publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201800510 – volume: 169 start-page: 108878 year: 2019 ident: ref_4 article-title: Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures publication-title: Vacuum doi: 10.1016/j.vacuum.2019.108878 – volume: 795 start-page: 471 year: 2019 ident: ref_60 article-title: Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.319 – volume: 40 start-page: 2917 year: 2021 ident: ref_7 article-title: Microstructure and texture evolution of TB8 titanium alloys during hot compression publication-title: Rare Met. doi: 10.1007/s12598-020-01643-7 – volume: 2021 start-page: 6699514 year: 2021 ident: ref_32 article-title: Comparative study of accurate descriptions of hot flow behaviors of BT22 alloy by intelligence algorithm and physical modeling publication-title: Math. Probl. Eng. doi: 10.1155/2021/6699514 – volume: 32–33 start-page: 17 year: 2012 ident: ref_53 article-title: Validation of a model for static and dynamic recrystallization in metals publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.12.006 – volume: 19 start-page: 303 year: 1975 ident: ref_50 article-title: Thermodynamics and Kinetics of Slip, Prog publication-title: Mater. Sci. – volume: 748 start-page: 1031 year: 2018 ident: ref_35 article-title: Unified modelling of the flow behaviour and softening mechanism of a TC6 titanium alloy during hot deformation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.120 – volume: 111 start-page: 344 year: 2016 ident: ref_61 article-title: Microstructural evolution of an aged Ni-based superalloy under two-stage hot compression with different strain rates publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.09.007 – volume: 684 start-page: 135 year: 2017 ident: ref_2 article-title: On the high temperature deformation behavior of titanium alloy BT3-1 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.12.043 – volume: 155 start-page: 531 year: 2018 ident: ref_62 article-title: Hot deformation behaviors of a solution-treated Ni-based superalloy under constant and changed strain rates publication-title: Vacuum doi: 10.1016/j.vacuum.2018.06.059 – volume: 600 start-page: 78 year: 2014 ident: ref_34 article-title: Unified modeling of flow softening and globularization for hot working of two-phase titanium alloy with a lamellar colony microstructure publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.02.110 – volume: 167 start-page: 110471 year: 2020 ident: ref_59 article-title: Precipitation behaviors and orientation evolution mechanisms of α phases in Ti-55511 titanium alloy during heat treatment and subsequent hot deformation publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110471 – volume: 662 start-page: 54 year: 2016 ident: ref_16 article-title: Unified Modeling of Flow Behavior and Microstructure Evolution in Hot Forming of a Ni-based Superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.03.044 – volume: 28 start-page: 68 year: 2015 ident: ref_8 article-title: Dynamic softening behavior of TC18 titanium alloy during hot deformation publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.01.009 – ident: ref_11 doi: 10.3390/ma12213520 – volume: 154 start-page: 51 year: 2018 ident: ref_15 article-title: Microstructural Evolution and Support Vector Regression Model for an Aged Ni-based Superalloy During Two-Stage Hot Forming with Stepped Strain Rates publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.022 – volume: 790 start-page: 139692 year: 2020 ident: ref_17 article-title: A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139692 – ident: ref_43 doi: 10.3390/ma13061282 – volume: 27 start-page: 3545 year: 2018 ident: ref_19 article-title: An Analysis on the Constitutive Models for Forging of Ti6Al4V Alloy Considering the Softening Behavior publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-018-3402-y – volume: 146 start-page: 356 year: 2004 ident: ref_25 article-title: Optimisation of shape and process parameters in metal forging using genetic algorithms publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2003.11.027 – volume: 700 start-page: 49 year: 2017 ident: ref_44 article-title: Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.05.109 – ident: ref_1 doi: 10.3390/ma14082021 – volume: 257 start-page: 108027 year: 2021 ident: ref_58 article-title: Hybrid identification method of coupled viscoplastic-damage constitutive parameters based on BP neural network and genetic algorithm publication-title: Eng. Frac. Mech. doi: 10.1016/j.engfracmech.2021.108027 – volume: 151 start-page: 358 year: 2019 ident: ref_3 article-title: Precipitation behavior of a β-quenched Ti-5Al-5Mo-5V-1Cr-1Fe alloy during high-temperature compression publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.03.034 – volume: 63 start-page: 357 year: 2020 ident: ref_10 article-title: Review on modeling and simulation of microstructure evolution during dynamic recrystallization using cellular automaton method publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-019-9548-x – volume: 57 start-page: 703 year: 2016 ident: ref_37 article-title: Growth of (αTi) grain-boudary layers in Ti-Co alloy publication-title: Russ. J. Non-Ferr. Met. doi: 10.3103/S1067821216070099 – volume: 161 start-page: 410 year: 2019 ident: ref_47 article-title: A comparative study on the hot deformation behavior of Ti-5Al-5Mo-5V-3Cr and newly developed Ti-4Al-7Mo-3V-3Cr alloys publication-title: Vacuum doi: 10.1016/j.vacuum.2019.01.008 – volume: 50 start-page: 51 year: 2013 ident: ref_27 article-title: Prediction of flow stress in a wide temprature range involving phase transformation for as-cast Ti-6Al-2Zr-1Mo-1V alloy by artificial neural network publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.02.033 – volume: 7 start-page: 016504 year: 2020 ident: ref_33 article-title: Modelling approach for predicting the superplastic deformation behaviour of titanium alloys with strain hardening/softening characterizations publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab59b5 – volume: 134 start-page: 102809 year: 2020 ident: ref_13 article-title: Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al-Zn-Mg-Cu alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102809 – volume: 26 start-page: 1310 year: 2010 ident: ref_28 article-title: Historical Review of Internal State Variable Theory for Inelasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.06.005 – volume: 30 start-page: 134 year: 2020 ident: ref_42 article-title: Hot deformation behavior of Ti−6Al−4V−0.1Ru alloy during isothermal compression, Trans publication-title: Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(19)65186-1 – volume: 30 start-page: 3258 year: 2021 ident: ref_5 article-title: Microstructure evolution during high-temperature deformation of Ti-5Al-5V-2Mo-1Cr-1Fe alloy under compression publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05660-0 – volume: B2 start-page: 3952 year: 1970 ident: ref_54 article-title: Temperature dependence of the elastic constants publication-title: Phys. Rev. Sect. doi: 10.1103/PhysRevB.2.3952 – volume: 9 start-page: 177 year: 1941 ident: ref_56 article-title: Phase Change, and Microstructure Kinetics of Phase Change. III publication-title: J. Chem. Phys. doi: 10.1063/1.1750872 – volume: 38 start-page: 223 year: 2019 ident: ref_23 article-title: High-temperature deformation mechanisms and physical-based constitutive modeling of ultra-supercritical rotor steel publication-title: J. Manufact. Process. doi: 10.1016/j.jmapro.2019.01.021 – volume: 22 start-page: 1900930 year: 2020 ident: ref_52 article-title: Constitutive model and processing maps for a Ti-55511 alloy in β region publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201900930 – volume: 709 start-page: 285 year: 2018 ident: ref_49 article-title: A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg-Zn-Zr alloy using electron backscattered diffraction publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.10.062 |
SSID | ssj0000331829 |
Score | 2.4567747 |
Snippet | The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 6750 |
SubjectTerms | Algorithms Artificial intelligence Aviation Constitutive models Deformation Ductility Dynamic recrystallization Evolution Experiments Grain size Mathematical models Microstructure Multiple objective analysis Neural networks Phase transitions Spheroidizing Temperature Titanium alloys Titanium base alloys Work hardening |
Title | Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
URI | https://www.proquest.com/docview/2602102961 https://www.proquest.com/docview/2604022155 https://pubmed.ncbi.nlm.nih.gov/PMC8623177 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSywxEC5cLs-DuD0cNyJ68dDYS3rSOYnKjCIo4gJza7KiMK97no6C_96qTM8G4q2bpEmTVKq-qlS-Ajj2XnIvrYqsc-igOG4jraSNuJGZ0egAmDbdHb69a18_85te3msCbu9NWuVYJwZFbWtDMfJTxN3knch2cjb4H1HVKDpdbUpoLMJygpaGJLzoXk1iLHGGEpvKEStpht796T8Vro4KumY_a4em4HI-NXLG1nTXYLUBiex8tKrrsOCqDViZoQ7chOqWMulG7K8fb451PhsZYqqyTDHEkh7RJaOCnCEbALUao8JnfVZ79vQa5QhiEnbe79dfjJRCIBHHL4eMEr8G-PgYykewB0KjW_Dc7TxdXkdN7YTIoM85jJzmPpNaqVhTGoYyxqVoeXJlC-FEJrQv0FTb1MfCO5Vrk3ieOS4RzykteZ79haWqrtw2MKnSxMamCDWNuBTaCS2lb8fKxgVi8xacjGeyNA2xOP1gv0QHg2a9nM56C44mfQcjOo0fe-2NF6RsttR7ORWAFhxOmnEz0AmHqlz9EfqgP4woJm-BmFvIyWhEpz3fUr2-BFpt9O0QTImd3wffhT8ppbVQZFnuwRKus9tHXDLUB0H4DmD5onN3_4BvV73kG_Nn6Hs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH8heEAPRFHjIugQ9eChodtOdzoHYoiyLMJy0CXhVuczkKztKguEf4q_kfem7X4kxhu3JjNNm_fevPn9Zt4HwEfvJffSqsg6hwTFcRtpJW3EjUyNRgJgepQ7PDztDc749_PsfAXu21wYCqtsfWJw1LYydEa-i7ib2Insdb9M_kTUNYpuV9sWGrVZHLu7W6RsV3tH31C_n5KkfzD6OoiargKRQTY2jZzmPpVaqVhTgIIyxiXokzNlc-FEKrTPcROziY-FdyrTput56rhEpKO05NQlAl3-E56mkkII8_7h7EwnTnGFJLKugorj8e5vFVJVBaX1L-57czC7HIq5sLf1n8N6A0rZfm1FL2DFlRvwbKFU4UsohxS5V1ebvf7r2MFNY7NMlZYphtjVI5pl1AA0RB-gF2XUaG3MKs9Gl1GGoKnL9sfj6o6REwpFy_HNKaNAswk-_gztKtgPQr-v4OxRpPoaVsuqdG-ASZV0bWzy0EOJS6Gd0FL6XqxsnCMX6MDnVpKFaQqZ0w-OCyQ0JPViLvUOfJjNndTlO_45a6tVSNEs4atibnAd2JkN4-KjGxVVuuo6zEH-jagp64BYUuTsa1S-e3mkvLwIZbyRSyJ4E5v___h7WBuMhifFydHp8Vt4mlBIDZ1qyy1YRZ27bcREU_0uGCKDX49t-Q-nLSPN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hKlXtAdFC1aW0dUU59BBtNnHW8QEhVNhCKahqQeKW-lOstCRbWIr4a_11zDjJfkhVb9wi2VEiz3j8nj2eB_DRe8m9tCqyziFBcdxGWkkbcSNTo5EAmD7dHT457R-e868X2cUS_G3vwlBaZRsTQ6C2laE98i7ibmInst_r-iYt4vv-YHf8OyIFKTppbeU0ahc5dvd3SN9udo720dbbSTI4OPt8GDUKA5FBZjaJnOY-lVqpWFOygjLGJRifM2Vz4UQqtM9xQbOJj4V3KtOm53nquETUo7TkpBiB4f-JSPOY1BPywZfp_k6c4mxJZF0RNU1l3L1S4dqqoCv-82vgDNgupmXOrXODVVhpACrbqz3qBSy58iU8nytbuAblCWXx1ZVnb68dO_jT-C9TpWWKIY71iGwZiYGGTASMqIxE10as8uxsGGUIoHpsbzSq7hkFpFDAHN-cMEo6G-PjzyBdwX4QEl6H80cZ1VewXFalew1MqqRnY5MHPSUuhXZCS-n7sbJxjrygA5_akSxMU9ScfnBUILmhUS9mo96BrWnfcV3K45-9NluDFM10vilmzteBD9NmnIh0uqJKV92GPsjFEUFlHRALhpx-jUp5L7aUw8tQ0ht5JQI5sfH_j7-Hp-jzxbej0-M38Cyh7Bra4JabsIwmd28RHk30u-CHDH49tuM_AMACJ_o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+Evolution+and+a+Unified+Constitutive+Model+of+Ti-55511+Alloy+Compressed+at+Stepped+Strain+Rates&rft.jtitle=Materials&rft.au=Su%2C+Gang&rft.au=Yun%2C+Zhong&rft.au=Lin%2C+Yong-Cheng&rft.au=He%2C+Dao-Guang&rft.date=2021-11-09&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=14&rft.issue=22&rft_id=info:doi/10.3390%2Fma14226750&rft_id=info%3Apmid%2F34832152&rft.externalDocID=PMC8623177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |