Classification of motor imagery using multisource joint transfer learning

As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns va...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 92; no. 9; pp. 094106 - 94118
Main Authors Wang, Fei, Ping, Jingyu, Xu, Zongfeng, Bi, Jinying
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.
AbstractList As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.
As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.
As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.
Author Wang, Fei
Bi, Jinying
Xu, Zongfeng
Ping, Jingyu
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: Faculty of Robot Science and Engineering, Northeastern University
– sequence: 2
  givenname: Jingyu
  surname: Ping
  fullname: Ping, Jingyu
  organization: Faculty of Robot Science and Engineering, Northeastern University
– sequence: 3
  givenname: Zongfeng
  surname: Xu
  fullname: Xu, Zongfeng
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 4
  givenname: Jinying
  surname: Bi
  fullname: Bi, Jinying
  organization: College of Information Science and Engineering, Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34598502$$D View this record in MEDLINE/PubMed
BookMark eNp90d1KwzAUB_AgipvTC19ACt6oUJcmTZNeyvCTgTd6XdL0dGS0yUxaYW_js_hkZm5OUDE35-Z3Djn_c4B2jTWA0HGCLxOc0TG7xJileUJ20DDBIo95RuguGmJM0zjjqRigA-_nODyWJPtoQFOWC4bJED1MGum9rrWSnbYmsnXU2s66SLdyBm4Z9V6bWdT2Tae97Z2CaG616d7fOieNr8FFDUhnAjpEe7VsPBxt6gg931w_Te7i6ePt_eRqGisqaBeDqBWTPIVMSi5VRQjhtBRJnqoSgFAlKyBZiismRJkpnHJV8pJXCucZ5ITRETpbz104-9KD74pWewVNIw3Y3heEccE5CzkEevqDzsMOJvxupTJOSEgnqJON6ssWqmLhwvJuWXylFMD5GihnvXdQb0mCi9UFClZsLhDs-IdVuvvMNgSmmz87LtYd_ktux79a9w2LRVX_h39P_gAJWKPS
CODEN RSINAK
CitedBy_id crossref_primary_10_1038_s41467_025_58265_9
crossref_primary_10_1088_1741_2552_ad593b
crossref_primary_10_1063_5_0231511
crossref_primary_10_1063_5_0236392
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_1007_s12541_023_00835_2
Cites_doi 10.1016/j.ymeth.2021.04.009
10.1016/j.patrec.2015.09.003
10.1109/TBME.2017.2742541
10.1016/j.bspc.2021.102702
10.1016/j.jneumeth.2014.02.014
10.1109/jproc.2015.2404941
10.1109/TBME.2019.2913914
10.1109/TNN.2010.2091281
10.3389/fnins.2012.00055
10.1109/tnsre.2012.2189584
10.3233/ifs-151896
10.1007/s11517-020-02176-y
10.1109/tcds.2018.2826840
10.7551/mitpress/7503.003.0069
10.5555/1953048.2078195
10.1016/j.aei.2020.101047
10.1007/s00371-015-1183-y
10.1109/TBME.2018.2889705
10.1109/TBME.2011.2172210
10.1080/2326263x.2014.912883
10.1016/j.bbe.2020.02.002
10.1109/tnsre.2018.2872924
10.1016/j.cortex.2014.09.022
10.1016/j.neucom.2011.10.024
10.1088/1741-2552/aba7cd
10.1016/s1388-2457(02)00057-3
10.1109/tnsre.2019.2923315
10.1007/s11517-018-1917-x
10.1080/01621459.1967.10482916
10.1109/TNNLS.2019.2946869
10.1109/tnsre.2020.2985996
10.1016/j.jneumeth.2015.01.010
10.1109/jbhi.2020.3025865
10.1080/2326263x.2017.1297192
10.1109/tbme.2009.2039997
10.1088/1741-2552/aaf3f6
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0054912
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 34598502
10_1063_5_0054912
rsi
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973065; 52075531
– fundername: The Central Government Guides the Local Science and Technology Development Special Fund
  grantid: 2021JH6/10500129
– fundername: Fundamental Research Funds for the Central Universities
  grantid: N182612002; N2026002; N2104008
  funderid: https://doi.org/10.13039/501100012226
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-e8fc5a74e6aa7acd22273b8194cbee23cade2640d588b6c047cb7b7dc096e9253
ISSN 0034-6748
1089-7623
IngestDate Thu Jul 10 21:14:28 EDT 2025
Mon Jun 30 06:32:50 EDT 2025
Thu Apr 03 06:58:09 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 02:58:08 EDT 2025
Fri Jun 21 00:14:33 EDT 2024
Thu Jun 23 13:36:41 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-e8fc5a74e6aa7acd22273b8194cbee23cade2640d588b6c047cb7b7dc096e9253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8296-8039
0000-0002-6871-7927
0000000182968039
0000000268717927
PMID 34598502
PQID 2576722674
PQPubID 2050675
PageCount 13
ParticipantIDs proquest_journals_2576722674
scitation_primary_10_1063_5_0054912
proquest_miscellaneous_2578775089
crossref_primary_10_1063_5_0054912
pubmed_primary_34598502
crossref_citationtrail_10_1063_5_0054912
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210901
2021-09-01
2021-Sep-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 20210901
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Congedo, Barachant, Bhatia (c33) 2017; 4
van der Maaten, Hinton (c43) 2008; 9
Stikic, Johnson, Tan, Berka (c10) 2014; 1
Li, Kambara, Koike, Sugiyama (c15) 2010; 57
Faller, Vidaurre, Solis-Escalante, Neuper, Scherer (c39) 2012; 20
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (c40) 2011; 12
Lilliefors (c44) 1967; 62
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (c1) 2002; 113
Tu, Sun (c28) 2012; 82
Khosla, Khandnor, Chand (c3) 2020; 40
Lan, Liu, Sourina, Wang, Scherer, Müller-Putz (c8) 2020; 44
Lan, Sourina, Wang, Scherer, Müller-Putz (c22) 2018; 11
Balzi, Yger, Sugiyama (c26) 2015; 68
Azab, Mihaylova, Ang, Arvaneh (c14) 2019; 27
Pan, Tsang, Kwok, Yang (c23) 2010; 22
Zhang, Wu (c21) 2020; 28
Mingai, Shuoda, Jinfu, Yanjun (c32) 2016; 30
Chu, Zhao, Zou, Xu, Song, Han, Zhao (c36) 2020; 17
Lan, Sourina, Wang, Liu (c9) 2016; 32
He, Wu (c20) 2020; 67
Taube, Mouthon, Leukel, Hoogewoud, Annoni, Keller (c4) 2015; 64
Zheng, Yang, Gao, Meng (c29) 2021; 68
Fahimi, Zhang, Goh, Lee, Ang, Guan (c27) 2019; 16
Kwon, Lee, Guan, Lee (c12) 2019; 31
Zheng, Yang, Xie (c11) 2020; 58
Stewart, Nuthmann, Sanguinetti (c5) 2014; 228
Lim, Sourina, Wang (c6) 2018; 26
Li, Wang, Sourina (c7)
Zanini, Congedo, Jutten, Said, Berthoumieu (c18) 2017; 65
Rodrigues, Jutten, Congedo (c19) 2018; 66
Barachant, Bonnet, Congedo, Jutten (c34) 2011; 59
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller (c38) 2012; 6
Combrisson, Jerbi (c42) 2015; 250
Jeng, Wei, Jung, Wang (c17) 2020; 25
Lotte (c31) 2015; 103
Zou, Zhao, Chu, Zhao, Xu, Han (c30) 2019; 57
(2023080705081433700_c15) 2010; 57
(2023080705081433700_c16) 2016
(2023080705081433700_c28) 2012; 82
(2023080705081433700_c43) 2008; 9
(2023080705081433700_c4) 2015; 64
(2023080705081433700_c46) 2018
(2023080705081433700_c17) 2020; 25
(2023080705081433700_c24) 2013
(2023080705081433700_c11) 2020; 58
(2023080705081433700_c32) 2016; 30
(2023080705081433700_c27) 2019; 16
(2023080705081433700_c14) 2019; 27
(2023080705081433700_c39) 2012; 20
(2023080705081433700_c2) 2013
(2023080705081433700_c21) 2020; 28
(2023080705081433700_c3) 2020; 40
(2023080705081433700_c8) 2020; 44
(2023080705081433700_c42) 2015; 250
(2023080705081433700_c18) 2017; 65
(2023080705081433700_c25) 2012
(2023080705081433700_c45) 2016
(2023080705081433700_c10) 2014; 1
(2023080705081433700_c1) 2002; 113
(2023080705081433700_c35) 2018
(2023080705081433700_c19) 2018; 66
(2023080705081433700_c9) 2016; 32
(2023080705081433700_c36) 2020; 17
(2023080705081433700_c26) 2015; 68
(2023080705081433700_c30) 2019; 57
2023080705081433700_c37
(2023080705081433700_c48) 2010
(2023080705081433700_c29) 2021; 68
(2023080705081433700_c40) 2011; 12
(2023080705081433700_c20) 2020; 67
2023080705081433700_c7
(2023080705081433700_c31) 2015; 103
(2023080705081433700_c44) 1967; 62
(2023080705081433700_c47) 2013
(2023080705081433700_c13) 2018
(2023080705081433700_c23) 2010; 22
2023080705081433700_c41
(2023080705081433700_c12) 2019; 31
(2023080705081433700_c5) 2014; 228
(2023080705081433700_c6) 2018; 26
(2023080705081433700_c34) 2011; 59
(2023080705081433700_c33) 2017; 4
(2023080705081433700_c38) 2012; 6
(2023080705081433700_c22) 2018; 11
References_xml – volume: 66
  start-page: 2390
  year: 2018
  ident: c19
  article-title: Riemannian procrustes analysis: Transfer learning for brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 113
  start-page: 767
  year: 2002
  ident: c1
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 12
  start-page: 2825
  year: 2011
  ident: c40
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 199
  year: 2010
  ident: c23
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
– volume: 17
  start-page: 046029
  year: 2020
  ident: c36
  article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression
  publication-title: J. Neural Eng.
– volume: 64
  start-page: 102
  year: 2015
  ident: c4
  article-title: Brain activity during observation and motor imagery of different balance tasks: An fMRI study
  publication-title: Cortex
– volume: 62
  start-page: 399
  year: 1967
  ident: c44
  article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
– volume: 20
  start-page: 313
  year: 2012
  ident: c39
  article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 44
  start-page: 101047
  year: 2020
  ident: c8
  article-title: Safe: An EEG dataset for stable affective feature selection
  publication-title: Adv. Eng. Inf.
– volume: 67
  start-page: 399
  year: 2020
  ident: c20
  article-title: Transfer learning for brain–computer interfaces: A Euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 1352
  year: 2019
  ident: c14
  article-title: Weighted transfer learning for improving motor imagery-based brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 26
  start-page: 2106
  year: 2018
  ident: c6
  article-title: Stew: Simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 11
  start-page: 85
  year: 2018
  ident: c22
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Trans. Cognit. Dev. Syst.
– volume: 4
  start-page: 155
  year: 2017
  ident: c33
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review
  publication-title: Brain-Comput. Interfaces
– volume: 25
  start-page: 1915
  year: 2020
  ident: c17
  article-title: Low-dimensional subject representation-based transfer learning in EEG decoding
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 57
  start-page: 1318
  year: 2010
  ident: c15
  article-title: Application of covariate shift adaptation techniques in brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 026007
  year: 2019
  ident: c27
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: J. Neural Eng.
– volume: 30
  start-page: 2971
  year: 2016
  ident: c32
  article-title: A novel EEG feature extraction method based on OEMD and CSP algorithm
  publication-title: J. Intell. Fuzzy Syst.
– volume: 32
  start-page: 347
  year: 2016
  ident: c9
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Visual Comput.
– volume: 65
  start-page: 1107
  year: 2017
  ident: c18
  article-title: Transfer learning: A Riemannian geometry framework with applications to brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– ident: c7
  article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness
  publication-title: Methods
– volume: 228
  start-page: 1
  year: 2014
  ident: c5
  article-title: Single-trial classification of EEG in a visual object task using ICA and machine learning
  publication-title: J. Neurosci. Methods
– volume: 68
  start-page: 102702
  year: 2021
  ident: c29
  article-title: Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system
  publication-title: Biomed. Signal Process. Control
– volume: 103
  start-page: 871
  year: 2015
  ident: c31
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces
  publication-title: Proc. IEEE
– volume: 9
  start-page: 2579
  year: 2008
  ident: c43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 649
  year: 2020
  ident: c3
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern. Biomed. Eng.
– volume: 58
  start-page: 1515
  year: 2020
  ident: c11
  article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
  publication-title: Med. Biol. Eng. Comput.
– volume: 28
  start-page: 1117
  year: 2020
  ident: c21
  article-title: Manifold embedded knowledge transfer for brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 31
  start-page: 3839
  year: 2019
  ident: c12
  article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 1
  start-page: 99
  year: 2014
  ident: c10
  article-title: EEG-based classification of positive and negative affective states
  publication-title: Brain-Comput. Interfaces
– volume: 6
  start-page: 55
  year: 2012
  ident: c38
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– volume: 68
  start-page: 139
  year: 2015
  ident: c26
  article-title: Importance-weighted covariance estimation for robust common spatial pattern
  publication-title: Pattern Recognit. Lett.
– volume: 82
  start-page: 109
  year: 2012
  ident: c28
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
– volume: 59
  start-page: 920
  year: 2011
  ident: c34
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 57
  start-page: 939
  year: 2019
  ident: c30
  article-title: An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface
  publication-title: Med. Biol. Eng. Comput.
– volume: 250
  start-page: 126
  year: 2015
  ident: c42
  article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
  publication-title: J. Neurosci. Methods
– ident: 2023080705081433700_c7
  article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.04.009
– volume: 68
  start-page: 139
  year: 2015
  ident: 2023080705081433700_c26
  article-title: Importance-weighted covariance estimation for robust common spatial pattern
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.09.003
– start-page: 1685
  year: 2018
  ident: 2023080705081433700_c35
  article-title: Transfer learning for SSVEP-based BCI using Riemannian similarities between users
– volume: 65
  start-page: 1107
  year: 2017
  ident: 2023080705081433700_c18
  article-title: Transfer learning: A Riemannian geometry framework with applications to brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2742541
– volume: 68
  start-page: 102702
  year: 2021
  ident: 2023080705081433700_c29
  article-title: Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102702
– volume-title: Brain-Computer Interfacing: An Introduction
  year: 2013
  ident: 2023080705081433700_c2
– volume: 228
  start-page: 1
  year: 2014
  ident: 2023080705081433700_c5
  article-title: Single-trial classification of EEG in a visual object task using ICA and machine learning
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.02.014
– volume: 103
  start-page: 871
  year: 2015
  ident: 2023080705081433700_c31
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces
  publication-title: Proc. IEEE
  doi: 10.1109/jproc.2015.2404941
– start-page: 2200
  year: 2013
  ident: 2023080705081433700_c47
  article-title: Transfer feature learning with joint distribution adaptation
– volume: 67
  start-page: 399
  year: 2020
  ident: 2023080705081433700_c20
  article-title: Transfer learning for brain–computer interfaces: A Euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913914
– volume: 22
  start-page: 199
  year: 2010
  ident: 2023080705081433700_c23
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2091281
– volume: 6
  start-page: 55
  year: 2012
  ident: 2023080705081433700_c38
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– volume: 20
  start-page: 313
  year: 2012
  ident: 2023080705081433700_c39
  article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2012.2189584
– volume: 30
  start-page: 2971
  year: 2016
  ident: 2023080705081433700_c32
  article-title: A novel EEG feature extraction method based on OEMD and CSP algorithm
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/ifs-151896
– year: 2016
  ident: 2023080705081433700_c45
  article-title: Return of frustratingly easy domain adaptation
– volume: 58
  start-page: 1515
  year: 2020
  ident: 2023080705081433700_c11
  article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-020-02176-y
– volume: 11
  start-page: 85
  year: 2018
  ident: 2023080705081433700_c22
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/tcds.2018.2826840
– ident: 2023080705081433700_c37
  doi: 10.7551/mitpress/7503.003.0069
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2023080705081433700_c40
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/1953048.2078195
– volume: 44
  start-page: 101047
  year: 2020
  ident: 2023080705081433700_c8
  article-title: Safe: An EEG dataset for stable affective feature selection
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101047
– start-page: 1
  year: 2018
  ident: 2023080705081433700_c46
  article-title: Stratified transfer learning for cross-domain activity recognition
– volume: 32
  start-page: 347
  year: 2016
  ident: 2023080705081433700_c9
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Visual Comput.
  doi: 10.1007/s00371-015-1183-y
– volume: 66
  start-page: 2390
  year: 2018
  ident: 2023080705081433700_c19
  article-title: Riemannian procrustes analysis: Transfer learning for brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2889705
– volume: 59
  start-page: 920
  year: 2011
  ident: 2023080705081433700_c34
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– volume: 1
  start-page: 99
  year: 2014
  ident: 2023080705081433700_c10
  article-title: EEG-based classification of positive and negative affective states
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263x.2014.912883
– start-page: 2960
  year: 2013
  ident: 2023080705081433700_c24
  article-title: Unsupervised visual domain adaptation using subspace alignment
– start-page: 629
  year: 2010
  ident: 2023080705081433700_c48
  article-title: Riemannian geometry applied to BCI classification
– volume: 40
  start-page: 649
  year: 2020
  ident: 2023080705081433700_c3
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.02.002
– volume: 26
  start-page: 2106
  year: 2018
  ident: 2023080705081433700_c6
  article-title: Stew: Simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2018.2872924
– start-page: 81
  volume-title: Signal Processing and Machine Learning for Brain-Machine Interfaces
  year: 2018
  ident: 2023080705081433700_c13
  article-title: A review on transfer learning approaches in brain–computer interface
– volume: 64
  start-page: 102
  year: 2015
  ident: 2023080705081433700_c4
  article-title: Brain activity during observation and motor imagery of different balance tasks: An fMRI study
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.09.022
– volume: 82
  start-page: 109
  year: 2012
  ident: 2023080705081433700_c28
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.024
– volume: 17
  start-page: 046029
  year: 2020
  ident: 2023080705081433700_c36
  article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba7cd
– volume: 113
  start-page: 767
  year: 2002
  ident: 2023080705081433700_c1
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/s1388-2457(02)00057-3
– volume: 27
  start-page: 1352
  year: 2019
  ident: 2023080705081433700_c14
  article-title: Weighted transfer learning for improving motor imagery-based brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2019.2923315
– start-page: 4048
  year: 2016
  ident: 2023080705081433700_c16
  article-title: Active transfer learning and selective instance transfer with active learning for motor imagery based BCI
– volume: 57
  start-page: 939
  year: 2019
  ident: 2023080705081433700_c30
  article-title: An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1917-x
– volume: 62
  start-page: 399
  year: 1967
  ident: 2023080705081433700_c44
  article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1967.10482916
– start-page: 2066
  year: 2012
  ident: 2023080705081433700_c25
  article-title: Geodesic flow kernel for unsupervised domain adaptation
– volume: 31
  start-page: 3839
  year: 2019
  ident: 2023080705081433700_c12
  article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2019.2946869
– volume: 28
  start-page: 1117
  year: 2020
  ident: 2023080705081433700_c21
  article-title: Manifold embedded knowledge transfer for brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2020.2985996
– volume: 250
  start-page: 126
  year: 2015
  ident: 2023080705081433700_c42
  article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.010
– ident: 2023080705081433700_c41
– volume: 25
  start-page: 1915
  year: 2020
  ident: 2023080705081433700_c17
  article-title: Low-dimensional subject representation-based transfer learning in EEG decoding
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/jbhi.2020.3025865
– volume: 4
  start-page: 155
  year: 2017
  ident: 2023080705081433700_c33
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263x.2017.1297192
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2023080705081433700_c43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 57
  start-page: 1318
  year: 2010
  ident: 2023080705081433700_c15
  article-title: Application of covariate shift adaptation techniques in brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2009.2039997
– volume: 16
  start-page: 026007
  year: 2019
  ident: 2023080705081433700_c27
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf3f6
SSID ssj0000511
Score 2.3908482
Snippet As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by...
As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 094106
SubjectTerms Algorithms
Brain-Computer Interfaces
Calibration
Covariance matrix
Electroencephalography
Human-computer interface
Humans
Image classification
Imagination
Knowledge management
Machine Learning
Scientific apparatus & instruments
Title Classification of motor imagery using multisource joint transfer learning
URI http://dx.doi.org/10.1063/5.0054912
https://www.ncbi.nlm.nih.gov/pubmed/34598502
https://www.proquest.com/docview/2576722674
https://www.proquest.com/docview/2578775089
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0ILuAXhAG5-FDZmPSUNTII3jOH6sBtNUMR5gk_oWxY4zbRrJtKVI5dfwW_hlnD-bsgoNXtLKvdrJ3eV8d74PhN7EFXCKkiKqyYhEaUVJxOs4joSoZAaiMsm4Tk4-_JwdHKeTKZ0uCiqY7JJOvJM_VuaV_A9VYQzoqrNk_4GyYVIYgO9AX7gCheF6IxqbjpY61ifofYB4HWD-TVemmO_OjCPAxAxaJ_3uWXvadNt7yfY47ozKqi5944iTvp76JWS02IxJvYiOW-90rQVX_cn64a2s2FenQci6LikT-JzP_Oh0Zo5B2uakVm4p45p3kHO_vnNAJKMQYRWEKkkj3bPEbilWjsY5j0DOkr6g5UmPofhK-Q0KEyBdu7nAbnXx1Us1sv_Yu0JEoTlLz0hBC_fX22gtAcshGaC18YfDT18X2zMd2TaK7q59uamMvA_rLisp1yyPe-gOIN-GSvS0kaN1dN-ZEXhseWID3VLNA7ThBPUV3nHVxN8-RJNlJsFtjQ2TYMck2DAJ7jEJNkzy66dnEOwZ5BE63v94tHcQuQYakSQ56SKV15KWLFVZWbJSVjrvmQjQAVMplEqIzsAAhTiuaJ6LTMYpk4IJVkmwaxVPKHmMBk3bqKcIcybrZERKHRWXlozwsuJSZoAsUsJEbIh2PMYKjxrd5OS8uEaZIXoVQC9sSZVVQJse7YV7464KbRwDSYFqQ_Qy_AzyUB9ylY1qZwYmZ6AG53yInlhyhVVISnlOY5j8daDf325hBdT39nIBUVxU9bObPM1zdHfx5myiAbysaguU2U68cOz5G8IqnzQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+motor+imagery+using+multisource+joint%C2%A0transfer+learning&rft.jtitle=Review+of+scientific+instruments&rft.au=Wang%2C+Fei&rft.au=Ping%2C+Jingyu&rft.au=Xu%2C+Zongfeng&rft.au=Bi%2C+Jinying&rft.date=2021-09-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=92&rft.issue=9&rft_id=info:doi/10.1063%2F5.0054912&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0054912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon