Classification of motor imagery using multisource joint transfer learning
As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns va...
Saved in:
Published in | Review of scientific instruments Vol. 92; no. 9; pp. 094106 - 94118 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI. |
---|---|
AbstractList | As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI. As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI. As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI. |
Author | Wang, Fei Bi, Jinying Xu, Zongfeng Ping, Jingyu |
Author_xml | – sequence: 1 givenname: Fei surname: Wang fullname: Wang, Fei organization: Faculty of Robot Science and Engineering, Northeastern University – sequence: 2 givenname: Jingyu surname: Ping fullname: Ping, Jingyu organization: Faculty of Robot Science and Engineering, Northeastern University – sequence: 3 givenname: Zongfeng surname: Xu fullname: Xu, Zongfeng organization: College of Information Science and Engineering, Northeastern University – sequence: 4 givenname: Jinying surname: Bi fullname: Bi, Jinying organization: College of Information Science and Engineering, Northeastern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34598502$$D View this record in MEDLINE/PubMed |
BookMark | eNp90d1KwzAUB_AgipvTC19ACt6oUJcmTZNeyvCTgTd6XdL0dGS0yUxaYW_js_hkZm5OUDE35-Z3Djn_c4B2jTWA0HGCLxOc0TG7xJileUJ20DDBIo95RuguGmJM0zjjqRigA-_nODyWJPtoQFOWC4bJED1MGum9rrWSnbYmsnXU2s66SLdyBm4Z9V6bWdT2Tae97Z2CaG616d7fOieNr8FFDUhnAjpEe7VsPBxt6gg931w_Te7i6ePt_eRqGisqaBeDqBWTPIVMSi5VRQjhtBRJnqoSgFAlKyBZiismRJkpnHJV8pJXCucZ5ITRETpbz104-9KD74pWewVNIw3Y3heEccE5CzkEevqDzsMOJvxupTJOSEgnqJON6ssWqmLhwvJuWXylFMD5GihnvXdQb0mCi9UFClZsLhDs-IdVuvvMNgSmmz87LtYd_ktux79a9w2LRVX_h39P_gAJWKPS |
CODEN | RSINAK |
CitedBy_id | crossref_primary_10_1038_s41467_025_58265_9 crossref_primary_10_1088_1741_2552_ad593b crossref_primary_10_1063_5_0231511 crossref_primary_10_1063_5_0236392 crossref_primary_10_1109_TNSRE_2023_3243257 crossref_primary_10_1007_s12541_023_00835_2 |
Cites_doi | 10.1016/j.ymeth.2021.04.009 10.1016/j.patrec.2015.09.003 10.1109/TBME.2017.2742541 10.1016/j.bspc.2021.102702 10.1016/j.jneumeth.2014.02.014 10.1109/jproc.2015.2404941 10.1109/TBME.2019.2913914 10.1109/TNN.2010.2091281 10.3389/fnins.2012.00055 10.1109/tnsre.2012.2189584 10.3233/ifs-151896 10.1007/s11517-020-02176-y 10.1109/tcds.2018.2826840 10.7551/mitpress/7503.003.0069 10.5555/1953048.2078195 10.1016/j.aei.2020.101047 10.1007/s00371-015-1183-y 10.1109/TBME.2018.2889705 10.1109/TBME.2011.2172210 10.1080/2326263x.2014.912883 10.1016/j.bbe.2020.02.002 10.1109/tnsre.2018.2872924 10.1016/j.cortex.2014.09.022 10.1016/j.neucom.2011.10.024 10.1088/1741-2552/aba7cd 10.1016/s1388-2457(02)00057-3 10.1109/tnsre.2019.2923315 10.1007/s11517-018-1917-x 10.1080/01621459.1967.10482916 10.1109/TNNLS.2019.2946869 10.1109/tnsre.2020.2985996 10.1016/j.jneumeth.2015.01.010 10.1109/jbhi.2020.3025865 10.1080/2326263x.2017.1297192 10.1109/tbme.2009.2039997 10.1088/1741-2552/aaf3f6 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0054912 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1089-7623 |
ExternalDocumentID | 34598502 10_1063_5_0054912 rsi |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973065; 52075531 – fundername: The Central Government Guides the Local Science and Technology Development Special Fund grantid: 2021JH6/10500129 – fundername: Fundamental Research Funds for the Central Universities grantid: N182612002; N2026002; N2104008 funderid: https://doi.org/10.13039/501100012226 |
GroupedDBID | --- -DZ -~X .DC 123 1UP 2-P 29P 4.4 53G 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADIYS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION CGR CUY CVF ECM EIF NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-e8fc5a74e6aa7acd22273b8194cbee23cade2640d588b6c047cb7b7dc096e9253 |
ISSN | 0034-6748 1089-7623 |
IngestDate | Thu Jul 10 21:14:28 EDT 2025 Mon Jun 30 06:32:50 EDT 2025 Thu Apr 03 06:58:09 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 02:58:08 EDT 2025 Fri Jun 21 00:14:33 EDT 2024 Thu Jun 23 13:36:41 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-e8fc5a74e6aa7acd22273b8194cbee23cade2640d588b6c047cb7b7dc096e9253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8296-8039 0000-0002-6871-7927 0000000182968039 0000000268717927 |
PMID | 34598502 |
PQID | 2576722674 |
PQPubID | 2050675 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2576722674 scitation_primary_10_1063_5_0054912 proquest_miscellaneous_2578775089 crossref_primary_10_1063_5_0054912 pubmed_primary_34598502 crossref_citationtrail_10_1063_5_0054912 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210901 2021-09-01 2021-Sep-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 20210901 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | Review of scientific instruments |
PublicationTitleAlternate | Rev Sci Instrum |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Congedo, Barachant, Bhatia (c33) 2017; 4 van der Maaten, Hinton (c43) 2008; 9 Stikic, Johnson, Tan, Berka (c10) 2014; 1 Li, Kambara, Koike, Sugiyama (c15) 2010; 57 Faller, Vidaurre, Solis-Escalante, Neuper, Scherer (c39) 2012; 20 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (c40) 2011; 12 Lilliefors (c44) 1967; 62 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (c1) 2002; 113 Tu, Sun (c28) 2012; 82 Khosla, Khandnor, Chand (c3) 2020; 40 Lan, Liu, Sourina, Wang, Scherer, Müller-Putz (c8) 2020; 44 Lan, Sourina, Wang, Scherer, Müller-Putz (c22) 2018; 11 Balzi, Yger, Sugiyama (c26) 2015; 68 Azab, Mihaylova, Ang, Arvaneh (c14) 2019; 27 Pan, Tsang, Kwok, Yang (c23) 2010; 22 Zhang, Wu (c21) 2020; 28 Mingai, Shuoda, Jinfu, Yanjun (c32) 2016; 30 Chu, Zhao, Zou, Xu, Song, Han, Zhao (c36) 2020; 17 Lan, Sourina, Wang, Liu (c9) 2016; 32 He, Wu (c20) 2020; 67 Taube, Mouthon, Leukel, Hoogewoud, Annoni, Keller (c4) 2015; 64 Zheng, Yang, Gao, Meng (c29) 2021; 68 Fahimi, Zhang, Goh, Lee, Ang, Guan (c27) 2019; 16 Kwon, Lee, Guan, Lee (c12) 2019; 31 Zheng, Yang, Xie (c11) 2020; 58 Stewart, Nuthmann, Sanguinetti (c5) 2014; 228 Lim, Sourina, Wang (c6) 2018; 26 Li, Wang, Sourina (c7) Zanini, Congedo, Jutten, Said, Berthoumieu (c18) 2017; 65 Rodrigues, Jutten, Congedo (c19) 2018; 66 Barachant, Bonnet, Congedo, Jutten (c34) 2011; 59 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller (c38) 2012; 6 Combrisson, Jerbi (c42) 2015; 250 Jeng, Wei, Jung, Wang (c17) 2020; 25 Lotte (c31) 2015; 103 Zou, Zhao, Chu, Zhao, Xu, Han (c30) 2019; 57 (2023080705081433700_c15) 2010; 57 (2023080705081433700_c16) 2016 (2023080705081433700_c28) 2012; 82 (2023080705081433700_c43) 2008; 9 (2023080705081433700_c4) 2015; 64 (2023080705081433700_c46) 2018 (2023080705081433700_c17) 2020; 25 (2023080705081433700_c24) 2013 (2023080705081433700_c11) 2020; 58 (2023080705081433700_c32) 2016; 30 (2023080705081433700_c27) 2019; 16 (2023080705081433700_c14) 2019; 27 (2023080705081433700_c39) 2012; 20 (2023080705081433700_c2) 2013 (2023080705081433700_c21) 2020; 28 (2023080705081433700_c3) 2020; 40 (2023080705081433700_c8) 2020; 44 (2023080705081433700_c42) 2015; 250 (2023080705081433700_c18) 2017; 65 (2023080705081433700_c25) 2012 (2023080705081433700_c45) 2016 (2023080705081433700_c10) 2014; 1 (2023080705081433700_c1) 2002; 113 (2023080705081433700_c35) 2018 (2023080705081433700_c19) 2018; 66 (2023080705081433700_c9) 2016; 32 (2023080705081433700_c36) 2020; 17 (2023080705081433700_c26) 2015; 68 (2023080705081433700_c30) 2019; 57 2023080705081433700_c37 (2023080705081433700_c48) 2010 (2023080705081433700_c29) 2021; 68 (2023080705081433700_c40) 2011; 12 (2023080705081433700_c20) 2020; 67 2023080705081433700_c7 (2023080705081433700_c31) 2015; 103 (2023080705081433700_c44) 1967; 62 (2023080705081433700_c47) 2013 (2023080705081433700_c13) 2018 (2023080705081433700_c23) 2010; 22 2023080705081433700_c41 (2023080705081433700_c12) 2019; 31 (2023080705081433700_c5) 2014; 228 (2023080705081433700_c6) 2018; 26 (2023080705081433700_c34) 2011; 59 (2023080705081433700_c33) 2017; 4 (2023080705081433700_c38) 2012; 6 (2023080705081433700_c22) 2018; 11 |
References_xml | – volume: 66 start-page: 2390 year: 2018 ident: c19 article-title: Riemannian procrustes analysis: Transfer learning for brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 113 start-page: 767 year: 2002 ident: c1 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 12 start-page: 2825 year: 2011 ident: c40 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 199 year: 2010 ident: c23 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks – volume: 17 start-page: 046029 year: 2020 ident: c36 article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression publication-title: J. Neural Eng. – volume: 64 start-page: 102 year: 2015 ident: c4 article-title: Brain activity during observation and motor imagery of different balance tasks: An fMRI study publication-title: Cortex – volume: 62 start-page: 399 year: 1967 ident: c44 article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. – volume: 20 start-page: 313 year: 2012 ident: c39 article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 44 start-page: 101047 year: 2020 ident: c8 article-title: Safe: An EEG dataset for stable affective feature selection publication-title: Adv. Eng. Inf. – volume: 67 start-page: 399 year: 2020 ident: c20 article-title: Transfer learning for brain–computer interfaces: A Euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 1352 year: 2019 ident: c14 article-title: Weighted transfer learning for improving motor imagery-based brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 26 start-page: 2106 year: 2018 ident: c6 article-title: Stew: Simultaneous task EEG workload data set publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 11 start-page: 85 year: 2018 ident: c22 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Trans. Cognit. Dev. Syst. – volume: 4 start-page: 155 year: 2017 ident: c33 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review publication-title: Brain-Comput. Interfaces – volume: 25 start-page: 1915 year: 2020 ident: c17 article-title: Low-dimensional subject representation-based transfer learning in EEG decoding publication-title: IEEE J. Biomed. Health Inf. – volume: 57 start-page: 1318 year: 2010 ident: c15 article-title: Application of covariate shift adaptation techniques in brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 026007 year: 2019 ident: c27 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI publication-title: J. Neural Eng. – volume: 30 start-page: 2971 year: 2016 ident: c32 article-title: A novel EEG feature extraction method based on OEMD and CSP algorithm publication-title: J. Intell. Fuzzy Syst. – volume: 32 start-page: 347 year: 2016 ident: c9 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Visual Comput. – volume: 65 start-page: 1107 year: 2017 ident: c18 article-title: Transfer learning: A Riemannian geometry framework with applications to brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – ident: c7 article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness publication-title: Methods – volume: 228 start-page: 1 year: 2014 ident: c5 article-title: Single-trial classification of EEG in a visual object task using ICA and machine learning publication-title: J. Neurosci. Methods – volume: 68 start-page: 102702 year: 2021 ident: c29 article-title: Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system publication-title: Biomed. Signal Process. Control – volume: 103 start-page: 871 year: 2015 ident: c31 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces publication-title: Proc. IEEE – volume: 9 start-page: 2579 year: 2008 ident: c43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 649 year: 2020 ident: c3 article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals publication-title: Biocybern. Biomed. Eng. – volume: 58 start-page: 1515 year: 2020 ident: c11 article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system publication-title: Med. Biol. Eng. Comput. – volume: 28 start-page: 1117 year: 2020 ident: c21 article-title: Manifold embedded knowledge transfer for brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 31 start-page: 3839 year: 2019 ident: c12 article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 1 start-page: 99 year: 2014 ident: c10 article-title: EEG-based classification of positive and negative affective states publication-title: Brain-Comput. Interfaces – volume: 6 start-page: 55 year: 2012 ident: c38 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – volume: 68 start-page: 139 year: 2015 ident: c26 article-title: Importance-weighted covariance estimation for robust common spatial pattern publication-title: Pattern Recognit. Lett. – volume: 82 start-page: 109 year: 2012 ident: c28 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing – volume: 59 start-page: 920 year: 2011 ident: c34 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. – volume: 57 start-page: 939 year: 2019 ident: c30 article-title: An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface publication-title: Med. Biol. Eng. Comput. – volume: 250 start-page: 126 year: 2015 ident: c42 article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy publication-title: J. Neurosci. Methods – ident: 2023080705081433700_c7 article-title: Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness publication-title: Methods doi: 10.1016/j.ymeth.2021.04.009 – volume: 68 start-page: 139 year: 2015 ident: 2023080705081433700_c26 article-title: Importance-weighted covariance estimation for robust common spatial pattern publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.09.003 – start-page: 1685 year: 2018 ident: 2023080705081433700_c35 article-title: Transfer learning for SSVEP-based BCI using Riemannian similarities between users – volume: 65 start-page: 1107 year: 2017 ident: 2023080705081433700_c18 article-title: Transfer learning: A Riemannian geometry framework with applications to brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2742541 – volume: 68 start-page: 102702 year: 2021 ident: 2023080705081433700_c29 article-title: Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102702 – volume-title: Brain-Computer Interfacing: An Introduction year: 2013 ident: 2023080705081433700_c2 – volume: 228 start-page: 1 year: 2014 ident: 2023080705081433700_c5 article-title: Single-trial classification of EEG in a visual object task using ICA and machine learning publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.02.014 – volume: 103 start-page: 871 year: 2015 ident: 2023080705081433700_c31 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces publication-title: Proc. IEEE doi: 10.1109/jproc.2015.2404941 – start-page: 2200 year: 2013 ident: 2023080705081433700_c47 article-title: Transfer feature learning with joint distribution adaptation – volume: 67 start-page: 399 year: 2020 ident: 2023080705081433700_c20 article-title: Transfer learning for brain–computer interfaces: A Euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2913914 – volume: 22 start-page: 199 year: 2010 ident: 2023080705081433700_c23 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2091281 – volume: 6 start-page: 55 year: 2012 ident: 2023080705081433700_c38 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – volume: 20 start-page: 313 year: 2012 ident: 2023080705081433700_c39 article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2012.2189584 – volume: 30 start-page: 2971 year: 2016 ident: 2023080705081433700_c32 article-title: A novel EEG feature extraction method based on OEMD and CSP algorithm publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/ifs-151896 – year: 2016 ident: 2023080705081433700_c45 article-title: Return of frustratingly easy domain adaptation – volume: 58 start-page: 1515 year: 2020 ident: 2023080705081433700_c11 article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-020-02176-y – volume: 11 start-page: 85 year: 2018 ident: 2023080705081433700_c22 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/tcds.2018.2826840 – ident: 2023080705081433700_c37 doi: 10.7551/mitpress/7503.003.0069 – volume: 12 start-page: 2825 year: 2011 ident: 2023080705081433700_c40 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. doi: 10.5555/1953048.2078195 – volume: 44 start-page: 101047 year: 2020 ident: 2023080705081433700_c8 article-title: Safe: An EEG dataset for stable affective feature selection publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101047 – start-page: 1 year: 2018 ident: 2023080705081433700_c46 article-title: Stratified transfer learning for cross-domain activity recognition – volume: 32 start-page: 347 year: 2016 ident: 2023080705081433700_c9 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Visual Comput. doi: 10.1007/s00371-015-1183-y – volume: 66 start-page: 2390 year: 2018 ident: 2023080705081433700_c19 article-title: Riemannian procrustes analysis: Transfer learning for brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2889705 – volume: 59 start-page: 920 year: 2011 ident: 2023080705081433700_c34 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – volume: 1 start-page: 99 year: 2014 ident: 2023080705081433700_c10 article-title: EEG-based classification of positive and negative affective states publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263x.2014.912883 – start-page: 2960 year: 2013 ident: 2023080705081433700_c24 article-title: Unsupervised visual domain adaptation using subspace alignment – start-page: 629 year: 2010 ident: 2023080705081433700_c48 article-title: Riemannian geometry applied to BCI classification – volume: 40 start-page: 649 year: 2020 ident: 2023080705081433700_c3 article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.02.002 – volume: 26 start-page: 2106 year: 2018 ident: 2023080705081433700_c6 article-title: Stew: Simultaneous task EEG workload data set publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2018.2872924 – start-page: 81 volume-title: Signal Processing and Machine Learning for Brain-Machine Interfaces year: 2018 ident: 2023080705081433700_c13 article-title: A review on transfer learning approaches in brain–computer interface – volume: 64 start-page: 102 year: 2015 ident: 2023080705081433700_c4 article-title: Brain activity during observation and motor imagery of different balance tasks: An fMRI study publication-title: Cortex doi: 10.1016/j.cortex.2014.09.022 – volume: 82 start-page: 109 year: 2012 ident: 2023080705081433700_c28 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.024 – volume: 17 start-page: 046029 year: 2020 ident: 2023080705081433700_c36 article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aba7cd – volume: 113 start-page: 767 year: 2002 ident: 2023080705081433700_c1 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/s1388-2457(02)00057-3 – volume: 27 start-page: 1352 year: 2019 ident: 2023080705081433700_c14 article-title: Weighted transfer learning for improving motor imagery-based brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2019.2923315 – start-page: 4048 year: 2016 ident: 2023080705081433700_c16 article-title: Active transfer learning and selective instance transfer with active learning for motor imagery based BCI – volume: 57 start-page: 939 year: 2019 ident: 2023080705081433700_c30 article-title: An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1917-x – volume: 62 start-page: 399 year: 1967 ident: 2023080705081433700_c44 article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1967.10482916 – start-page: 2066 year: 2012 ident: 2023080705081433700_c25 article-title: Geodesic flow kernel for unsupervised domain adaptation – volume: 31 start-page: 3839 year: 2019 ident: 2023080705081433700_c12 article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2019.2946869 – volume: 28 start-page: 1117 year: 2020 ident: 2023080705081433700_c21 article-title: Manifold embedded knowledge transfer for brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2020.2985996 – volume: 250 start-page: 126 year: 2015 ident: 2023080705081433700_c42 article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.010 – ident: 2023080705081433700_c41 – volume: 25 start-page: 1915 year: 2020 ident: 2023080705081433700_c17 article-title: Low-dimensional subject representation-based transfer learning in EEG decoding publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/jbhi.2020.3025865 – volume: 4 start-page: 155 year: 2017 ident: 2023080705081433700_c33 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263x.2017.1297192 – volume: 9 start-page: 2579 year: 2008 ident: 2023080705081433700_c43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 57 start-page: 1318 year: 2010 ident: 2023080705081433700_c15 article-title: Application of covariate shift adaptation techniques in brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2009.2039997 – volume: 16 start-page: 026007 year: 2019 ident: 2023080705081433700_c27 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf3f6 |
SSID | ssj0000511 |
Score | 2.3908482 |
Snippet | As an important way for human-computer interaction, the motor imagery brain–computer interface (MI-BCI) can decode personal motor intention directly by... As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 094106 |
SubjectTerms | Algorithms Brain-Computer Interfaces Calibration Covariance matrix Electroencephalography Human-computer interface Humans Image classification Imagination Knowledge management Machine Learning Scientific apparatus & instruments |
Title | Classification of motor imagery using multisource joint transfer learning |
URI | http://dx.doi.org/10.1063/5.0054912 https://www.ncbi.nlm.nih.gov/pubmed/34598502 https://www.proquest.com/docview/2576722674 https://www.proquest.com/docview/2578775089 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0ILuAXhAG5-FDZmPSUNTII3jOH6sBtNUMR5gk_oWxY4zbRrJtKVI5dfwW_hlnD-bsgoNXtLKvdrJ3eV8d74PhN7EFXCKkiKqyYhEaUVJxOs4joSoZAaiMsm4Tk4-_JwdHKeTKZ0uCiqY7JJOvJM_VuaV_A9VYQzoqrNk_4GyYVIYgO9AX7gCheF6IxqbjpY61ifofYB4HWD-TVemmO_OjCPAxAxaJ_3uWXvadNt7yfY47ozKqi5944iTvp76JWS02IxJvYiOW-90rQVX_cn64a2s2FenQci6LikT-JzP_Oh0Zo5B2uakVm4p45p3kHO_vnNAJKMQYRWEKkkj3bPEbilWjsY5j0DOkr6g5UmPofhK-Q0KEyBdu7nAbnXx1Us1sv_Yu0JEoTlLz0hBC_fX22gtAcshGaC18YfDT18X2zMd2TaK7q59uamMvA_rLisp1yyPe-gOIN-GSvS0kaN1dN-ZEXhseWID3VLNA7ThBPUV3nHVxN8-RJNlJsFtjQ2TYMck2DAJ7jEJNkzy66dnEOwZ5BE63v94tHcQuQYakSQ56SKV15KWLFVZWbJSVjrvmQjQAVMplEqIzsAAhTiuaJ6LTMYpk4IJVkmwaxVPKHmMBk3bqKcIcybrZERKHRWXlozwsuJSZoAsUsJEbIh2PMYKjxrd5OS8uEaZIXoVQC9sSZVVQJse7YV7464KbRwDSYFqQ_Qy_AzyUB9ylY1qZwYmZ6AG53yInlhyhVVISnlOY5j8daDf325hBdT39nIBUVxU9bObPM1zdHfx5myiAbysaguU2U68cOz5G8IqnzQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+motor+imagery+using+multisource+joint%C2%A0transfer+learning&rft.jtitle=Review+of+scientific+instruments&rft.au=Wang%2C+Fei&rft.au=Ping%2C+Jingyu&rft.au=Xu%2C+Zongfeng&rft.au=Bi%2C+Jinying&rft.date=2021-09-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=92&rft.issue=9&rft_id=info:doi/10.1063%2F5.0054912&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0054912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |