Geometric, electronic and transport properties of bulged graphene: A theoretical study
Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especial...
Saved in:
Published in | The Journal of chemical physics Vol. 158; no. 8; pp. 084702 - 84709 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especially for zero-dimensional bulges formed in graphene. In this work, employing first-principles-based theoretical calculations, we systematically studied the bulge effect on the geometric, electronic, and transport properties of graphene. We demonstrate that the bulge formation can introduce mechanical strains (lower than 2%) to the graphene’s lattice, which leads to a significant charge redistribution throughout the structure. More interestingly, a visible energy band splitting was observed with the occurrence of zero-dimensional bulges in graphene, which can be attributed to the interlayer coupling that stems from the bulged structure. In addition, it finds that the formed bulges in graphene increase the electron states near the Fermi level, which may account for the enhanced carrier concentration. However, the lowered carrier mobility and growing phonon scattering caused by the formed bulges diminish the transport of both electrons and heat in graphene. Finally, we indicate that bulges arising in graphene increase the possibility of intrinsic defect formation. Our work will evoke attention to the out-of-plane deformation in 2D materials and provide new light to tune their physical properties in the future. |
---|---|
AbstractList | Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especially for zero-dimensional bulges formed in graphene. In this work, employing first-principles-based theoretical calculations, we systematically studied the bulge effect on the geometric, electronic, and transport properties of graphene. We demonstrate that the bulge formation can introduce mechanical strains (lower than 2%) to the graphene’s lattice, which leads to a significant charge redistribution throughout the structure. More interestingly, a visible energy band splitting was observed with the occurrence of zero-dimensional bulges in graphene, which can be attributed to the interlayer coupling that stems from the bulged structure. In addition, it finds that the formed bulges in graphene increase the electron states near the Fermi level, which may account for the enhanced carrier concentration. However, the lowered carrier mobility and growing phonon scattering caused by the formed bulges diminish the transport of both electrons and heat in graphene. Finally, we indicate that bulges arising in graphene increase the possibility of intrinsic defect formation. Our work will evoke attention to the out-of-plane deformation in 2D materials and provide new light to tune their physical properties in the future. Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especially for zero-dimensional bulges formed in graphene. In this work, employing first-principles-based theoretical calculations, we systematically studied the bulge effect on the geometric, electronic, and transport properties of graphene. We demonstrate that the bulge formation can introduce mechanical strains (lower than 2%) to the graphene's lattice, which leads to a significant charge redistribution throughout the structure. More interestingly, a visible energy band splitting was observed with the occurrence of zero-dimensional bulges in graphene, which can be attributed to the interlayer coupling that stems from the bulged structure. In addition, it finds that the formed bulges in graphene increase the electron states near the Fermi level, which may account for the enhanced carrier concentration. However, the lowered carrier mobility and growing phonon scattering caused by the formed bulges diminish the transport of both electrons and heat in graphene. Finally, we indicate that bulges arising in graphene increase the possibility of intrinsic defect formation. Our work will evoke attention to the out-of-plane deformation in 2D materials and provide new light to tune their physical properties in the future.Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especially for zero-dimensional bulges formed in graphene. In this work, employing first-principles-based theoretical calculations, we systematically studied the bulge effect on the geometric, electronic, and transport properties of graphene. We demonstrate that the bulge formation can introduce mechanical strains (lower than 2%) to the graphene's lattice, which leads to a significant charge redistribution throughout the structure. More interestingly, a visible energy band splitting was observed with the occurrence of zero-dimensional bulges in graphene, which can be attributed to the interlayer coupling that stems from the bulged structure. In addition, it finds that the formed bulges in graphene increase the electron states near the Fermi level, which may account for the enhanced carrier concentration. However, the lowered carrier mobility and growing phonon scattering caused by the formed bulges diminish the transport of both electrons and heat in graphene. Finally, we indicate that bulges arising in graphene increase the possibility of intrinsic defect formation. Our work will evoke attention to the out-of-plane deformation in 2D materials and provide new light to tune their physical properties in the future. |
Author | Ling, Faling Li, Li Wang, Yongjie Tang, Xiao Yuan, Chao Zhou, Xianju Jiang, Sha Liao, Rui Jing, Chuan Shi, Xiaowen |
Author_xml | – sequence: 1 givenname: Faling surname: Ling fullname: Ling, Faling organization: 3Hongzhiwei Technology (Shanghai) CO. LTD., 1599 Xinjinqiao Road, Pudong, Shanghai, China – sequence: 2 givenname: Rui surname: Liao fullname: Liao, Rui organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 3 givenname: Chao surname: Yuan fullname: Yuan, Chao organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 4 givenname: Xiaowen surname: Shi fullname: Shi, Xiaowen organization: Hongzhiwei Technology (Shanghai) CO. LTD – sequence: 5 givenname: Li surname: Li fullname: Li, Li organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 6 givenname: Xianju surname: Zhou fullname: Zhou, Xianju organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 7 givenname: Xiao surname: Tang fullname: Tang, Xiao organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 8 givenname: Chuan surname: Jing fullname: Jing, Chuan organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 9 givenname: Yongjie surname: Wang fullname: Wang, Yongjie organization: School of Science, Chongqing University of Posts and Telecommunications – sequence: 10 givenname: Sha surname: Jiang fullname: Jiang, Sha organization: School of Science, Chongqing University of Posts and Telecommunications |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36859079$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UFLHTEQB_BQlPq0PfQLlEAvtbg62Ww2u72JtFYQeml7DdlkopF9yTbJCn57V957LdjiaS6_-fNn5pDshRiQkHcMThm0_EycAuNNK5pXZMWg6yvZ9rBHVgA1q_oW2gNymPMdADBZN6_JAW870YPsV-TXJcY1luTNCcURTUkxeEN1sLQkHfIUU6FTihOm4jHT6Ogwjzdo6U3S0y0G_EzPabnFmLB4o0eay2wf3pB9p8eMb7fziPz8-uXHxbfq-vvl1cX5dWV4x0tljRRoTd9wJrQQ0OFQS2mZ6y3HFgfmeOMY12Ach9o5bWQzdICyYwZdz_gR-bjJXSr-njEXtfbZ4DjqgHHOql5kW9dMPNEPz-hdnFNY2i1KdpJLxuSi3m_VPKzRqin5tU4PanexBZxtgEkx54ROGV908TEs9_KjYqCefqKE2v5k2Th-trEL_Z_9tLF5l_oH38f0F6rJupfwv8mPqEymxw |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1039_D3CP04032A crossref_primary_10_1016_j_cej_2024_150005 crossref_primary_10_3390_nano14191593 |
Cites_doi | 10.1021/nl303168w 10.1103/physrevb.88.085401 10.1021/nl400827p 10.1016/j.cpc.2006.03.007 10.1103/physrevlett.105.156603 10.1021/acs.nanolett.2c04187 10.1021/acs.nanolett.6b03415 10.1021/jp3103063 10.1021/acsnano.9b06778 10.1038/nature05545 10.1007/s40089-015-0176-1 10.1038/s41467-021-23325-3 10.1063/5.0057066 10.1103/physrevlett.113.086102 10.1038/s41567-018-0239-0 10.1103/physrevlett.100.056807 10.1063/1.463940 10.1016/j.cpc.2021.108033 10.1038/nmat3542 10.1016/0927-0256(96)00008-0 10.1038/nature19315 10.1088/0957-4484/27/43/435206 10.1038/nnano.2015.134 10.1103/physrevlett.77.3865 10.1103/physrevb.87.094112 10.1002/adma.201903615 10.1103/physrevb.58.3641 10.1038/s41586-021-04284-7 10.1038/nmat4449 10.1021/nl502837d 10.1016/j.jcp.2015.12.014 10.1126/science.1157996 10.1016/j.cpc.2004.12.014 10.1016/j.mattod.2015.10.002 10.1103/physrevb.54.1703 10.1038/nmat2011 10.1146/annurev-fluid-071320-095958 10.1016/s0009-2614(98)00866-5 10.1038/s41586-020-2070-x 10.1038/nnano.2009.191 10.1038/ncomms11894 10.1021/nn203775x 10.1038/nphys2034 10.1103/physrevlett.99.176802 10.1021/nl300563h 10.1063/5.0073701 10.1039/c8nh00112j 10.1021/acsnano.1c00756 10.1016/j.mtnano.2021.100111 10.1103/physrevb.88.085117 10.1002/jcc.20575 10.1103/PhysRevLett.100.076801 10.1103/PhysRevB.106.045418 10.1103/revmodphys.83.407 10.1002/adpr.202100048 10.1103/physrevb.80.125404 10.1038/s41563-019-0529-7 10.1063/1.2770708 10.1103/physrevb.81.165414 10.1039/c6nr00706f 10.1002/pssa.2210470102 10.1103/physreva.31.1695 10.1021/acs.jpcc.0c05831 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0134654 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 36859079 10_1063_5_0134654 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Scientific and Technological Research Program of Municipal Education Commision grantid: KJQN202000629 – fundername: Natural Scicence Foundation of Chongqing grantid: cstc2020jcyj-msxmX0692 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-dc75edc94315a5508eb277d1f9d3e6eb1f34f13a0cf302ffac74b80e781cef913 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 22:40:31 EDT 2025 Mon Jun 30 06:08:45 EDT 2025 Wed Feb 19 02:25:20 EST 2025 Thu Apr 24 23:03:49 EDT 2025 Tue Jul 01 01:12:28 EDT 2025 Fri Jun 21 00:19:06 EDT 2024 Tue Jul 04 19:18:31 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-dc75edc94315a5508eb277d1f9d3e6eb1f34f13a0cf302ffac74b80e781cef913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9143-7723 0000-0001-9649-7303 0000-0001-7336-2115 |
PMID | 36859079 |
PQID | 2778737117 |
PQPubID | 2050685 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2781622151 pubmed_primary_36859079 scitation_primary_10_1063_5_0134654 crossref_primary_10_1063_5_0134654 crossref_citationtrail_10_1063_5_0134654 proquest_journals_2778737117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230228 2023-02-28 2023-Feb-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 20230228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Ma, Grey, Shen, Urbakh, Wu, Liu, Liu, Zheng (c9) 2015; 10 Pizzocchero, Gammelgaard, Jessen, Caridad, Wang, Hone (c23) 2006; 7 Ye, Tour (c2) 2019; 13 Wei, Wang, Wu, Yang, Dunn (c15) 2013; 13 De Juan, Cortijo, Vozmediano, Cano (c24) 2011; 7 Thrower, Mayer (c62) 1978; 47 Xie, Wang, Wallace, Gong (c5) 2021; 119 Pereira, Castro Neto, Liang, Mahadevan (c48) 2010; 105 Kavokine, Netz, Bocquet (c10) 2021; 53 VandeVondele, Krack, Mohamed, Parrinello, Chassaing, Hutter (c32) 2005; 167 Bao, Miao, Chen, Zhang, Jang, Dames, Lau (c20) 2009; 4 Martyna, Klein, Tuckerman (c38) 1992; 97 Das Sarma, Adam, Hwang, Rossi (c59) 2011; 83 Meyer, Geim, Katsnelson, Novoselov, Booth, Roth (c21) 2007; 446 Park, Jo, Hong, Cheong (c61) 2016; 8 Truhlar (c41) 1998; 294 Sanville, Kenny, Smith, Henkelman (c47) 2007; 28 Lee, Yamazaki, Yun, Park, Kennedy, Kim, Pietzsch, Wiesendanger, Lee, Hong, Dettlaff-Weglikowska, Roth (c51) 2013; 13 Ni, Liu, Wang, Zheng, Li, Yu, Shen (c52) 2009; 80 Kavokine, Bocquet, Bocquet (c11) 2022; 602 Zang, Ryu, Pugno, Wang, Tu, Buehler, Zhao (c36) 2013; 12 Zhu, Low, Perebeinos, Bol, Zhu, Yan, Tersoff, Avouris (c55) 2012; 12 Bai, Zhou, Zheng, Meng, Peng, Liu (c30) 2014; 113 De Parga, Calleja, Borca, Passeggi, Hinarejos, Guinea (c28) 2008; 100 Bhuyan, Uddin, Islam, Bipasha, Hossain (c1) 2016; 6 Chen, Gui, Yang, Zhu, Tang (c27) 2019; 4 Gao, Yu, Chen (c4) 2021; 2 Lee, Wei, Kysar, Hone (c13) 2008; 321 Han, Yu, Annevelink, Son, Kang, Watanabe, Taniguchi, Ertekin, Huang, van der Zande (c14) 2020; 19 Keerthi, Goutham, You, Iamprasertkun, Dryfe, Geim, Radha (c8) 2021; 12 Bui, Thiemann, Michaelides, Cox (c12) 2023; 23 Perdew, Burke, Ernzerhof (c42) 1996; 77 Fasolino, Los, Katsnelson (c18) 2007; 6 Hartwigsen, Goedecker, Hutter (c34) 1998; 58 Carozo, Almeida, Fragneaud, Bedê, Moutinho, Ribeiro-Soares, Andrade, Souza Filho, Matos, Wang, Terrones, Capaz, Jorio, Achete, Cançado (c53) 2013; 88 Singh, Hennig (c17) 2013; 87 Kim, Lee, Walsh, Lordi, Bahr (c31) 2022; 156 Zhang, Sahoo, Wang (c63) 2016; 27 Hamann (c40) 2013; 88 Bonini, Lazzeri, Marzari, Mauri (c16) 2007; 99 Lee, Kang, Chen, Engel, Jung, Rhee, Hersam, Odom (c22) 2016; 16 Hoover (c37) 1985; 31 Deng, Berry (c19) 2016; 19 Sun, Yang, Kuang, Stebunov, Xiong, Yu, Nair, Katsnelson, Yuan, Grigorieva, Lozada-Hidalgo, Wang, Geim (c57) 2020; 579 Chen, Wang, Zhang, Zhong, Liu, Sheng, Zhang, Zou, Zhou, Cheng (c3) 2021; 15 Dai, Yuan (c56) 2010; 81 Michaud-Rioux, Zhang, Guo (c39) 2016; 307 Madsen, Singh (c45) 2006; 175 Ni, Zheng, Bae, Kim, Pachoud, Kim, Tan, Im, Ahn, Hong, Özyilmaz (c60) 2012; 6 Xu, Liang, Kong, Wang, Zhi (c49) 2021; 14 VandeVondele, Hutter (c35) 2007; 127 Luo, Wang, Li, Kim, Yu, Kim, Han, Biswal, Huang, Kwon, Goo, Camacho‐Mojica, Shi, Yoo, Altman, Shin, Ruoff (c54) 2019; 31 Guo, Guo (c50) 2013; 117 Tocci, Joly, Michaelides (c6) 2014; 14 Yu, Katsnelson, Zhang, Yuan (c29) 2022; 106 Ma, Tocci, Michaelides, Aeppli (c25) 2016; 15 Secchi, Marbach, Niguès, Stein, Siria, Bocquet (c7) 2016; 537 Kresse, Furthmüller (c43) 1996; 6 Marbach, Dean, Bocquet (c26) 2018; 14 Wang, Xu, Liu, Tang, Geng (c44) 2021; 267 Thiemann, Rowe, Müller, Michaelides (c46) 2020; 124 Mariani, Oppen (c58) 2010; 100 Goedecker, Teter, Hutter (c33) 1996; 54 (2023081020102351000_c2) 2019; 13 (2023081020102351000_c43) 1996; 6 (2023081020102351000_c36) 2013; 12 (2023081020102351000_c14) 2020; 19 (2023081020102351000_c4) 2021; 2 (2023081020102351000_c35) 2007; 127 (2023081020102351000_c8) 2021; 12 (2023081020102351000_c20) 2009; 4 (2023081020102351000_c34) 1998; 58 (2023081020102351000_c7) 2016; 537 (2023081020102351000_c16) 2007; 99 (2023081020102351000_c46) 2020; 124 (2023081020102351000_c47) 2007; 28 (2023081020102351000_c40) 2013; 88 (2023081020102351000_c63) 2016; 27 (2023081020102351000_c59) 2011; 83 (2023081020102351000_c56) 2010; 81 (2023081020102351000_c32) 2005; 167 (2023081020102351000_c42) 1996; 77 (2023081020102351000_c1) 2016; 6 (2023081020102351000_c28) 2008; 100 (2023081020102351000_c61) 2016; 8 (2023081020102351000_c26) 2018; 14 (2023081020102351000_c15) 2013; 13 (2023081020102351000_c49) 2021; 14 (2023081020102351000_c13) 2008; 321 (2023081020102351000_c30) 2014; 113 (2023081020102351000_c29) 2022; 106 (2023081020102351000_c10) 2021; 53 (2023081020102351000_c18) 2007; 6 (2023081020102351000_c60) 2012; 6 (2023081020102351000_c44) 2021; 267 (2023081020102351000_c31) 2022; 156 (2023081020102351000_c27) 2019; 4 (2023081020102351000_c24) 2011; 7 (2023081020102351000_c21) 2007; 446 (2023081020102351000_c12) 2023; 23 (2023081020102351000_c33) 1996; 54 (2023081020102351000_c58) 2010; 100 (2023081020102351000_c3) 2021; 15 (2023081020102351000_c45) 2006; 175 (2023081020102351000_c9) 2015; 10 (2023081020102351000_c41) 1998; 294 (2023081020102351000_c48) 2010; 105 (2023081020102351000_c22) 2016; 16 (2023081020102351000_c53) 2013; 88 (2023081020102351000_c6) 2014; 14 (2023081020102351000_c57) 2020; 579 (2023081020102351000_c19) 2016; 19 (2023081020102351000_c5) 2021; 119 (2023081020102351000_c17) 2013; 87 (2023081020102351000_c25) 2016; 15 (2023081020102351000_c39) 2016; 307 (2023081020102351000_c11) 2022; 602 (2023081020102351000_c52) 2009; 80 (2023081020102351000_c38) 1992; 97 (2023081020102351000_c62) 1978; 47 (2023081020102351000_c51) 2013; 13 (2023081020102351000_c23) 2006; 7 (2023081020102351000_c54) 2019; 31 (2023081020102351000_c37) 1985; 31 (2023081020102351000_c50) 2013; 117 (2023081020102351000_c55) 2012; 12 |
References_xml | – volume: 167 start-page: 103 year: 2005 ident: c32 article-title: QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach publication-title: Comput. Phys. Commun. – volume: 14 start-page: 100111 year: 2021 ident: c49 article-title: Strain engineering of two-dimensional materials for advanced electrocatalysts publication-title: Mater. Today Nano – volume: 6 start-page: 858 year: 2007 ident: c18 article-title: Intrinsic ripples in graphene publication-title: Nat. Mater. – volume: 6 start-page: 1158 year: 2012 ident: c60 article-title: Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport publication-title: ACS Nano – volume: 321 start-page: 385 year: 2008 ident: c13 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science – volume: 99 start-page: 176802 year: 2007 ident: c16 article-title: Phonon anharmonicities in graphite and graphene publication-title: Phys. Rev. Lett. – volume: 100 start-page: 056807 year: 2008 ident: c28 article-title: Periodically rippled graphene: Growth and spatially resolved electronic structure publication-title: Phys. Rev. Lett. – volume: 88 start-page: 085117 year: 2013 ident: c40 article-title: Optimized norm-conserving Vanderbilt pseudopotentials publication-title: Phys. Rev. B – volume: 87 start-page: 094112 year: 2013 ident: c17 article-title: Scaling relation for thermal ripples in single and multilayer graphene publication-title: Phys. Rev. B – volume: 8 start-page: 9822 year: 2016 ident: c61 article-title: Controlling the ripple density and heights: A new way to improve the electrical performance of CVD-grown graphene publication-title: Nanoscale – volume: 156 start-page: 054708 year: 2022 ident: c31 article-title: Role of ripples in altering the electronic and chemical properties of graphene publication-title: J. Chem. Phys. – volume: 54 start-page: 1703 year: 1996 ident: c33 article-title: Separable dual-space Gaussian pseudopotentials publication-title: Phys. Rev. B – volume: 537 start-page: 210 year: 2016 ident: c7 article-title: Massive radius-dependent flow slippage in carbon nanotubes publication-title: Nature – volume: 267 start-page: 108033 year: 2021 ident: c44 article-title: VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. – volume: 77 start-page: 3865 year: 1996 ident: c42 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 19 start-page: 305 year: 2020 ident: c14 article-title: Ultrasoft slip-mediated bending in few-layer graphene publication-title: Nat. Mater. – volume: 294 start-page: 45 year: 1998 ident: c41 article-title: Basis-set extrapolation publication-title: Chem. Phys. Lett. – volume: 127 start-page: 114105 year: 2007 ident: c35 article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases publication-title: J. Chem. Phys. – volume: 7 start-page: 11894 year: 2006 ident: c23 article-title: The hot pick-up technique for batch assembly of van der Waals heterostructures publication-title: Nat. Commun. – volume: 4 start-page: 291 year: 2019 ident: c27 article-title: Wrinkling of two-dimensional materials: Methods, properties and applications publication-title: Nanoscale Horiz. – volume: 13 start-page: 3494 year: 2013 ident: c51 article-title: Modification of electrical properties of graphene by substrate-induced nanomodulation publication-title: Nano Lett. – volume: 83 start-page: 407 year: 2011 ident: c59 article-title: Electronic transport in two-dimensional graphene publication-title: Rev. Mod. Phys. – volume: 2 start-page: 2100048 year: 2021 ident: c4 article-title: Artificial intelligence accelerators based on graphene optoelectronic devices publication-title: Adv. Photonics Res. – volume: 105 start-page: 156603 year: 2010 ident: c48 article-title: Geometry, mechanics and electronics of singular structures and wrinkles in graphene publication-title: Phys. Rev. Lett. – volume: 4 start-page: 562 year: 2009 ident: c20 article-title: Controlled ripple texturing of suspended graphene and ultrathin graphite membranes publication-title: Nat. Nanotechnol. – volume: 13 start-page: 26 year: 2013 ident: c15 article-title: Bending rigidity and Gaussian bending stiffness of single-layered graphene publication-title: Nano Lett. – volume: 13 start-page: 10872 year: 2019 ident: c2 article-title: Graphene at fifteen publication-title: ACS Nano – volume: 307 start-page: 593 year: 2016 ident: c39 article-title: RESCU: A real space electronic structure method publication-title: J. Comput. Phys. – volume: 19 start-page: 197 year: 2016 ident: c19 article-title: Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications publication-title: Mater. Today – volume: 15 start-page: 9841 year: 2021 ident: c3 article-title: Engineering the active sites of graphene catalyst: From CO activation to activate Li-CO batteries publication-title: ACS Nano – volume: 81 start-page: 165414 year: 2010 ident: c56 article-title: Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties publication-title: Phys. Rev. B – volume: 602 start-page: 84 year: 2022 ident: c11 article-title: Fluctuation-induced quantum friction in nanoscale water flows publication-title: Nature – volume: 124 start-page: 22278 year: 2020 ident: c46 article-title: Machine learning potential for hexagonal boron nitride applied to thermally and mechanically induced rippling publication-title: J. Phys. Chem. C – volume: 6 start-page: 15 year: 1996 ident: c43 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 117 start-page: 692 year: 2013 ident: c50 article-title: Electronic and field emission properties of wrinkled graphene publication-title: J. Phys. Chem. C – volume: 16 start-page: 7121 year: 2016 ident: c22 article-title: Multiscale, hierarchical patterning of graphene by conformal wrinkling publication-title: Nano Lett. – volume: 15 start-page: 66 year: 2016 ident: c25 article-title: Fast diffusion of water nanodroplets on graphene publication-title: Nat. Mater. – volume: 100 start-page: 076801 year: 2010 ident: c58 article-title: Flexural phonons in free-standing graphene publication-title: Phys. Rev. Lett. – volume: 23 start-page: 580 year: 2023 ident: c12 article-title: Classical quantum friction at water-carbon interfaces publication-title: Nano Lett. – volume: 14 start-page: 6872 year: 2014 ident: c6 article-title: Friction of water on graphene and hexagonal boron nitride from methods: Very different slippage despite very similar interface structures publication-title: Nano Lett. – volume: 7 start-page: 810 year: 2011 ident: c24 article-title: Aharonov–Bohm interferences from local deformations in graphene publication-title: Nat. Phys. – volume: 88 start-page: 085401 year: 2013 ident: c53 article-title: Resonance effects on the Raman spectra of graphene superlattices publication-title: Phys. Rev. B – volume: 12 start-page: 321 year: 2013 ident: c36 article-title: Multifunctionality and control of the crumpling and unfolding of large-area graphene publication-title: Nat. Mater. – volume: 175 start-page: 67 year: 2006 ident: c45 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. – volume: 27 start-page: 435206 year: 2016 ident: c63 article-title: Strain controlled ferromagnetic–ferrimagnetic transition and vacancy formation energy of defective graphene publication-title: Nanotechnology – volume: 6 start-page: 65 year: 2016 ident: c1 article-title: Synthesis of graphene publication-title: Int. Nano Lett. – volume: 28 start-page: 899 year: 2007 ident: c47 article-title: Improved grid‐based algorithm for Bader charge allocation publication-title: J. Comput. Chem. – volume: 446 start-page: 60 year: 2007 ident: c21 article-title: The structure of suspended graphene sheets publication-title: Nature – volume: 80 start-page: 125404 year: 2009 ident: c52 article-title: G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding publication-title: Phys. Rev. B – volume: 12 start-page: 3092 year: 2021 ident: c8 article-title: Water friction in nanofluidic channels made from two-dimensional crystals publication-title: Nat. Commun. – volume: 31 start-page: 1695 year: 1985 ident: c37 article-title: Canonical dynamics: Equilibrium phase-space distributions publication-title: Phys. Rev. A – volume: 53 start-page: 377 year: 2021 ident: c10 article-title: Fluids at the nanoscale: From continuum to subcontinuum transport publication-title: Annu. Rev. Fluid Mech. – volume: 14 start-page: 1108 year: 2018 ident: c26 article-title: Transport and dispersion across wiggling nanopores publication-title: Nat. Phys. – volume: 106 start-page: 045418 year: 2022 ident: c29 article-title: Distribution of ripples in graphene membranes publication-title: Phys. Rev. B – volume: 97 start-page: 2635 year: 1992 ident: c38 article-title: Nosé–Hoover chains: The canonical ensemble via continuous dynamics publication-title: J. Chem. Phys. – volume: 10 start-page: 692 year: 2015 ident: c9 article-title: Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction publication-title: Nat. Nanotechnol. – volume: 113 start-page: 086102 year: 2014 ident: c30 article-title: Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer publication-title: Phys. Rev. Lett. – volume: 31 start-page: 1903615 year: 2019 ident: c54 article-title: Adlayer-Free large-area single crystal graphene grown on a Cu(111) foil publication-title: Adv. Mater. – volume: 47 start-page: 11 year: 1978 ident: c62 article-title: Point-defects and self-diffusion in graphite publication-title: Phys. Status Solidi A – volume: 12 start-page: 3431 year: 2012 ident: c55 article-title: Structure and electronic transport in graphene wrinkles publication-title: Nano Lett. – volume: 119 start-page: 013104 year: 2021 ident: c5 article-title: Understanding and optimization of graphene gas sensors publication-title: Appl. Phys. Lett. – volume: 58 start-page: 3641 year: 1998 ident: c34 article-title: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn publication-title: Phys. Rev. B – volume: 579 start-page: 229 year: 2020 ident: c57 article-title: Limits on gas impermeability of graphene publication-title: Nature – volume: 13 start-page: 26 year: 2013 ident: 2023081020102351000_c15 article-title: Bending rigidity and Gaussian bending stiffness of single-layered graphene publication-title: Nano Lett. doi: 10.1021/nl303168w – volume: 88 start-page: 085401 year: 2013 ident: 2023081020102351000_c53 article-title: Resonance effects on the Raman spectra of graphene superlattices publication-title: Phys. Rev. B doi: 10.1103/physrevb.88.085401 – volume: 13 start-page: 3494 year: 2013 ident: 2023081020102351000_c51 article-title: Modification of electrical properties of graphene by substrate-induced nanomodulation publication-title: Nano Lett. doi: 10.1021/nl400827p – volume: 175 start-page: 67 year: 2006 ident: 2023081020102351000_c45 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.007 – volume: 105 start-page: 156603 year: 2010 ident: 2023081020102351000_c48 article-title: Geometry, mechanics and electronics of singular structures and wrinkles in graphene publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.105.156603 – volume: 23 start-page: 580 year: 2023 ident: 2023081020102351000_c12 article-title: Classical quantum friction at water-carbon interfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c04187 – volume: 16 start-page: 7121 year: 2016 ident: 2023081020102351000_c22 article-title: Multiscale, hierarchical patterning of graphene by conformal wrinkling publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03415 – volume: 117 start-page: 692 year: 2013 ident: 2023081020102351000_c50 article-title: Electronic and field emission properties of wrinkled graphene publication-title: J. Phys. Chem. C doi: 10.1021/jp3103063 – volume: 13 start-page: 10872 year: 2019 ident: 2023081020102351000_c2 article-title: Graphene at fifteen publication-title: ACS Nano doi: 10.1021/acsnano.9b06778 – volume: 446 start-page: 60 year: 2007 ident: 2023081020102351000_c21 article-title: The structure of suspended graphene sheets publication-title: Nature doi: 10.1038/nature05545 – volume: 6 start-page: 65 year: 2016 ident: 2023081020102351000_c1 article-title: Synthesis of graphene publication-title: Int. Nano Lett. doi: 10.1007/s40089-015-0176-1 – volume: 12 start-page: 3092 year: 2021 ident: 2023081020102351000_c8 article-title: Water friction in nanofluidic channels made from two-dimensional crystals publication-title: Nat. Commun. doi: 10.1038/s41467-021-23325-3 – volume: 119 start-page: 013104 year: 2021 ident: 2023081020102351000_c5 article-title: Understanding and optimization of graphene gas sensors publication-title: Appl. Phys. Lett. doi: 10.1063/5.0057066 – volume: 113 start-page: 086102 year: 2014 ident: 2023081020102351000_c30 article-title: Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.113.086102 – volume: 14 start-page: 1108 year: 2018 ident: 2023081020102351000_c26 article-title: Transport and dispersion across wiggling nanopores publication-title: Nat. Phys. doi: 10.1038/s41567-018-0239-0 – volume: 100 start-page: 056807 year: 2008 ident: 2023081020102351000_c28 article-title: Periodically rippled graphene: Growth and spatially resolved electronic structure publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.100.056807 – volume: 97 start-page: 2635 year: 1992 ident: 2023081020102351000_c38 article-title: Nosé–Hoover chains: The canonical ensemble via continuous dynamics publication-title: J. Chem. Phys. doi: 10.1063/1.463940 – volume: 267 start-page: 108033 year: 2021 ident: 2023081020102351000_c44 article-title: VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 12 start-page: 321 year: 2013 ident: 2023081020102351000_c36 article-title: Multifunctionality and control of the crumpling and unfolding of large-area graphene publication-title: Nat. Mater. doi: 10.1038/nmat3542 – volume: 6 start-page: 15 year: 1996 ident: 2023081020102351000_c43 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 537 start-page: 210 year: 2016 ident: 2023081020102351000_c7 article-title: Massive radius-dependent flow slippage in carbon nanotubes publication-title: Nature doi: 10.1038/nature19315 – volume: 27 start-page: 435206 year: 2016 ident: 2023081020102351000_c63 article-title: Strain controlled ferromagnetic–ferrimagnetic transition and vacancy formation energy of defective graphene publication-title: Nanotechnology doi: 10.1088/0957-4484/27/43/435206 – volume: 10 start-page: 692 year: 2015 ident: 2023081020102351000_c9 article-title: Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.134 – volume: 77 start-page: 3865 year: 1996 ident: 2023081020102351000_c42 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 87 start-page: 094112 year: 2013 ident: 2023081020102351000_c17 article-title: Scaling relation for thermal ripples in single and multilayer graphene publication-title: Phys. Rev. B doi: 10.1103/physrevb.87.094112 – volume: 31 start-page: 1903615 year: 2019 ident: 2023081020102351000_c54 article-title: Adlayer-Free large-area single crystal graphene grown on a Cu(111) foil publication-title: Adv. Mater. doi: 10.1002/adma.201903615 – volume: 58 start-page: 3641 year: 1998 ident: 2023081020102351000_c34 article-title: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn publication-title: Phys. Rev. B doi: 10.1103/physrevb.58.3641 – volume: 602 start-page: 84 year: 2022 ident: 2023081020102351000_c11 article-title: Fluctuation-induced quantum friction in nanoscale water flows publication-title: Nature doi: 10.1038/s41586-021-04284-7 – volume: 15 start-page: 66 year: 2016 ident: 2023081020102351000_c25 article-title: Fast diffusion of water nanodroplets on graphene publication-title: Nat. Mater. doi: 10.1038/nmat4449 – volume: 14 start-page: 6872 year: 2014 ident: 2023081020102351000_c6 article-title: Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures publication-title: Nano Lett. doi: 10.1021/nl502837d – volume: 307 start-page: 593 year: 2016 ident: 2023081020102351000_c39 article-title: RESCU: A real space electronic structure method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.014 – volume: 321 start-page: 385 year: 2008 ident: 2023081020102351000_c13 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 167 start-page: 103 year: 2005 ident: 2023081020102351000_c32 article-title: QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2004.12.014 – volume: 19 start-page: 197 year: 2016 ident: 2023081020102351000_c19 article-title: Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.002 – volume: 54 start-page: 1703 year: 1996 ident: 2023081020102351000_c33 article-title: Separable dual-space Gaussian pseudopotentials publication-title: Phys. Rev. B doi: 10.1103/physrevb.54.1703 – volume: 6 start-page: 858 year: 2007 ident: 2023081020102351000_c18 article-title: Intrinsic ripples in graphene publication-title: Nat. Mater. doi: 10.1038/nmat2011 – volume: 53 start-page: 377 year: 2021 ident: 2023081020102351000_c10 article-title: Fluids at the nanoscale: From continuum to subcontinuum transport publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-071320-095958 – volume: 294 start-page: 45 year: 1998 ident: 2023081020102351000_c41 article-title: Basis-set extrapolation publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(98)00866-5 – volume: 579 start-page: 229 year: 2020 ident: 2023081020102351000_c57 article-title: Limits on gas impermeability of graphene publication-title: Nature doi: 10.1038/s41586-020-2070-x – volume: 4 start-page: 562 year: 2009 ident: 2023081020102351000_c20 article-title: Controlled ripple texturing of suspended graphene and ultrathin graphite membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.191 – volume: 7 start-page: 11894 year: 2006 ident: 2023081020102351000_c23 article-title: The hot pick-up technique for batch assembly of van der Waals heterostructures publication-title: Nat. Commun. doi: 10.1038/ncomms11894 – volume: 6 start-page: 1158 year: 2012 ident: 2023081020102351000_c60 article-title: Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport publication-title: ACS Nano doi: 10.1021/nn203775x – volume: 7 start-page: 810 year: 2011 ident: 2023081020102351000_c24 article-title: Aharonov–Bohm interferences from local deformations in graphene publication-title: Nat. Phys. doi: 10.1038/nphys2034 – volume: 99 start-page: 176802 year: 2007 ident: 2023081020102351000_c16 article-title: Phonon anharmonicities in graphite and graphene publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.99.176802 – volume: 12 start-page: 3431 issue: 7 year: 2012 ident: 2023081020102351000_c55 article-title: Structure and electronic transport in graphene wrinkles publication-title: Nano Lett. doi: 10.1021/nl300563h – volume: 156 start-page: 054708 year: 2022 ident: 2023081020102351000_c31 article-title: Role of ripples in altering the electronic and chemical properties of graphene publication-title: J. Chem. Phys. doi: 10.1063/5.0073701 – volume: 4 start-page: 291 year: 2019 ident: 2023081020102351000_c27 article-title: Wrinkling of two-dimensional materials: Methods, properties and applications publication-title: Nanoscale Horiz. doi: 10.1039/c8nh00112j – volume: 15 start-page: 9841 year: 2021 ident: 2023081020102351000_c3 article-title: Engineering the active sites of graphene catalyst: From CO2 activation to activate Li-CO2 batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c00756 – volume: 14 start-page: 100111 year: 2021 ident: 2023081020102351000_c49 article-title: Strain engineering of two-dimensional materials for advanced electrocatalysts publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2021.100111 – volume: 88 start-page: 085117 year: 2013 ident: 2023081020102351000_c40 article-title: Optimized norm-conserving Vanderbilt pseudopotentials publication-title: Phys. Rev. B doi: 10.1103/physrevb.88.085117 – volume: 28 start-page: 899 year: 2007 ident: 2023081020102351000_c47 article-title: Improved grid-based algorithm for Bader charge allocation publication-title: J. Comput. Chem. doi: 10.1002/jcc.20575 – volume: 100 start-page: 076801 year: 2010 ident: 2023081020102351000_c58 article-title: Flexural phonons in free-standing graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.076801 – volume: 106 start-page: 045418 year: 2022 ident: 2023081020102351000_c29 article-title: Distribution of ripples in graphene membranes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.045418 – volume: 83 start-page: 407 year: 2011 ident: 2023081020102351000_c59 article-title: Electronic transport in two-dimensional graphene publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.83.407 – volume: 2 start-page: 2100048 year: 2021 ident: 2023081020102351000_c4 article-title: Artificial intelligence accelerators based on graphene optoelectronic devices publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202100048 – volume: 80 start-page: 125404 year: 2009 ident: 2023081020102351000_c52 article-title: G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding publication-title: Phys. Rev. B doi: 10.1103/physrevb.80.125404 – volume: 19 start-page: 305 year: 2020 ident: 2023081020102351000_c14 article-title: Ultrasoft slip-mediated bending in few-layer graphene publication-title: Nat. Mater. doi: 10.1038/s41563-019-0529-7 – volume: 127 start-page: 114105 year: 2007 ident: 2023081020102351000_c35 article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases publication-title: J. Chem. Phys. doi: 10.1063/1.2770708 – volume: 81 start-page: 165414 year: 2010 ident: 2023081020102351000_c56 article-title: Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties publication-title: Phys. Rev. B doi: 10.1103/physrevb.81.165414 – volume: 8 start-page: 9822 year: 2016 ident: 2023081020102351000_c61 article-title: Controlling the ripple density and heights: A new way to improve the electrical performance of CVD-grown graphene publication-title: Nanoscale doi: 10.1039/c6nr00706f – volume: 47 start-page: 11 year: 1978 ident: 2023081020102351000_c62 article-title: Point-defects and self-diffusion in graphite publication-title: Phys. Status Solidi A doi: 10.1002/pssa.2210470102 – volume: 31 start-page: 1695 year: 1985 ident: 2023081020102351000_c37 article-title: Canonical dynamics: Equilibrium phase-space distributions publication-title: Phys. Rev. A doi: 10.1103/physreva.31.1695 – volume: 124 start-page: 22278 year: 2020 ident: 2023081020102351000_c46 article-title: Machine learning potential for hexagonal boron nitride applied to thermally and mechanically induced rippling publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c05831 |
SSID | ssj0001724 |
Score | 2.437134 |
Snippet | Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 084702 |
SubjectTerms | Carrier density Carrier mobility Electron states Electrons Energy bands First principles Graphene Interlayers Physical properties Physics Transport properties Two dimensional materials |
Title | Geometric, electronic and transport properties of bulged graphene: A theoretical study |
URI | http://dx.doi.org/10.1063/5.0134654 https://www.ncbi.nlm.nih.gov/pubmed/36859079 https://www.proquest.com/docview/2778737117 https://www.proquest.com/docview/2781622151 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE9p4QDBgBAYyHw9II5DESezwVo2NCWUDsRaVpyhxbFQ0mmo0IPHXc45jOxPVBLxEVXJKrbtffD_b94HQs4AkMY1q6sd1UMECJU7hm-OJz8FXyBgogegsfXySHk3jd7Nk5uJ0u-ySVfWS_1qbV_I_VoV7YFeVJfsPlrUvhRvwG-wLV7AwXP_Kxm9F8011xOq6lA8a2nRRkaZquQrBWqroaV1etmrPvgDJ7ApVwzynM9OH6Yyu4OxXh6QBb-WmxIDeFLGcPJ-Xzd7Hdj4IGOi2YT-3DoCnXQvhvRmI_nQ5aLnO0J4PdyAiMsjodkH_5eJieMOHwRhM3kDoq_WS9jx6ug1Y5tNUNwy183HCBsBja-d5IFZgHFVxlaiCcM6ZmQP8k_fF4TTPi8nBbHIVbUSwiIhGaGP85jg_tZ4ayFtfpVuPzFSeSskr--qLfOWPRch1tAlURUdNDIjJ5Ca60VsGjzU8bqErYrGNNvdNI79tdK1X0m30yQLmBXZwwQAXbOGCHVxwI7GGCzZweY3HeAAW3IHlDpoeHkz2j_y-sYbPCSMrv-Y0ETXPgDwmJSxRmahAQXUos5qIFLy3JLEMSRlwSYJIypLTuGKBoCzkQmYhuYtGi2Yh7iEs65KkQRXwjFZxzcEbhOpgP6xYrU6omYeeG_UVRk-q-clZ0UU_pKRIil7THnpiRZe61Mo6oV1jg6L_Er8XMHhGCQ1D6qHH9jFoWR1-lQvRtEqGhWmkCK6HdrTt7L-oJgxZQDMPPbXGvGwIa6R-NOdOoljW8v7lA32AttyntItGq_NWPAR6u6oe9Sj9DQL-pbw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric%2C+electronic+and+transport+properties+of+bulged+graphene%3A+A+theoretical+study&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Liao+Rui&rft.au=Chao%2C+Yuan&rft.au=Shi%2C+Xiaowen&rft.au=Li%2C+Li&rft.date=2023-02-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=158&rft.issue=8&rft_id=info:doi/10.1063%2F5.0134654&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |