Reservoir observers: Model-free inference of unmeasured variables in chaotic systems

Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is u...

Full description

Saved in:
Bibliographic Details
Published inChaos (Woodbury, N.Y.) Vol. 27; no. 4; p. 041102
Main Authors Lu, Zhixin, Pathak, Jaideep, Hunt, Brian, Girvan, Michelle, Brockett, Roger, Ott, Edward
Format Journal Article
LanguageEnglish
Published United States 01.04.2017
Online AccessGet more information

Cover

Loading…
Abstract Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is unavailable or insufficiently accurate, but "training" time series data of the desired state variables are available for a short period of time, and a limited number of other system variables are continually measured. We propose a solution to this problem using networks of neuron-like units known as "reservoir computers." The measurements that are continually available are input to the network, which is trained with the limited-time data to output estimates of the desired state variables. We demonstrate our method, which we call a "reservoir observer," using the Rössler system, the Lorenz system, and the spatiotemporally chaotic Kuramoto-Sivashinsky equation. Subject to the condition of observability (i.e., whether it is in principle possible, by any means, to infer the desired unmeasured variables from the measured variables), we show that the reservoir observer can be a very effective and versatile tool for robustly reconstructing unmeasured dynamical system variables.
AbstractList Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is unavailable or insufficiently accurate, but "training" time series data of the desired state variables are available for a short period of time, and a limited number of other system variables are continually measured. We propose a solution to this problem using networks of neuron-like units known as "reservoir computers." The measurements that are continually available are input to the network, which is trained with the limited-time data to output estimates of the desired state variables. We demonstrate our method, which we call a "reservoir observer," using the Rössler system, the Lorenz system, and the spatiotemporally chaotic Kuramoto-Sivashinsky equation. Subject to the condition of observability (i.e., whether it is in principle possible, by any means, to infer the desired unmeasured variables from the measured variables), we show that the reservoir observer can be a very effective and versatile tool for robustly reconstructing unmeasured dynamical system variables.
Author Ott, Edward
Hunt, Brian
Lu, Zhixin
Brockett, Roger
Pathak, Jaideep
Girvan, Michelle
Author_xml – sequence: 1
  givenname: Zhixin
  orcidid: 0000000190677821
  surname: Lu
  fullname: Lu, Zhixin
  organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
– sequence: 2
  givenname: Jaideep
  orcidid: 0000000230950256
  surname: Pathak
  fullname: Pathak, Jaideep
  organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
– sequence: 3
  givenname: Brian
  surname: Hunt
  fullname: Hunt, Brian
  organization: Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
– sequence: 4
  givenname: Michelle
  surname: Girvan
  fullname: Girvan, Michelle
  organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
– sequence: 5
  givenname: Roger
  surname: Brockett
  fullname: Brockett, Roger
  organization: John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 6
  givenname: Edward
  surname: Ott
  fullname: Ott, Edward
  organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28456169$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRoMozkUXvoDkBTomaXNzJ4M3GBFkXA9_kj9YaZshaQfm7VXU1XcWhwPfgpwOaUBCrjhbcabqG75qrLZKyRMy58zYSisjZmRRyidjjItanpOZMI1UXNk52b5hwXxIbabJ_RDmcktfUsCuihmRtkPEjINHmiKdhh6hTBkDPUBuwXVYvg3qPyCNraflWEbsywU5i9AVvPzbJXl_uN-un6rN6-Pz-m5T-drUYxWMCyB1NELb4ExTg9UOUHEQqnHMOMERJAStGxkRODoWvbeCOdko75lYkuvf7n5yPYbdPrc95OPu_574Akk5Uk0
CitedBy_id crossref_primary_10_1063_5_0048050
crossref_primary_10_1103_PhysRevResearch_3_023156
crossref_primary_10_1103_PhysRevResearch_6_013196
crossref_primary_10_5194_npg_31_535_2024
crossref_primary_10_1109_TNNLS_2022_3173516
crossref_primary_10_1063_1_5037335
crossref_primary_10_1103_PhysRevE_109_014214
crossref_primary_10_1016_j_neucom_2024_128938
crossref_primary_10_1103_PhysRevE_98_052209
crossref_primary_10_1016_j_jcp_2019_06_039
crossref_primary_10_1063_5_0019974
crossref_primary_10_1063_1_5039508
crossref_primary_10_1103_PhysRevE_102_052203
crossref_primary_10_1063_1_5120733
crossref_primary_10_1063_5_0074213
crossref_primary_10_1007_s11042_024_20223_w
crossref_primary_10_1103_PhysRevResearch_6_013181
crossref_primary_10_1063_5_0006304
crossref_primary_10_1063_1_5010300
crossref_primary_10_1073_pnas_2204405119
crossref_primary_10_1063_5_0176358
crossref_primary_10_1063_1_5120867
crossref_primary_10_1088_2632_2153_aca1f6
crossref_primary_10_1080_17445760_2025_2472211
crossref_primary_10_1007_s11071_024_10821_6
crossref_primary_10_1063_5_0093663
crossref_primary_10_1016_j_patcog_2024_111196
crossref_primary_10_1103_PhysRevE_108_064209
crossref_primary_10_3390_math13060894
crossref_primary_10_1063_5_0207539
crossref_primary_10_1016_j_physrep_2024_06_003
crossref_primary_10_1103_PhysRevE_105_054203
crossref_primary_10_1016_j_physa_2022_128205
crossref_primary_10_1063_5_0130278
crossref_primary_10_1080_14685248_2020_1832230
crossref_primary_10_3390_math13010152
crossref_primary_10_1063_5_0005541
crossref_primary_10_1103_PhysRevLett_120_024102
crossref_primary_10_1063_5_0153229
crossref_primary_10_1103_PhysRevResearch_1_033056
crossref_primary_10_1109_MCS_2022_3187328
crossref_primary_10_1016_j_chaos_2024_114488
crossref_primary_10_1155_2021_7566653
crossref_primary_10_1063_1_5119895
crossref_primary_10_1063_5_0164013
crossref_primary_10_1007_s11071_022_07883_9
crossref_primary_10_3389_fphy_2019_00024
crossref_primary_10_1007_s10994_022_06135_6
crossref_primary_10_1038_s41598_023_31296_2
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1063_5_0078151
crossref_primary_10_1063_5_0138661
crossref_primary_10_1063_5_0004344
crossref_primary_10_1073_pnas_1802987115
crossref_primary_10_1063_5_0038163
crossref_primary_10_1029_2021MS002843
crossref_primary_10_1103_PhysRevE_109_024210
crossref_primary_10_3390_e20120954
crossref_primary_10_1016_j_automatica_2024_111907
crossref_primary_10_1063_5_0087977
crossref_primary_10_1103_PhysRevResearch_3_023237
crossref_primary_10_1016_j_matcom_2024_07_024
crossref_primary_10_1063_5_0014643
crossref_primary_10_3934_era_2022139
crossref_primary_10_1016_j_neucom_2024_129032
crossref_primary_10_1063_5_0055699
crossref_primary_10_1364_OL_459638
crossref_primary_10_1063_5_0056425
crossref_primary_10_1016_j_physleta_2020_126300
crossref_primary_10_1063_1_5097686
crossref_primary_10_1103_PhysRevFluids_7_014402
crossref_primary_10_1103_PhysRevE_103_053107
crossref_primary_10_1063_5_0007670
crossref_primary_10_1063_1_5120822
crossref_primary_10_1029_2023MS003631
crossref_primary_10_3390_e20100807
crossref_primary_10_1063_1_5028373
crossref_primary_10_1063_1_5079686
crossref_primary_10_1103_PhysRevE_99_042203
crossref_primary_10_1063_1_5022276
crossref_primary_10_1103_PhysRevE_110_034211
crossref_primary_10_1016_j_chaos_2023_113314
crossref_primary_10_1103_PhysRevResearch_2_012080
crossref_primary_10_1007_s11207_019_1412_z
crossref_primary_10_1016_j_chaos_2021_111570
crossref_primary_10_1017_jfm_2023_716
crossref_primary_10_1155_2018_6953836
crossref_primary_10_3934_era_2022152
crossref_primary_10_1103_PhysRevE_109_064215
crossref_primary_10_1063_1_5120710
crossref_primary_10_1007_s00332_019_09588_7
crossref_primary_10_1080_14685248_2020_1757685
crossref_primary_10_1063_5_0200898
crossref_primary_10_1016_j_chaos_2022_111882
crossref_primary_10_1038_s42005_024_01730_6
crossref_primary_10_1109_TNNLS_2021_3119548
crossref_primary_10_1088_2632_072X_ac24f3
crossref_primary_10_1088_1748_9326_ac0acb
crossref_primary_10_1016_j_cnsns_2022_106452
crossref_primary_10_1016_j_chaos_2022_112290
crossref_primary_10_3389_frai_2024_1451926
crossref_primary_10_1038_s41467_024_49190_4
crossref_primary_10_3389_fams_2020_616584
crossref_primary_10_1103_PhysRevResearch_6_043183
crossref_primary_10_1103_PhysRevE_104_024205
crossref_primary_10_1103_PhysRevE_109_024227
crossref_primary_10_1103_PhysRevFluids_5_113506
crossref_primary_10_1103_PhysRevLett_123_054101
crossref_primary_10_1016_j_chaos_2021_111675
crossref_primary_10_1063_5_0082122
crossref_primary_10_1103_PhysRevE_107_034215
crossref_primary_10_1063_5_0162926
crossref_primary_10_1063_5_0047006
crossref_primary_10_5194_esd_11_835_2020
crossref_primary_10_1103_PhysRevE_104_014205
crossref_primary_10_1063_5_0098707
crossref_primary_10_1063_5_0212158
crossref_primary_10_1088_2632_072X_ad5264
crossref_primary_10_1063_5_0244416
crossref_primary_10_1016_j_neunet_2024_107101
crossref_primary_10_1063_1_5095060
crossref_primary_10_1371_journal_pone_0246737
crossref_primary_10_1103_PhysRevE_106_055303
crossref_primary_10_1063_5_0055673
crossref_primary_10_1103_PhysRevResearch_4_023167
crossref_primary_10_1063_5_0039193
crossref_primary_10_3934_math_20221112
crossref_primary_10_1038_s41598_020_60606_1
crossref_primary_10_1063_1_5123733
crossref_primary_10_1088_1361_6501_ac93a4
crossref_primary_10_1016_j_jocs_2020_101171
crossref_primary_10_1016_j_physrep_2022_04_001
crossref_primary_10_1038_s41467_023_41379_3
crossref_primary_10_1137_22M1516865
crossref_primary_10_1186_s13634_022_00893_0
crossref_primary_10_5194_npg_27_373_2020
crossref_primary_10_1016_j_chaos_2020_110045
crossref_primary_10_1088_1367_2630_adbc13
crossref_primary_10_1063_5_0036809
crossref_primary_10_1088_2632_072X_ac0b00
crossref_primary_10_1103_PhysRevFluids_9_103902
crossref_primary_10_1103_PhysRevResearch_3_013090
crossref_primary_10_1103_PhysRevResearch_3_023215
crossref_primary_10_1063_5_0150113
crossref_primary_10_1063_1_5027470
crossref_primary_10_1063_1_5118725
crossref_primary_10_1038_s42005_023_01500_w
crossref_primary_10_1103_PhysRevResearch_4_023180
crossref_primary_10_1016_j_physleta_2020_126591
crossref_primary_10_1016_j_physd_2020_132798
crossref_primary_10_1137_24M1696974
crossref_primary_10_1063_1_5128898
crossref_primary_10_1103_PhysRevFluids_7_104402
crossref_primary_10_1016_j_chaos_2023_113523
crossref_primary_10_1038_s41598_022_20331_3
crossref_primary_10_1063_5_0097850
crossref_primary_10_1103_PhysRevE_102_033314
crossref_primary_10_1088_2058_6272_ac15ec
crossref_primary_10_1103_PhysRevE_107_034306
crossref_primary_10_1103_PhysRevE_107_064205
crossref_primary_10_1073_pnas_1816531116
crossref_primary_10_1063_1_5132766
crossref_primary_10_1063_5_0009326
crossref_primary_10_1016_j_chaos_2023_113139
crossref_primary_10_1063_5_0161076
crossref_primary_10_1016_j_quascirev_2021_107344
crossref_primary_10_1016_j_ifacol_2020_12_1850
crossref_primary_10_3389_fams_2022_955044
crossref_primary_10_1063_1_5120776
crossref_primary_10_1063_5_0062042
crossref_primary_10_5194_gmd_14_5623_2021
crossref_primary_10_1063_1_5049903
crossref_primary_10_1063_5_0066080
crossref_primary_10_1063_5_0028993
crossref_primary_10_1063_5_0006869
crossref_primary_10_1007_s10884_022_10159_w
crossref_primary_10_1063_5_0156611
crossref_primary_10_1088_1367_2630_ac024d
crossref_primary_10_1103_PhysRevE_104_044215
crossref_primary_10_1063_1_5120788
crossref_primary_10_1016_j_chaos_2024_114579
crossref_primary_10_1103_PhysRevE_104_045307
crossref_primary_10_1103_PhysRevE_105_L052201
crossref_primary_10_1103_PhysRevResearch_4_013137
crossref_primary_10_1016_j_neunet_2019_02_001
crossref_primary_10_3389_fphys_2021_685121
crossref_primary_10_1063_1_5134845
crossref_primary_10_1016_j_ifacol_2023_10_470
crossref_primary_10_1038_s41598_025_87768_0
crossref_primary_10_1038_s42005_023_01324_8
crossref_primary_10_1103_PhysRevE_107_054209
crossref_primary_10_1016_j_dcan_2022_06_006
crossref_primary_10_1103_PhysRevE_98_012215
crossref_primary_10_1103_PhysRevResearch_4_033176
crossref_primary_10_1063_5_0181694
crossref_primary_10_1103_PhysRevE_105_065305
crossref_primary_10_1016_j_physleta_2019_07_015
crossref_primary_10_3389_fams_2024_1221051
crossref_primary_10_1063_5_0077302
crossref_primary_10_1103_PhysRevE_98_023111
crossref_primary_10_1063_1_5100742
crossref_primary_10_1109_TCOMM_2020_3007757
crossref_primary_10_1063_1_5142462
crossref_primary_10_1016_j_neuroimage_2018_11_016
crossref_primary_10_1103_PhysRevE_102_043301
crossref_primary_10_1063_5_0033870
crossref_primary_10_1016_j_neunet_2021_05_004
ContentType Journal Article
DBID NPM
DOI 10.1063/1.4979665
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1089-7682
ExternalDocumentID 28456169
Genre Journal Article
GroupedDBID ---
-~X
.DC
0ZJ
1UP
2-P
29B
4.4
53G
5VS
6TJ
8WZ
A6W
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NEUPN
NPM
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
TAE
WH7
WHG
ID FETCH-LOGICAL-c383t-d8bda57f8279db843a97bae61a264b08b21ea5ad7745fea1eb0fcc920b546cc02
IngestDate Wed Feb 19 02:40:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-d8bda57f8279db843a97bae61a264b08b21ea5ad7745fea1eb0fcc920b546cc02
ORCID 0000000190677821
0000000230950256
PMID 28456169
ParticipantIDs pubmed_primary_28456169
PublicationCentury 2000
PublicationDate 2017-Apr
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-Apr
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chaos (Woodbury, N.Y.)
PublicationTitleAlternate Chaos
PublicationYear 2017
SSID ssj0001235
Score 2.6183295
Snippet Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great...
SourceID pubmed
SourceType Index Database
StartPage 041102
Title Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
URI https://www.ncbi.nlm.nih.gov/pubmed/28456169
Volume 27
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWKiQuVaE8SmnlA4dWVSCJ83C4QdUWIbXqYVG5ofEjYgVsVrvLQ_x6xo84KaJV6SWy4iSKPF8mM-OZbwjZqUEnRaF4JCHVNloVcRAqSirJUwZlrC1d0_cfxdFJdnyanw4Gt_3qkrnYlfdP1pX8j1TxHMrVVMk-Q7LhoXgCxyhfPKKE8fhPMjZpc9ObxkT6hRmZ_g3o4Zv-ZpdRPdXa5lo5Hlk0Cq_HVy4iqD7doItsiqZsNqw8h8bwts567OUteQFO2bjsr6YJe-6hOsvn8lzbHY7z0d0oIO2nCclfuDTckdJ60sHHER0cTnu4_Daa-v2oNjO1H4zAH1yXw6KdAo15FaEL85uGddX_HklZT13GGVof6ZOaHE0nE1TYzaoSPbK8fw2u5OTKihT_rWj_uV4vf599RKrdTi2QBXQvTL9UE-RZbkNzLG9JqAq2F97BEEf7-x45IdYYGb4iL70XQQ8cJFbIQI9XyZLN5pWzVbLiNfaMfvC04h9fk2FACw1o2acdVmjACm1q2mGFBqzgFdRjhXqsrJGTr1-Gn48i31MjkoyzeaS4UJCXNU_LSgmeMahKAbpIAC1jEXORJhpyUOgV5LWGRIu4lrJKY5FnhZRxuk4Wx81YbxIKBYvxEVwWucjQygPOFDoAAKBTphh_QzbcGp1NHHHKWbt6W3-ceUuWO1htkxc1fqn6HZp9c_HeCukBbr5YDQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reservoir+observers%3A+Model-free+inference+of+unmeasured+variables+in+chaotic+systems&rft.jtitle=Chaos+%28Woodbury%2C+N.Y.%29&rft.au=Lu%2C+Zhixin&rft.au=Pathak%2C+Jaideep&rft.au=Hunt%2C+Brian&rft.au=Girvan%2C+Michelle&rft.date=2017-04-01&rft.eissn=1089-7682&rft.volume=27&rft.issue=4&rft.spage=041102&rft_id=info:doi/10.1063%2F1.4979665&rft_id=info%3Apmid%2F28456169&rft_id=info%3Apmid%2F28456169&rft.externalDocID=28456169