Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is u...
Saved in:
Published in | Chaos (Woodbury, N.Y.) Vol. 27; no. 4; p. 041102 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2017
|
Online Access | Get more information |
Cover
Loading…
Abstract | Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is unavailable or insufficiently accurate, but "training" time series data of the desired state variables are available for a short period of time, and a limited number of other system variables are continually measured. We propose a solution to this problem using networks of neuron-like units known as "reservoir computers." The measurements that are continually available are input to the network, which is trained with the limited-time data to output estimates of the desired state variables. We demonstrate our method, which we call a "reservoir observer," using the Rössler system, the Lorenz system, and the spatiotemporally chaotic Kuramoto-Sivashinsky equation. Subject to the condition of observability (i.e., whether it is in principle possible, by any means, to infer the desired unmeasured variables from the measured variables), we show that the reservoir observer can be a very effective and versatile tool for robustly reconstructing unmeasured dynamical system variables. |
---|---|
AbstractList | Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is unavailable or insufficiently accurate, but "training" time series data of the desired state variables are available for a short period of time, and a limited number of other system variables are continually measured. We propose a solution to this problem using networks of neuron-like units known as "reservoir computers." The measurements that are continually available are input to the network, which is trained with the limited-time data to output estimates of the desired state variables. We demonstrate our method, which we call a "reservoir observer," using the Rössler system, the Lorenz system, and the spatiotemporally chaotic Kuramoto-Sivashinsky equation. Subject to the condition of observability (i.e., whether it is in principle possible, by any means, to infer the desired unmeasured variables from the measured variables), we show that the reservoir observer can be a very effective and versatile tool for robustly reconstructing unmeasured dynamical system variables. |
Author | Ott, Edward Hunt, Brian Lu, Zhixin Brockett, Roger Pathak, Jaideep Girvan, Michelle |
Author_xml | – sequence: 1 givenname: Zhixin orcidid: 0000000190677821 surname: Lu fullname: Lu, Zhixin organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA – sequence: 2 givenname: Jaideep orcidid: 0000000230950256 surname: Pathak fullname: Pathak, Jaideep organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA – sequence: 3 givenname: Brian surname: Hunt fullname: Hunt, Brian organization: Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA – sequence: 4 givenname: Michelle surname: Girvan fullname: Girvan, Michelle organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA – sequence: 5 givenname: Roger surname: Brockett fullname: Brockett, Roger organization: John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA – sequence: 6 givenname: Edward surname: Ott fullname: Ott, Edward organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28456169$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYRoMozkUXvoDkBTomaXNzJ4M3GBFkXA9_kj9YaZshaQfm7VXU1XcWhwPfgpwOaUBCrjhbcabqG75qrLZKyRMy58zYSisjZmRRyidjjItanpOZMI1UXNk52b5hwXxIbabJ_RDmcktfUsCuihmRtkPEjINHmiKdhh6hTBkDPUBuwXVYvg3qPyCNraflWEbsywU5i9AVvPzbJXl_uN-un6rN6-Pz-m5T-drUYxWMCyB1NELb4ExTg9UOUHEQqnHMOMERJAStGxkRODoWvbeCOdko75lYkuvf7n5yPYbdPrc95OPu_574Akk5Uk0 |
CitedBy_id | crossref_primary_10_1063_5_0048050 crossref_primary_10_1103_PhysRevResearch_3_023156 crossref_primary_10_1103_PhysRevResearch_6_013196 crossref_primary_10_5194_npg_31_535_2024 crossref_primary_10_1109_TNNLS_2022_3173516 crossref_primary_10_1063_1_5037335 crossref_primary_10_1103_PhysRevE_109_014214 crossref_primary_10_1016_j_neucom_2024_128938 crossref_primary_10_1103_PhysRevE_98_052209 crossref_primary_10_1016_j_jcp_2019_06_039 crossref_primary_10_1063_5_0019974 crossref_primary_10_1063_1_5039508 crossref_primary_10_1103_PhysRevE_102_052203 crossref_primary_10_1063_1_5120733 crossref_primary_10_1063_5_0074213 crossref_primary_10_1007_s11042_024_20223_w crossref_primary_10_1103_PhysRevResearch_6_013181 crossref_primary_10_1063_5_0006304 crossref_primary_10_1063_1_5010300 crossref_primary_10_1073_pnas_2204405119 crossref_primary_10_1063_5_0176358 crossref_primary_10_1063_1_5120867 crossref_primary_10_1088_2632_2153_aca1f6 crossref_primary_10_1080_17445760_2025_2472211 crossref_primary_10_1007_s11071_024_10821_6 crossref_primary_10_1063_5_0093663 crossref_primary_10_1016_j_patcog_2024_111196 crossref_primary_10_1103_PhysRevE_108_064209 crossref_primary_10_3390_math13060894 crossref_primary_10_1063_5_0207539 crossref_primary_10_1016_j_physrep_2024_06_003 crossref_primary_10_1103_PhysRevE_105_054203 crossref_primary_10_1016_j_physa_2022_128205 crossref_primary_10_1063_5_0130278 crossref_primary_10_1080_14685248_2020_1832230 crossref_primary_10_3390_math13010152 crossref_primary_10_1063_5_0005541 crossref_primary_10_1103_PhysRevLett_120_024102 crossref_primary_10_1063_5_0153229 crossref_primary_10_1103_PhysRevResearch_1_033056 crossref_primary_10_1109_MCS_2022_3187328 crossref_primary_10_1016_j_chaos_2024_114488 crossref_primary_10_1155_2021_7566653 crossref_primary_10_1063_1_5119895 crossref_primary_10_1063_5_0164013 crossref_primary_10_1007_s11071_022_07883_9 crossref_primary_10_3389_fphy_2019_00024 crossref_primary_10_1007_s10994_022_06135_6 crossref_primary_10_1038_s41598_023_31296_2 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1063_5_0078151 crossref_primary_10_1063_5_0138661 crossref_primary_10_1063_5_0004344 crossref_primary_10_1073_pnas_1802987115 crossref_primary_10_1063_5_0038163 crossref_primary_10_1029_2021MS002843 crossref_primary_10_1103_PhysRevE_109_024210 crossref_primary_10_3390_e20120954 crossref_primary_10_1016_j_automatica_2024_111907 crossref_primary_10_1063_5_0087977 crossref_primary_10_1103_PhysRevResearch_3_023237 crossref_primary_10_1016_j_matcom_2024_07_024 crossref_primary_10_1063_5_0014643 crossref_primary_10_3934_era_2022139 crossref_primary_10_1016_j_neucom_2024_129032 crossref_primary_10_1063_5_0055699 crossref_primary_10_1364_OL_459638 crossref_primary_10_1063_5_0056425 crossref_primary_10_1016_j_physleta_2020_126300 crossref_primary_10_1063_1_5097686 crossref_primary_10_1103_PhysRevFluids_7_014402 crossref_primary_10_1103_PhysRevE_103_053107 crossref_primary_10_1063_5_0007670 crossref_primary_10_1063_1_5120822 crossref_primary_10_1029_2023MS003631 crossref_primary_10_3390_e20100807 crossref_primary_10_1063_1_5028373 crossref_primary_10_1063_1_5079686 crossref_primary_10_1103_PhysRevE_99_042203 crossref_primary_10_1063_1_5022276 crossref_primary_10_1103_PhysRevE_110_034211 crossref_primary_10_1016_j_chaos_2023_113314 crossref_primary_10_1103_PhysRevResearch_2_012080 crossref_primary_10_1007_s11207_019_1412_z crossref_primary_10_1016_j_chaos_2021_111570 crossref_primary_10_1017_jfm_2023_716 crossref_primary_10_1155_2018_6953836 crossref_primary_10_3934_era_2022152 crossref_primary_10_1103_PhysRevE_109_064215 crossref_primary_10_1063_1_5120710 crossref_primary_10_1007_s00332_019_09588_7 crossref_primary_10_1080_14685248_2020_1757685 crossref_primary_10_1063_5_0200898 crossref_primary_10_1016_j_chaos_2022_111882 crossref_primary_10_1038_s42005_024_01730_6 crossref_primary_10_1109_TNNLS_2021_3119548 crossref_primary_10_1088_2632_072X_ac24f3 crossref_primary_10_1088_1748_9326_ac0acb crossref_primary_10_1016_j_cnsns_2022_106452 crossref_primary_10_1016_j_chaos_2022_112290 crossref_primary_10_3389_frai_2024_1451926 crossref_primary_10_1038_s41467_024_49190_4 crossref_primary_10_3389_fams_2020_616584 crossref_primary_10_1103_PhysRevResearch_6_043183 crossref_primary_10_1103_PhysRevE_104_024205 crossref_primary_10_1103_PhysRevE_109_024227 crossref_primary_10_1103_PhysRevFluids_5_113506 crossref_primary_10_1103_PhysRevLett_123_054101 crossref_primary_10_1016_j_chaos_2021_111675 crossref_primary_10_1063_5_0082122 crossref_primary_10_1103_PhysRevE_107_034215 crossref_primary_10_1063_5_0162926 crossref_primary_10_1063_5_0047006 crossref_primary_10_5194_esd_11_835_2020 crossref_primary_10_1103_PhysRevE_104_014205 crossref_primary_10_1063_5_0098707 crossref_primary_10_1063_5_0212158 crossref_primary_10_1088_2632_072X_ad5264 crossref_primary_10_1063_5_0244416 crossref_primary_10_1016_j_neunet_2024_107101 crossref_primary_10_1063_1_5095060 crossref_primary_10_1371_journal_pone_0246737 crossref_primary_10_1103_PhysRevE_106_055303 crossref_primary_10_1063_5_0055673 crossref_primary_10_1103_PhysRevResearch_4_023167 crossref_primary_10_1063_5_0039193 crossref_primary_10_3934_math_20221112 crossref_primary_10_1038_s41598_020_60606_1 crossref_primary_10_1063_1_5123733 crossref_primary_10_1088_1361_6501_ac93a4 crossref_primary_10_1016_j_jocs_2020_101171 crossref_primary_10_1016_j_physrep_2022_04_001 crossref_primary_10_1038_s41467_023_41379_3 crossref_primary_10_1137_22M1516865 crossref_primary_10_1186_s13634_022_00893_0 crossref_primary_10_5194_npg_27_373_2020 crossref_primary_10_1016_j_chaos_2020_110045 crossref_primary_10_1088_1367_2630_adbc13 crossref_primary_10_1063_5_0036809 crossref_primary_10_1088_2632_072X_ac0b00 crossref_primary_10_1103_PhysRevFluids_9_103902 crossref_primary_10_1103_PhysRevResearch_3_013090 crossref_primary_10_1103_PhysRevResearch_3_023215 crossref_primary_10_1063_5_0150113 crossref_primary_10_1063_1_5027470 crossref_primary_10_1063_1_5118725 crossref_primary_10_1038_s42005_023_01500_w crossref_primary_10_1103_PhysRevResearch_4_023180 crossref_primary_10_1016_j_physleta_2020_126591 crossref_primary_10_1016_j_physd_2020_132798 crossref_primary_10_1137_24M1696974 crossref_primary_10_1063_1_5128898 crossref_primary_10_1103_PhysRevFluids_7_104402 crossref_primary_10_1016_j_chaos_2023_113523 crossref_primary_10_1038_s41598_022_20331_3 crossref_primary_10_1063_5_0097850 crossref_primary_10_1103_PhysRevE_102_033314 crossref_primary_10_1088_2058_6272_ac15ec crossref_primary_10_1103_PhysRevE_107_034306 crossref_primary_10_1103_PhysRevE_107_064205 crossref_primary_10_1073_pnas_1816531116 crossref_primary_10_1063_1_5132766 crossref_primary_10_1063_5_0009326 crossref_primary_10_1016_j_chaos_2023_113139 crossref_primary_10_1063_5_0161076 crossref_primary_10_1016_j_quascirev_2021_107344 crossref_primary_10_1016_j_ifacol_2020_12_1850 crossref_primary_10_3389_fams_2022_955044 crossref_primary_10_1063_1_5120776 crossref_primary_10_1063_5_0062042 crossref_primary_10_5194_gmd_14_5623_2021 crossref_primary_10_1063_1_5049903 crossref_primary_10_1063_5_0066080 crossref_primary_10_1063_5_0028993 crossref_primary_10_1063_5_0006869 crossref_primary_10_1007_s10884_022_10159_w crossref_primary_10_1063_5_0156611 crossref_primary_10_1088_1367_2630_ac024d crossref_primary_10_1103_PhysRevE_104_044215 crossref_primary_10_1063_1_5120788 crossref_primary_10_1016_j_chaos_2024_114579 crossref_primary_10_1103_PhysRevE_104_045307 crossref_primary_10_1103_PhysRevE_105_L052201 crossref_primary_10_1103_PhysRevResearch_4_013137 crossref_primary_10_1016_j_neunet_2019_02_001 crossref_primary_10_3389_fphys_2021_685121 crossref_primary_10_1063_1_5134845 crossref_primary_10_1016_j_ifacol_2023_10_470 crossref_primary_10_1038_s41598_025_87768_0 crossref_primary_10_1038_s42005_023_01324_8 crossref_primary_10_1103_PhysRevE_107_054209 crossref_primary_10_1016_j_dcan_2022_06_006 crossref_primary_10_1103_PhysRevE_98_012215 crossref_primary_10_1103_PhysRevResearch_4_033176 crossref_primary_10_1063_5_0181694 crossref_primary_10_1103_PhysRevE_105_065305 crossref_primary_10_1016_j_physleta_2019_07_015 crossref_primary_10_3389_fams_2024_1221051 crossref_primary_10_1063_5_0077302 crossref_primary_10_1103_PhysRevE_98_023111 crossref_primary_10_1063_1_5100742 crossref_primary_10_1109_TCOMM_2020_3007757 crossref_primary_10_1063_1_5142462 crossref_primary_10_1016_j_neuroimage_2018_11_016 crossref_primary_10_1103_PhysRevE_102_043301 crossref_primary_10_1063_5_0033870 crossref_primary_10_1016_j_neunet_2021_05_004 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1063/1.4979665 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1089-7682 |
ExternalDocumentID | 28456169 |
Genre | Journal Article |
GroupedDBID | --- -~X .DC 0ZJ 1UP 2-P 29B 4.4 53G 5VS 6TJ 8WZ A6W AAAAW AABDS AAEUA AAPUP AAYIH ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NEUPN NPM NPSNA O-B P2P RDFOP RIP RNS ROL RQS TAE WH7 WHG |
ID | FETCH-LOGICAL-c383t-d8bda57f8279db843a97bae61a264b08b21ea5ad7745fea1eb0fcc920b546cc02 |
IngestDate | Wed Feb 19 02:40:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-d8bda57f8279db843a97bae61a264b08b21ea5ad7745fea1eb0fcc920b546cc02 |
ORCID | 0000000190677821 0000000230950256 |
PMID | 28456169 |
ParticipantIDs | pubmed_primary_28456169 |
PublicationCentury | 2000 |
PublicationDate | 2017-Apr |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-Apr |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Chaos (Woodbury, N.Y.) |
PublicationTitleAlternate | Chaos |
PublicationYear | 2017 |
SSID | ssj0001235 |
Score | 2.6183295 |
Snippet | Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 041102 |
Title | Reservoir observers: Model-free inference of unmeasured variables in chaotic systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28456169 |
Volume | 27 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWKiQuVaE8SmnlA4dWVSCJ83C4QdUWIbXqYVG5ofEjYgVsVrvLQ_x6xo84KaJV6SWy4iSKPF8mM-OZbwjZqUEnRaF4JCHVNloVcRAqSirJUwZlrC1d0_cfxdFJdnyanw4Gt_3qkrnYlfdP1pX8j1TxHMrVVMk-Q7LhoXgCxyhfPKKE8fhPMjZpc9ObxkT6hRmZ_g3o4Zv-ZpdRPdXa5lo5Hlk0Cq_HVy4iqD7doItsiqZsNqw8h8bwts567OUteQFO2bjsr6YJe-6hOsvn8lzbHY7z0d0oIO2nCclfuDTckdJ60sHHER0cTnu4_Daa-v2oNjO1H4zAH1yXw6KdAo15FaEL85uGddX_HklZT13GGVof6ZOaHE0nE1TYzaoSPbK8fw2u5OTKihT_rWj_uV4vf599RKrdTi2QBXQvTL9UE-RZbkNzLG9JqAq2F97BEEf7-x45IdYYGb4iL70XQQ8cJFbIQI9XyZLN5pWzVbLiNfaMfvC04h9fk2FACw1o2acdVmjACm1q2mGFBqzgFdRjhXqsrJGTr1-Gn48i31MjkoyzeaS4UJCXNU_LSgmeMahKAbpIAC1jEXORJhpyUOgV5LWGRIu4lrJKY5FnhZRxuk4Wx81YbxIKBYvxEVwWucjQygPOFDoAAKBTphh_QzbcGp1NHHHKWbt6W3-ceUuWO1htkxc1fqn6HZp9c_HeCukBbr5YDQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reservoir+observers%3A+Model-free+inference+of+unmeasured+variables+in+chaotic+systems&rft.jtitle=Chaos+%28Woodbury%2C+N.Y.%29&rft.au=Lu%2C+Zhixin&rft.au=Pathak%2C+Jaideep&rft.au=Hunt%2C+Brian&rft.au=Girvan%2C+Michelle&rft.date=2017-04-01&rft.eissn=1089-7682&rft.volume=27&rft.issue=4&rft.spage=041102&rft_id=info:doi/10.1063%2F1.4979665&rft_id=info%3Apmid%2F28456169&rft_id=info%3Apmid%2F28456169&rft.externalDocID=28456169 |