Outliers detection methods in wireless sensor networks

Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literatu...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 52; no. 4; pp. 2411 - 2436
Main Authors Gil, Paulo, Martins, Hugo, Januário, Fábio
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0269-2821
1573-7462
DOI10.1007/s10462-018-9618-2

Cover

Abstract Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literature, a comprehensive empirical assessment in the context of local online detection in wireless sensor networks is still missing. The present work aims at filling this gap by offering an empirical evaluation of two state-of-the-art online detection methods. The first methodology is based on a Least Squares-Support Vector Machine technique, along with a sliding window-based learning algorithm, while the second approach relies on Principal Component Analysis and on the robust orthonormal projection approximation subspace tracking with rank-1 modification. The performance and implementability of these methods are evaluated using a generated non-stationary time-series and a test-bed consisting of a benchmark three-tank system and a wireless sensor network, where deployed algorithms are implemented under a multi-agent framework.
AbstractList Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literature, a comprehensive empirical assessment in the context of local online detection in wireless sensor networks is still missing. The present work aims at filling this gap by offering an empirical evaluation of two state-of-the-art online detection methods. The first methodology is based on a Least Squares-Support Vector Machine technique, along with a sliding window-based learning algorithm, while the second approach relies on Principal Component Analysis and on the robust orthonormal projection approximation subspace tracking with rank-1 modification. The performance and implementability of these methods are evaluated using a generated non-stationary time-series and a test-bed consisting of a benchmark three-tank system and a wireless sensor network, where deployed algorithms are implemented under a multi-agent framework.
Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literature, a comprehensive empirical assessment in the context of local online detection in wireless sensor networks is still missing. The present work aims at filling this gap by offering an empirical evaluation of two state-of-the-art online detection methods. The first methodology is based on a Least Squares-Support Vector Machine technique, along with a sliding window-based learning algorithm, while the second approach relies on Principal Component Analysis and on the robust orthonormal projection approximation subspace tracking with rank-1 modification. The performance and implementability of these methods are evaluated using a generated non-stationary time-series and a test-bed consisting of a benchmark three-tank system and a wireless sensor network, where deployed algorithms are implemented under a multi-agent framework.
Audience Academic
Author Martins, Hugo
Gil, Paulo
Januário, Fábio
Author_xml – sequence: 1
  givenname: Paulo
  orcidid: 0000-0003-0937-4044
  surname: Gil
  fullname: Gil, Paulo
  email: psg@fct.unl.pt
  organization: Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, CTS-UNINOVA, Universidade NOVA de Lisboa, CISUC, University of Coimbra
– sequence: 2
  givenname: Hugo
  surname: Martins
  fullname: Martins, Hugo
  organization: Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa
– sequence: 3
  givenname: Fábio
  surname: Januário
  fullname: Januário, Fábio
  organization: Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa
BookMark eNp9kMtKAzEUhoNUsFYfwN2A69HcJpdlKd5AcKPrkGbOaHSa1CRFfHtTxoUISiCBw__lnPMdo1mIARA6I_iCYCwvM8Fc0BYT1WpRL3qA5qSTrJW1PENzTIVuqaLkCB3n_Iox7ihncyQedmX0kHLTQwFXfAzNBspL7HPjQ_PhE4yQc5Mh5JiaAOUjprd8gg4HO2Y4_X4X6On66nF1294_3NytlvetY4qVtldKaVB0LbDqOBGSw9rpYaDrrueWEdELgaWTgnLrwA60AzxoWeeWDKwmbIHOp3-3Kb7vIBfzGncp1JaGEd1hyklt9E-KaM0p1pTqmrqYUs92BOPDEEuyrp4eNt5VnYOv9aUk1VLHFK-AnACXYs4JBuN8sXtFFfSjIdjs3ZvJvanuzd69oZUkv8ht8hubPv9l6MTkmg3PkH4s8Sf0BWunlio
CitedBy_id crossref_primary_10_3390_app11104657
crossref_primary_10_1049_cmu2_12231
crossref_primary_10_1088_1742_6596_2171_1_012053
crossref_primary_10_1007_s11277_024_10930_w
crossref_primary_10_3390_fi14100297
crossref_primary_10_1007_s40747_021_00442_6
crossref_primary_10_3390_s24196377
crossref_primary_10_1016_j_cosrev_2023_100554
crossref_primary_10_1109_JIOT_2021_3114259
crossref_primary_10_1063_1_5109375
crossref_primary_10_1016_j_bspc_2021_102553
crossref_primary_10_3390_s21248465
crossref_primary_10_1007_s11277_021_08132_9
crossref_primary_10_1002_ett_4888
crossref_primary_10_1016_j_inffus_2022_10_019
Cites_doi 10.1109/COMST.2015.2494502
10.1080/13658816.2012.654493
10.1023/B:AIRE.0000045502.10941.a9
10.1016/S0893-6080(98)00100-2
10.1109/TKDE.2011.261
10.1016/j.jnca.2015.11.016
10.1109/TKDE.2013.184
10.1016/S1389-1286(01)00302-4
10.1109/72.80202
10.1109/97.823526
10.1007/s10462-015-9444-8
10.1109/TCST.2013.2288519
10.1214/aoms/1177729698
10.1109/TSP.2005.861072
10.1016/j.jnca.2011.03.004
10.1109/78.365290
10.1109/TKDE.2012.99
10.1109/SURV.2010.021510.00088
10.1007/s10115-011-0474-5
10.1016/j.adhoc.2012.11.001
10.1109/TIM.2012.2186654
10.1016/j.jvolgeores.2014.02.023
10.1007/978-3-319-47578-3_4
10.1109/TSP.2005.851098
10.1007/978-1-4419-9096-9
10.1007/s00500-012-0937-y
10.3390/s140610432
10.1109/TIT.2006.881713
10.1177/001316446002000116
10.1002/elan.201300150
10.1007/s10462-013-9395-x
10.1002/adma.201505118
10.1109/LCN.2004.38
10.1109/CCDC.2011.5968820
10.1016/j.sigpro.2005.09.027
10.1145/2684103.2684105
10.1002/app.44780
10.1007/978-3-319-22093-2_15
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
COPYRIGHT 2019 Springer
Artificial Intelligence Review is a copyright of Springer, (2018). All Rights Reserved.
Copyright Springer Nature B.V. Dec 2019
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: COPYRIGHT 2019 Springer
– notice: Artificial Intelligence Review is a copyright of Springer, (2018). All Rights Reserved.
– notice: Copyright Springer Nature B.V. Dec 2019
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
PSYQQ
Q9U
PRINS
DOI 10.1007/s10462-018-9618-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest Central China
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 2436
ExternalDocumentID A718215384
10_1007_s10462_018_9618_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRQQA
Q9U
PRINS
PUEGO
ID FETCH-LOGICAL-c383t-d8889e82b608541674ebc9ff2b5d4a316d6607c7624aceaf25e0f9757373ea913
IEDL.DBID 8FG
ISSN 0269-2821
IngestDate Sat Aug 23 14:19:23 EDT 2025
Wed Aug 13 08:35:32 EDT 2025
Tue Jun 10 20:08:28 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 01:23:24 EDT 2025
Fri Feb 21 02:37:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords PCA and subspace tracking
Gaussian kernel
Online implementation
Outliers detection
Least-Squares Support Vector Machine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-d8889e82b608541674ebc9ff2b5d4a316d6607c7624aceaf25e0f9757373ea913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0937-4044
PQID 1994209229
PQPubID 36790
PageCount 26
ParticipantIDs proquest_journals_3195024138
proquest_journals_1994209229
gale_infotracacademiconefile_A718215384
crossref_citationtrail_10_1007_s10462_018_9618_2
crossref_primary_10_1007_s10462_018_9618_2
springer_journals_10_1007_s10462_018_9618_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2019
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Jolliffe (CR24) 2002
Berlinet, Thomas-Agnan (CR6) 2004
Buczak, Guven (CR8) 2016; 18
CR17
Zhang, Meratnia, Havinga (CR40) 2010; 12
Abed-Meraim, Chkeif, Hua (CR1) 2000; 7
CR15
Faria, Gonçalves, de Carvalho, Gama (CR16) 2016; 45
CR14
Ha, Wang, Chen (CR21) 2013; 17
Bartlett (CR5) 1951; 22
CR11
Hayat, Marty (CR22) 2014; 14
Shahid, Naqvi, Qaisar (CR34) 2015; 43
Steinwart, Hush, Scovel (CR35) 2006; 52
Roberts, Saffell, Oppenheimer, Lurton (CR33) 2014; 281
Yang (CR38) 1995; 43
Gupta, Gao, Aggarwal, Han (CR20) 2014; 26
Gil, Santos, Cardoso (CR18) 2014; 22
Aggarwal (CR2) 2017
Chan, Wu, Tsui (CR10) 2012; 61
Govindarajan, Abinaya (CR19) 2014; 4
Desimoni, Brunetti (CR12) 2013; 25
Lee, Yeh, Wang (CR26) 2013; 25
Kaiser (CR25) 1960; 20
Liu, Kadirkamanathan, Billings (CR28) 1998; 11
Wu, Wang (CR36) 2013; 25
Branch, Giannella, Szymanski, Wolff, Kargupta (CR7) 2013; 34
Rim, Bae, Chen, De Marco, Yang (CR32) 2016; 28
CR29
Ahmed, Mahmood, Hu (CR3) 2016; 60
Akyildiz, Su, Sankarasubramaniam, Cayirci (CR4) 2002; 38
Hodge, Austin (CR23) 2004; 22
CR27
Narendra, Parthasarathy (CR30) 1990; 1
Pratt (CR31) 1991
Chan, Wen, Ho (CR9) 2006; 54
Xie, Han, Tian, Parvin (CR37) 2011; 34
Desobry, Davy, Doncarli (CR13) 2005; 53
Zhang, Hamm, Meratnia, Stein, van de Voort, Havinga (CR39) 2012; 26
Zhang, Meratnia, Havinga (CR41) 2013; 11
V Hodge (9618_CR23) 2004; 22
Y Zhang (9618_CR39) 2012; 26
JW Branch (9618_CR7) 2013; 34
9618_CR17
S-C Chan (9618_CR9) 2006; 54
T Roberts (9618_CR33) 2014; 281
B Yang (9618_CR38) 1995; 43
K Abed-Meraim (9618_CR1) 2000; 7
I Steinwart (9618_CR35) 2006; 52
N Shahid (9618_CR34) 2015; 43
M Gupta (9618_CR20) 2014; 26
M Govindarajan (9618_CR19) 2014; 4
YS Rim (9618_CR32) 2016; 28
KS Narendra (9618_CR30) 1990; 1
S-C Chan (9618_CR10) 2012; 61
9618_CR15
MS Bartlett (9618_CR5) 1951; 22
9618_CR14
GP Liu (9618_CR28) 1998; 11
W Pratt (9618_CR31) 1991
9618_CR11
M Ha (9618_CR21) 2013; 17
A Berlinet (9618_CR6) 2004
CC Aggarwal (9618_CR2) 2017
M Ahmed (9618_CR3) 2016; 60
ER Faria (9618_CR16) 2016; 45
HF Kaiser (9618_CR25) 1960; 20
AL Buczak (9618_CR8) 2016; 18
A Hayat (9618_CR22) 2014; 14
Y Zhang (9618_CR41) 2013; 11
I Akyildiz (9618_CR4) 2002; 38
M Xie (9618_CR37) 2011; 34
E Desimoni (9618_CR12) 2013; 25
F Desobry (9618_CR13) 2005; 53
YJ Lee (9618_CR26) 2013; 25
S Wu (9618_CR36) 2013; 25
9618_CR27
cr-split#-9618_CR29.2
I Jolliffe (9618_CR24) 2002
cr-split#-9618_CR29.1
Y Zhang (9618_CR40) 2010; 12
P Gil (9618_CR18) 2014; 22
References_xml – volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  end-page: 1176
  ident: CR8
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2015.2494502
– volume: 26
  start-page: 1373
  issue: 8
  year: 2012
  end-page: 1392
  ident: CR39
  article-title: Statistics-based outlier detection for wireless sensor networks
  publication-title: Int J Geogr Inf Sci
  doi: 10.1080/13658816.2012.654493
– volume: 22
  start-page: 85
  issue: 2
  year: 2004
  end-page: 126
  ident: CR23
  article-title: A survey of outlier detection methodologies
  publication-title: Artif Intell Rev
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– ident: CR14
– volume: 11
  start-page: 1645
  issue: 9
  year: 1998
  end-page: 1657
  ident: CR28
  article-title: On-line identification of nonlinear systems using volterra polynomial basis function neural networks
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00100-2
– ident: CR29
– volume: 25
  start-page: 589
  issue: 3
  year: 2013
  end-page: 602
  ident: CR36
  article-title: Information-theoretic outlier detection for large-scale categorical data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2011.261
– volume: 60
  start-page: 19
  year: 2016
  end-page: 31
  ident: CR3
  article-title: A survey of network anomaly detection techniques
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.11.016
– volume: 26
  start-page: 2250
  issue: 9
  year: 2014
  end-page: 2267
  ident: CR20
  article-title: Outlier detection for temporal data: a survey
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.184
– volume: 38
  start-page: 393
  year: 2002
  end-page: 422
  ident: CR4
  article-title: Wireless sensor networks: a survey
  publication-title: Comput Netw
  doi: 10.1016/S1389-1286(01)00302-4
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  end-page: 27
  ident: CR30
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80202
– volume: 7
  start-page: 60
  issue: 3
  year: 2000
  end-page: 62
  ident: CR1
  article-title: Fast orthonormal past algorithm
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/97.823526
– volume: 45
  start-page: 235
  issue: 2
  year: 2016
  end-page: 269
  ident: CR16
  article-title: Novelty detection in data streams
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-015-9444-8
– volume: 22
  start-page: 1589
  issue: 4
  year: 2014
  end-page: 1596
  ident: CR18
  article-title: Dealing with outliers in wireless sensor networks: an oil refinery application
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2013.2288519
– ident: CR27
– volume: 22
  start-page: 107
  year: 1951
  end-page: 111
  ident: CR5
  article-title: An inverse matrix adjustment arising in discriminant analysis
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729698
– volume: 54
  start-page: 105
  issue: 1
  year: 2006
  end-page: 116
  ident: CR9
  article-title: A robust past algorithm for subspace tracking in impulsive noise
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2005.861072
– volume: 34
  start-page: 1302
  issue: 4
  year: 2011
  end-page: 1325
  ident: CR37
  article-title: Anomaly detection in wireless sensor networks: a survey
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2011.03.004
– volume: 43
  start-page: 95
  issue: 1
  year: 1995
  end-page: 107
  ident: CR38
  article-title: Projection approximation subspace tracking
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.365290
– volume: 25
  start-page: 1460
  issue: 7
  year: 2013
  end-page: 1470
  ident: CR26
  article-title: Anomaly detection via online oversampling principal component analysis
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.99
– volume: 12
  start-page: 159
  issue: 2
  year: 2010
  end-page: 170
  ident: CR40
  article-title: Outlier detection techniques for wireless sensor networks: a survey
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/SURV.2010.021510.00088
– volume: 34
  start-page: 23
  issue: 1
  year: 2013
  end-page: 54
  ident: CR7
  article-title: Innetwork outlier detection in wireless sensor networks
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0474-5
– volume: 11
  start-page: 1062
  issue: 3
  year: 2013
  end-page: 1074
  ident: CR41
  article-title: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2012.11.001
– volume: 61
  start-page: 1703
  issue: 6
  year: 2012
  end-page: 1718
  ident: CR10
  article-title: Robust recursive eigendecomposition and subspace-based algorithms with application to fault detection in wireless sensor networks
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2186654
– ident: CR15
– volume: 281
  start-page: 85
  year: 2014
  end-page: 96
  ident: CR33
  article-title: Electrochemical sensors applied to pollution monitoring: measurement error and gas ratio biasa volcano plume case study
  publication-title: J Volcanol Geoth Res
  doi: 10.1016/j.jvolgeores.2014.02.023
– ident: CR17
– start-page: 111
  year: 2017
  end-page: 147
  ident: CR2
  article-title: Proximity-based outlier detection
  publication-title: Outlier analysis
  doi: 10.1007/978-3-319-47578-3_4
– ident: CR11
– volume: 53
  start-page: 2961
  issue: 8
  year: 2005
  end-page: 2974
  ident: CR13
  article-title: An online kernel change detection algorithm
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2005.851098
– year: 2004
  ident: CR6
  publication-title: Reproducing kernel hilbert spaces in probability and statistics
  doi: 10.1007/978-1-4419-9096-9
– volume: 17
  start-page: 635
  issue: 4
  year: 2013
  end-page: 641
  ident: CR21
  article-title: The support vector machine based on intuitionistic fuzzy number and kernel function
  publication-title: Soft Comput
  doi: 10.1007/s00500-012-0937-y
– volume: 14
  start-page: 10432
  issue: 6
  year: 2014
  end-page: 10453
  ident: CR22
  article-title: Disposable screen printed electrochemical sensors: tools for environmental monitoring
  publication-title: Sensors
  doi: 10.3390/s140610432
– volume: 52
  start-page: 4635
  issue: 10
  year: 2006
  end-page: 4643
  ident: CR35
  article-title: An explicit description of the reproducing kernel hilbert spaces of gaussian rbf kernels
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2006.881713
– year: 1991
  ident: CR31
  publication-title: Digital image processing
– volume: 20
  start-page: 141
  issue: 1
  year: 1960
  end-page: 151
  ident: CR25
  article-title: The application of electronic computers to factor analysis
  publication-title: Educ Psychol Measur
  doi: 10.1177/001316446002000116
– year: 2002
  ident: CR24
  publication-title: Principal component analysis
– volume: 25
  start-page: 1645
  issue: 7
  year: 2013
  end-page: 1651
  ident: CR12
  article-title: Presenting analytical performances of electrochemical sensors. some suggestions
  publication-title: Electroanalysis
  doi: 10.1002/elan.201300150
– volume: 4
  start-page: 929
  issue: 2
  year: 2014
  end-page: 932
  ident: CR19
  article-title: An outlier detection approach with data mining in wireless sensor network
  publication-title: Int J Curr Eng Technol
– volume: 43
  start-page: 515
  issue: 4
  year: 2015
  end-page: 563
  ident: CR34
  article-title: One-class support vector machines: analysis of outlier detection for wireless sensor networks in harsh environments
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-013-9395-x
– volume: 28
  start-page: 4415
  issue: 22
  year: 2016
  end-page: 4440
  ident: CR32
  article-title: Recent progress in materials and devices toward printable and flexible sensors
  publication-title: Adv Mater
  doi: 10.1002/adma.201505118
– volume-title: Reproducing kernel hilbert spaces in probability and statistics
  year: 2004
  ident: 9618_CR6
  doi: 10.1007/978-1-4419-9096-9
– volume: 61
  start-page: 1703
  issue: 6
  year: 2012
  ident: 9618_CR10
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2186654
– start-page: 111
  volume-title: Outlier analysis
  year: 2017
  ident: 9618_CR2
  doi: 10.1007/978-3-319-47578-3_4
– volume: 28
  start-page: 4415
  issue: 22
  year: 2016
  ident: 9618_CR32
  publication-title: Adv Mater
  doi: 10.1002/adma.201505118
– ident: 9618_CR14
  doi: 10.1109/LCN.2004.38
– volume: 25
  start-page: 1645
  issue: 7
  year: 2013
  ident: 9618_CR12
  publication-title: Electroanalysis
  doi: 10.1002/elan.201300150
– volume: 43
  start-page: 515
  issue: 4
  year: 2015
  ident: 9618_CR34
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-013-9395-x
– volume: 25
  start-page: 1460
  issue: 7
  year: 2013
  ident: 9618_CR26
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.99
– volume-title: Digital image processing
  year: 1991
  ident: 9618_CR31
– volume: 26
  start-page: 1373
  issue: 8
  year: 2012
  ident: 9618_CR39
  publication-title: Int J Geogr Inf Sci
  doi: 10.1080/13658816.2012.654493
– volume: 281
  start-page: 85
  year: 2014
  ident: 9618_CR33
  publication-title: J Volcanol Geoth Res
  doi: 10.1016/j.jvolgeores.2014.02.023
– volume: 4
  start-page: 929
  issue: 2
  year: 2014
  ident: 9618_CR19
  publication-title: Int J Curr Eng Technol
– ident: 9618_CR15
  doi: 10.1109/CCDC.2011.5968820
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  ident: 9618_CR30
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80202
– volume: 34
  start-page: 23
  issue: 1
  year: 2013
  ident: 9618_CR7
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0474-5
– ident: 9618_CR11
  doi: 10.1016/j.sigpro.2005.09.027
– volume: 17
  start-page: 635
  issue: 4
  year: 2013
  ident: 9618_CR21
  publication-title: Soft Comput
  doi: 10.1007/s00500-012-0937-y
– volume: 11
  start-page: 1062
  issue: 3
  year: 2013
  ident: 9618_CR41
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2012.11.001
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 9618_CR8
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2015.2494502
– volume: 22
  start-page: 85
  issue: 2
  year: 2004
  ident: 9618_CR23
  publication-title: Artif Intell Rev
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– volume: 22
  start-page: 1589
  issue: 4
  year: 2014
  ident: 9618_CR18
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2013.2288519
– volume: 20
  start-page: 141
  issue: 1
  year: 1960
  ident: 9618_CR25
  publication-title: Educ Psychol Measur
  doi: 10.1177/001316446002000116
– volume: 12
  start-page: 159
  issue: 2
  year: 2010
  ident: 9618_CR40
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/SURV.2010.021510.00088
– volume-title: Principal component analysis
  year: 2002
  ident: 9618_CR24
– volume: 26
  start-page: 2250
  issue: 9
  year: 2014
  ident: 9618_CR20
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.184
– volume: 52
  start-page: 4635
  issue: 10
  year: 2006
  ident: 9618_CR35
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2006.881713
– volume: 25
  start-page: 589
  issue: 3
  year: 2013
  ident: 9618_CR36
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2011.261
– volume: 34
  start-page: 1302
  issue: 4
  year: 2011
  ident: 9618_CR37
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2011.03.004
– volume: 43
  start-page: 95
  issue: 1
  year: 1995
  ident: 9618_CR38
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.365290
– volume: 14
  start-page: 10432
  issue: 6
  year: 2014
  ident: 9618_CR22
  publication-title: Sensors
  doi: 10.3390/s140610432
– volume: 11
  start-page: 1645
  issue: 9
  year: 1998
  ident: 9618_CR28
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00100-2
– volume: 53
  start-page: 2961
  issue: 8
  year: 2005
  ident: 9618_CR13
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2005.851098
– ident: #cr-split#-9618_CR29.2
– volume: 38
  start-page: 393
  year: 2002
  ident: 9618_CR4
  publication-title: Comput Netw
  doi: 10.1016/S1389-1286(01)00302-4
– volume: 22
  start-page: 107
  year: 1951
  ident: 9618_CR5
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729698
– ident: 9618_CR17
  doi: 10.1145/2684103.2684105
– volume: 7
  start-page: 60
  issue: 3
  year: 2000
  ident: 9618_CR1
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/97.823526
– volume: 60
  start-page: 19
  year: 2016
  ident: 9618_CR3
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.11.016
– volume: 54
  start-page: 105
  issue: 1
  year: 2006
  ident: 9618_CR9
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2005.861072
– volume: 45
  start-page: 235
  issue: 2
  year: 2016
  ident: 9618_CR16
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-015-9444-8
– ident: 9618_CR27
  doi: 10.1002/app.44780
– ident: #cr-split#-9618_CR29.1
  doi: 10.1007/978-3-319-22093-2_15
SSID ssj0005243
Score 2.322831
Snippet Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2411
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Computer Science
Data analysis
Data collection
Data mining
Decision making
Empirical analysis
Machine learning
Methods
Multiagent systems
Outliers (statistics)
Principal components analysis
Rankings
Remote sensors
Sensors
Support vector machines
Time series
Wireless networks
Wireless sensor networks
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQduHCGzEYKAckJFCnNm3T5jihjQkEXDZpnKK0TSXE1KG1u_DrsdcWxhhIu_TSJErt2LFr-zPAJUGaodUQWX5Ef6uk1laYaINea5ryMCb4EoroPj6Jwci7H_vjqo47r7Pd65DkQlMvFbt5gtIIUEAFPlDvNn0nlGEDmt27l4feUmZHmSzHhbTQo3DqYOa6RX5cR6tK-Vd0dHHp9HdhWG-3zDV568yLqBN_rCA5bvg9e7BTGaGsW56afdgy2QHs1g0eWCXvhyCe58WEemWzxBSLnK2MlS2nc_aaMYI5nqCmZDn6wtMZy8qU8vwIRv3e8HZgVY0WrBgd1MJK0A2WJuSRQAPMo7oEE8USmRX5iaddRyRC2EGMetPTsdEp942dysAP3MA1WjruMTSyaWZOgOGNzzVPhR8FjpdKWwuZEgRN4qGpFaaiBXZNbxVXKOTUDGOivvGTiS4K6aKILoq34PprynsJwfHf4CtioiLxxHVjXVUZ4O4I6Ep18S7mpOW9FrRrPqtKbnNFSMnclpzLta9dappLkciwBTc1V5dm_7Wr041Gn8E2mmWyTJppQ6OYzc05mj5FdFEd9U_hu_YP
  priority: 102
  providerName: Springer Nature
Title Outliers detection methods in wireless sensor networks
URI https://link.springer.com/article/10.1007/s10462-018-9618-2
https://www.proquest.com/docview/1994209229
https://www.proquest.com/docview/3195024138
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4QwEJ6oe_Hi27g-Nj2YmGiIUKDQk1l1V6OuGnUTPTUFSmKyYVXw_zuzFN96aQ9QaKadV2f6DcA2QZqh1ZA4YUKnVVJrJ860Qa81z3mcEnwJRXQHl-J0GJzdh_f2wK20aZWNTJwI6myc0hn5PmHYcldyLg-enh2qGkXRVVtCYxpaHmoa2udx_-RTikedNceFdNC18JqoZn11LhCUlIDsLrDhX_TSd-n8I0w60T79BZizZiPr1uu8CFOmWIL5piQDsxy6DOLqtRpRdWuWmWqSZVWwukh0yR4LRsDEI5RtrETvdfzCijoJvFyBYb93d3Tq2NIIToouZeVk6LhKE_NEoMkU0E0Ck6QSyZuEWaB9T2RCuFGKki7QqdE5D42byyiM_Mg3Wnr-KswU48KsAUMdzTXPRZhEXpBLVwuZE2hMFqBxFOeiDW5DGJVa3HAqXzFSH4jHREuFtFRES8XbsPs-5KkGzfjv5R2itiKGwu-m2t4LwNkRNJXqovbkJJeDNmw2C6Isp5XqY1_8-tinMrcUO4zbsNes4afRf81q_f9_bcAsWk6yzmvZhJnq5dVsoXVSJZ3JFuxAq3s8uLil_uThvIf9Ye_y-gafDrwrbIe8-wYOxONI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6lyaG9lNKHSKFlD0WVWll11uu194AqWhIF8mhVgcRtWdtrCSlyIHaE-FP8RmZiuwmU5sbFF3vXq9nZeezMfAPwiSDN0GqIHD-i2ypljBMmxqLXmqY8jAm-hCK6o7Hsn4rjM_-sAbd1LQylVdYycSGok2lMd-TfCMOWu4pz9f3yyqGuURRdrVtolGwxsDfX6LLl-0eHuL97nPe6Jz_7TtVVwInRGyucBH0-ZUMeSbQ2BCXh2yhWuLLIT4TxOjKR0g1iFBLCxNak3LduqgI_8ALPGtXxcN5n0BJU0dqE1o_u-PeflaSSMk-PS-WgM9Op46hlsZ6QlAaBAkbig9_ThA_1wT-B2YW-672Cl5Whyg5KztqEhs1ew0bdBIJVMuENyF_zYkL9tFlii0VeV8bKttQ5u8gYQSFPUJqyHP3l6YxlZdp5_hZOn4Rs76CZTTO7BQytAm54Kv0o6IhUuUaqlGBqEoHmWJjKNrg1YXRcIZVTw4yJXmIsEy010lITLTVvw5e_Qy5LmI51H38mams6wjhvbKpKBFwdgWHpA9TXnDSBaMNOvSG6Otu5XnLio689aqxL0cqwDV_rPVwZ_b9VvV__r1143j8ZDfXwaDzYhhdot6kyq2YHmsVsbj-gbVREHyuGZHD-1GfgDiulGlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QHzxFldXzYMiKMVu2qbNg8iirvfxoOBbTNsEhKWrtiL-NX-dM9vWW998KZReYTKdI_PlG4AVojTDqCF2gphWq6TWTpRqg1mrtTxKiL6EKrqnZ-Lgyj-6Dq4H4KXeC0Owytom9g112ktojXyTOGy5KzmXm7aCRVzsdrbv7h3qIEWV1rqdRqkix-b5CdO3fOtwF-d6lfPO3uXOgVN1GHASzMwKJ8X8T5qIxwIjD58A-SZOJI4yDlJfey2RCuGGCRoMXydGWx4Y18owCL3QM1q2PHzvIAzjqaTEL-rsf4CXlIg9LqSDaU2rrqiW2_Z8QYAINDUCD_yTT_zqGb6VaPuerzMBY1XIytqljk3CgMmmYLxuB8Eq6zAN4vyx6FJnbZaaoo_wyljZoDpntxkjUuQu2lWWY-bce2BZCUDPZ-DqX4Q2C0NZLzNzwDA-4JpbEcRhy7fS1UJaIqxJfQzMIisa4NaCUUnFWU6tM7rqnW2ZZKlQlopkqXgD1t8euSsJO_66eY2krehnxvcmutqTgKMjWizVRs_NySf4DWjWE6KqvzxX7zr542WPWuxS3TJqwEY9hx-e_m1U839_axlGUPPVyeHZ8QKMYgAnS3hNE4aKh0eziEFSES_1tZHBzX-r_yuXDh0l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outliers+detection+methods+in+wireless+sensor+networks&rft.jtitle=The+Artificial+intelligence+review&rft.au=Gil%2C+Paulo&rft.au=Martins%2C+Hugo&rft.au=Janu%C3%A1rio%2C+F%C3%A1bio&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=52&rft.issue=4&rft.spage=2411&rft.epage=2436&rft_id=info:doi/10.1007%2Fs10462-018-9618-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon