Outliers detection methods in wireless sensor networks
Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literatu...
Saved in:
Published in | The Artificial intelligence review Vol. 52; no. 4; pp. 2411 - 2436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0269-2821 1573-7462 |
DOI | 10.1007/s10462-018-9618-2 |
Cover
Abstract | Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literature, a comprehensive empirical assessment in the context of local online detection in wireless sensor networks is still missing. The present work aims at filling this gap by offering an empirical evaluation of two state-of-the-art online detection methods. The first methodology is based on a Least Squares-Support Vector Machine technique, along with a sliding window-based learning algorithm, while the second approach relies on Principal Component Analysis and on the robust orthonormal projection approximation subspace tracking with rank-1 modification. The performance and implementability of these methods are evaluated using a generated non-stationary time-series and a test-bed consisting of a benchmark three-tank system and a wireless sensor network, where deployed algorithms are implemented under a multi-agent framework. |
---|---|
AbstractList | Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literature, a comprehensive empirical assessment in the context of local online detection in wireless sensor networks is still missing. The present work aims at filling this gap by offering an empirical evaluation of two state-of-the-art online detection methods. The first methodology is based on a Least Squares-Support Vector Machine technique, along with a sliding window-based learning algorithm, while the second approach relies on Principal Component Analysis and on the robust orthonormal projection approximation subspace tracking with rank-1 modification. The performance and implementability of these methods are evaluated using a generated non-stationary time-series and a test-bed consisting of a benchmark three-tank system and a wireless sensor network, where deployed algorithms are implemented under a multi-agent framework. Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for assessing its running conditions or for data-based decision-making. Although a significant number of studies on this subject can be found in literature, a comprehensive empirical assessment in the context of local online detection in wireless sensor networks is still missing. The present work aims at filling this gap by offering an empirical evaluation of two state-of-the-art online detection methods. The first methodology is based on a Least Squares-Support Vector Machine technique, along with a sliding window-based learning algorithm, while the second approach relies on Principal Component Analysis and on the robust orthonormal projection approximation subspace tracking with rank-1 modification. The performance and implementability of these methods are evaluated using a generated non-stationary time-series and a test-bed consisting of a benchmark three-tank system and a wireless sensor network, where deployed algorithms are implemented under a multi-agent framework. |
Audience | Academic |
Author | Martins, Hugo Gil, Paulo Januário, Fábio |
Author_xml | – sequence: 1 givenname: Paulo orcidid: 0000-0003-0937-4044 surname: Gil fullname: Gil, Paulo email: psg@fct.unl.pt organization: Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, CTS-UNINOVA, Universidade NOVA de Lisboa, CISUC, University of Coimbra – sequence: 2 givenname: Hugo surname: Martins fullname: Martins, Hugo organization: Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa – sequence: 3 givenname: Fábio surname: Januário fullname: Januário, Fábio organization: Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa |
BookMark | eNp9kMtKAzEUhoNUsFYfwN2A69HcJpdlKd5AcKPrkGbOaHSa1CRFfHtTxoUISiCBw__lnPMdo1mIARA6I_iCYCwvM8Fc0BYT1WpRL3qA5qSTrJW1PENzTIVuqaLkCB3n_Iox7ihncyQedmX0kHLTQwFXfAzNBspL7HPjQ_PhE4yQc5Mh5JiaAOUjprd8gg4HO2Y4_X4X6On66nF1294_3NytlvetY4qVtldKaVB0LbDqOBGSw9rpYaDrrueWEdELgaWTgnLrwA60AzxoWeeWDKwmbIHOp3-3Kb7vIBfzGncp1JaGEd1hyklt9E-KaM0p1pTqmrqYUs92BOPDEEuyrp4eNt5VnYOv9aUk1VLHFK-AnACXYs4JBuN8sXtFFfSjIdjs3ZvJvanuzd69oZUkv8ht8hubPv9l6MTkmg3PkH4s8Sf0BWunlio |
CitedBy_id | crossref_primary_10_3390_app11104657 crossref_primary_10_1049_cmu2_12231 crossref_primary_10_1088_1742_6596_2171_1_012053 crossref_primary_10_1007_s11277_024_10930_w crossref_primary_10_3390_fi14100297 crossref_primary_10_1007_s40747_021_00442_6 crossref_primary_10_3390_s24196377 crossref_primary_10_1016_j_cosrev_2023_100554 crossref_primary_10_1109_JIOT_2021_3114259 crossref_primary_10_1063_1_5109375 crossref_primary_10_1016_j_bspc_2021_102553 crossref_primary_10_3390_s21248465 crossref_primary_10_1007_s11277_021_08132_9 crossref_primary_10_1002_ett_4888 crossref_primary_10_1016_j_inffus_2022_10_019 |
Cites_doi | 10.1109/COMST.2015.2494502 10.1080/13658816.2012.654493 10.1023/B:AIRE.0000045502.10941.a9 10.1016/S0893-6080(98)00100-2 10.1109/TKDE.2011.261 10.1016/j.jnca.2015.11.016 10.1109/TKDE.2013.184 10.1016/S1389-1286(01)00302-4 10.1109/72.80202 10.1109/97.823526 10.1007/s10462-015-9444-8 10.1109/TCST.2013.2288519 10.1214/aoms/1177729698 10.1109/TSP.2005.861072 10.1016/j.jnca.2011.03.004 10.1109/78.365290 10.1109/TKDE.2012.99 10.1109/SURV.2010.021510.00088 10.1007/s10115-011-0474-5 10.1016/j.adhoc.2012.11.001 10.1109/TIM.2012.2186654 10.1016/j.jvolgeores.2014.02.023 10.1007/978-3-319-47578-3_4 10.1109/TSP.2005.851098 10.1007/978-1-4419-9096-9 10.1007/s00500-012-0937-y 10.3390/s140610432 10.1109/TIT.2006.881713 10.1177/001316446002000116 10.1002/elan.201300150 10.1007/s10462-013-9395-x 10.1002/adma.201505118 10.1109/LCN.2004.38 10.1109/CCDC.2011.5968820 10.1016/j.sigpro.2005.09.027 10.1145/2684103.2684105 10.1002/app.44780 10.1007/978-3-319-22093-2_15 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V., part of Springer Nature 2018 COPYRIGHT 2019 Springer Artificial Intelligence Review is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. Dec 2019 |
Copyright_xml | – notice: Springer Science+Business Media B.V., part of Springer Nature 2018 – notice: COPYRIGHT 2019 Springer – notice: Artificial Intelligence Review is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. Dec 2019 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA PSYQQ Q9U PRINS |
DOI | 10.1007/s10462-018-9618-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest Central China |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7462 |
EndPage | 2436 |
ExternalDocumentID | A718215384 10_1007_s10462_018_9618_2 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRQQA Q9U PRINS PUEGO |
ID | FETCH-LOGICAL-c383t-d8889e82b608541674ebc9ff2b5d4a316d6607c7624aceaf25e0f9757373ea913 |
IEDL.DBID | 8FG |
ISSN | 0269-2821 |
IngestDate | Sat Aug 23 14:19:23 EDT 2025 Wed Aug 13 08:35:32 EDT 2025 Tue Jun 10 20:08:28 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 01:23:24 EDT 2025 Fri Feb 21 02:37:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | PCA and subspace tracking Gaussian kernel Online implementation Outliers detection Least-Squares Support Vector Machine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-d8889e82b608541674ebc9ff2b5d4a316d6607c7624aceaf25e0f9757373ea913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0937-4044 |
PQID | 1994209229 |
PQPubID | 36790 |
PageCount | 26 |
ParticipantIDs | proquest_journals_3195024138 proquest_journals_1994209229 gale_infotracacademiconefile_A718215384 crossref_citationtrail_10_1007_s10462_018_9618_2 crossref_primary_10_1007_s10462_018_9618_2 springer_journals_10_1007_s10462_018_9618_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Science and Engineering Journal |
PublicationTitle | The Artificial intelligence review |
PublicationTitleAbbrev | Artif Intell Rev |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | Jolliffe (CR24) 2002 Berlinet, Thomas-Agnan (CR6) 2004 Buczak, Guven (CR8) 2016; 18 CR17 Zhang, Meratnia, Havinga (CR40) 2010; 12 Abed-Meraim, Chkeif, Hua (CR1) 2000; 7 CR15 Faria, Gonçalves, de Carvalho, Gama (CR16) 2016; 45 CR14 Ha, Wang, Chen (CR21) 2013; 17 Bartlett (CR5) 1951; 22 CR11 Hayat, Marty (CR22) 2014; 14 Shahid, Naqvi, Qaisar (CR34) 2015; 43 Steinwart, Hush, Scovel (CR35) 2006; 52 Roberts, Saffell, Oppenheimer, Lurton (CR33) 2014; 281 Yang (CR38) 1995; 43 Gupta, Gao, Aggarwal, Han (CR20) 2014; 26 Gil, Santos, Cardoso (CR18) 2014; 22 Aggarwal (CR2) 2017 Chan, Wu, Tsui (CR10) 2012; 61 Govindarajan, Abinaya (CR19) 2014; 4 Desimoni, Brunetti (CR12) 2013; 25 Lee, Yeh, Wang (CR26) 2013; 25 Kaiser (CR25) 1960; 20 Liu, Kadirkamanathan, Billings (CR28) 1998; 11 Wu, Wang (CR36) 2013; 25 Branch, Giannella, Szymanski, Wolff, Kargupta (CR7) 2013; 34 Rim, Bae, Chen, De Marco, Yang (CR32) 2016; 28 CR29 Ahmed, Mahmood, Hu (CR3) 2016; 60 Akyildiz, Su, Sankarasubramaniam, Cayirci (CR4) 2002; 38 Hodge, Austin (CR23) 2004; 22 CR27 Narendra, Parthasarathy (CR30) 1990; 1 Pratt (CR31) 1991 Chan, Wen, Ho (CR9) 2006; 54 Xie, Han, Tian, Parvin (CR37) 2011; 34 Desobry, Davy, Doncarli (CR13) 2005; 53 Zhang, Hamm, Meratnia, Stein, van de Voort, Havinga (CR39) 2012; 26 Zhang, Meratnia, Havinga (CR41) 2013; 11 V Hodge (9618_CR23) 2004; 22 Y Zhang (9618_CR39) 2012; 26 JW Branch (9618_CR7) 2013; 34 9618_CR17 S-C Chan (9618_CR9) 2006; 54 T Roberts (9618_CR33) 2014; 281 B Yang (9618_CR38) 1995; 43 K Abed-Meraim (9618_CR1) 2000; 7 I Steinwart (9618_CR35) 2006; 52 N Shahid (9618_CR34) 2015; 43 M Gupta (9618_CR20) 2014; 26 M Govindarajan (9618_CR19) 2014; 4 YS Rim (9618_CR32) 2016; 28 KS Narendra (9618_CR30) 1990; 1 S-C Chan (9618_CR10) 2012; 61 9618_CR15 MS Bartlett (9618_CR5) 1951; 22 9618_CR14 GP Liu (9618_CR28) 1998; 11 W Pratt (9618_CR31) 1991 9618_CR11 M Ha (9618_CR21) 2013; 17 A Berlinet (9618_CR6) 2004 CC Aggarwal (9618_CR2) 2017 M Ahmed (9618_CR3) 2016; 60 ER Faria (9618_CR16) 2016; 45 HF Kaiser (9618_CR25) 1960; 20 AL Buczak (9618_CR8) 2016; 18 A Hayat (9618_CR22) 2014; 14 Y Zhang (9618_CR41) 2013; 11 I Akyildiz (9618_CR4) 2002; 38 M Xie (9618_CR37) 2011; 34 E Desimoni (9618_CR12) 2013; 25 F Desobry (9618_CR13) 2005; 53 YJ Lee (9618_CR26) 2013; 25 S Wu (9618_CR36) 2013; 25 9618_CR27 cr-split#-9618_CR29.2 I Jolliffe (9618_CR24) 2002 cr-split#-9618_CR29.1 Y Zhang (9618_CR40) 2010; 12 P Gil (9618_CR18) 2014; 22 |
References_xml | – volume: 18 start-page: 1153 issue: 2 year: 2016 end-page: 1176 ident: CR8 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2015.2494502 – volume: 26 start-page: 1373 issue: 8 year: 2012 end-page: 1392 ident: CR39 article-title: Statistics-based outlier detection for wireless sensor networks publication-title: Int J Geogr Inf Sci doi: 10.1080/13658816.2012.654493 – volume: 22 start-page: 85 issue: 2 year: 2004 end-page: 126 ident: CR23 article-title: A survey of outlier detection methodologies publication-title: Artif Intell Rev doi: 10.1023/B:AIRE.0000045502.10941.a9 – ident: CR14 – volume: 11 start-page: 1645 issue: 9 year: 1998 end-page: 1657 ident: CR28 article-title: On-line identification of nonlinear systems using volterra polynomial basis function neural networks publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00100-2 – ident: CR29 – volume: 25 start-page: 589 issue: 3 year: 2013 end-page: 602 ident: CR36 article-title: Information-theoretic outlier detection for large-scale categorical data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2011.261 – volume: 60 start-page: 19 year: 2016 end-page: 31 ident: CR3 article-title: A survey of network anomaly detection techniques publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2015.11.016 – volume: 26 start-page: 2250 issue: 9 year: 2014 end-page: 2267 ident: CR20 article-title: Outlier detection for temporal data: a survey publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.184 – volume: 38 start-page: 393 year: 2002 end-page: 422 ident: CR4 article-title: Wireless sensor networks: a survey publication-title: Comput Netw doi: 10.1016/S1389-1286(01)00302-4 – volume: 1 start-page: 4 issue: 1 year: 1990 end-page: 27 ident: CR30 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80202 – volume: 7 start-page: 60 issue: 3 year: 2000 end-page: 62 ident: CR1 article-title: Fast orthonormal past algorithm publication-title: IEEE Signal Process Lett doi: 10.1109/97.823526 – volume: 45 start-page: 235 issue: 2 year: 2016 end-page: 269 ident: CR16 article-title: Novelty detection in data streams publication-title: Artif Intell Rev doi: 10.1007/s10462-015-9444-8 – volume: 22 start-page: 1589 issue: 4 year: 2014 end-page: 1596 ident: CR18 article-title: Dealing with outliers in wireless sensor networks: an oil refinery application publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2013.2288519 – ident: CR27 – volume: 22 start-page: 107 year: 1951 end-page: 111 ident: CR5 article-title: An inverse matrix adjustment arising in discriminant analysis publication-title: Ann Math Stat doi: 10.1214/aoms/1177729698 – volume: 54 start-page: 105 issue: 1 year: 2006 end-page: 116 ident: CR9 article-title: A robust past algorithm for subspace tracking in impulsive noise publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2005.861072 – volume: 34 start-page: 1302 issue: 4 year: 2011 end-page: 1325 ident: CR37 article-title: Anomaly detection in wireless sensor networks: a survey publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2011.03.004 – volume: 43 start-page: 95 issue: 1 year: 1995 end-page: 107 ident: CR38 article-title: Projection approximation subspace tracking publication-title: IEEE Trans Signal Process doi: 10.1109/78.365290 – volume: 25 start-page: 1460 issue: 7 year: 2013 end-page: 1470 ident: CR26 article-title: Anomaly detection via online oversampling principal component analysis publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.99 – volume: 12 start-page: 159 issue: 2 year: 2010 end-page: 170 ident: CR40 article-title: Outlier detection techniques for wireless sensor networks: a survey publication-title: IEEE Commun Surv Tutor doi: 10.1109/SURV.2010.021510.00088 – volume: 34 start-page: 23 issue: 1 year: 2013 end-page: 54 ident: CR7 article-title: Innetwork outlier detection in wireless sensor networks publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0474-5 – volume: 11 start-page: 1062 issue: 3 year: 2013 end-page: 1074 ident: CR41 article-title: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2012.11.001 – volume: 61 start-page: 1703 issue: 6 year: 2012 end-page: 1718 ident: CR10 article-title: Robust recursive eigendecomposition and subspace-based algorithms with application to fault detection in wireless sensor networks publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2186654 – ident: CR15 – volume: 281 start-page: 85 year: 2014 end-page: 96 ident: CR33 article-title: Electrochemical sensors applied to pollution monitoring: measurement error and gas ratio biasa volcano plume case study publication-title: J Volcanol Geoth Res doi: 10.1016/j.jvolgeores.2014.02.023 – ident: CR17 – start-page: 111 year: 2017 end-page: 147 ident: CR2 article-title: Proximity-based outlier detection publication-title: Outlier analysis doi: 10.1007/978-3-319-47578-3_4 – ident: CR11 – volume: 53 start-page: 2961 issue: 8 year: 2005 end-page: 2974 ident: CR13 article-title: An online kernel change detection algorithm publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2005.851098 – year: 2004 ident: CR6 publication-title: Reproducing kernel hilbert spaces in probability and statistics doi: 10.1007/978-1-4419-9096-9 – volume: 17 start-page: 635 issue: 4 year: 2013 end-page: 641 ident: CR21 article-title: The support vector machine based on intuitionistic fuzzy number and kernel function publication-title: Soft Comput doi: 10.1007/s00500-012-0937-y – volume: 14 start-page: 10432 issue: 6 year: 2014 end-page: 10453 ident: CR22 article-title: Disposable screen printed electrochemical sensors: tools for environmental monitoring publication-title: Sensors doi: 10.3390/s140610432 – volume: 52 start-page: 4635 issue: 10 year: 2006 end-page: 4643 ident: CR35 article-title: An explicit description of the reproducing kernel hilbert spaces of gaussian rbf kernels publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2006.881713 – year: 1991 ident: CR31 publication-title: Digital image processing – volume: 20 start-page: 141 issue: 1 year: 1960 end-page: 151 ident: CR25 article-title: The application of electronic computers to factor analysis publication-title: Educ Psychol Measur doi: 10.1177/001316446002000116 – year: 2002 ident: CR24 publication-title: Principal component analysis – volume: 25 start-page: 1645 issue: 7 year: 2013 end-page: 1651 ident: CR12 article-title: Presenting analytical performances of electrochemical sensors. some suggestions publication-title: Electroanalysis doi: 10.1002/elan.201300150 – volume: 4 start-page: 929 issue: 2 year: 2014 end-page: 932 ident: CR19 article-title: An outlier detection approach with data mining in wireless sensor network publication-title: Int J Curr Eng Technol – volume: 43 start-page: 515 issue: 4 year: 2015 end-page: 563 ident: CR34 article-title: One-class support vector machines: analysis of outlier detection for wireless sensor networks in harsh environments publication-title: Artif Intell Rev doi: 10.1007/s10462-013-9395-x – volume: 28 start-page: 4415 issue: 22 year: 2016 end-page: 4440 ident: CR32 article-title: Recent progress in materials and devices toward printable and flexible sensors publication-title: Adv Mater doi: 10.1002/adma.201505118 – volume-title: Reproducing kernel hilbert spaces in probability and statistics year: 2004 ident: 9618_CR6 doi: 10.1007/978-1-4419-9096-9 – volume: 61 start-page: 1703 issue: 6 year: 2012 ident: 9618_CR10 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2186654 – start-page: 111 volume-title: Outlier analysis year: 2017 ident: 9618_CR2 doi: 10.1007/978-3-319-47578-3_4 – volume: 28 start-page: 4415 issue: 22 year: 2016 ident: 9618_CR32 publication-title: Adv Mater doi: 10.1002/adma.201505118 – ident: 9618_CR14 doi: 10.1109/LCN.2004.38 – volume: 25 start-page: 1645 issue: 7 year: 2013 ident: 9618_CR12 publication-title: Electroanalysis doi: 10.1002/elan.201300150 – volume: 43 start-page: 515 issue: 4 year: 2015 ident: 9618_CR34 publication-title: Artif Intell Rev doi: 10.1007/s10462-013-9395-x – volume: 25 start-page: 1460 issue: 7 year: 2013 ident: 9618_CR26 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.99 – volume-title: Digital image processing year: 1991 ident: 9618_CR31 – volume: 26 start-page: 1373 issue: 8 year: 2012 ident: 9618_CR39 publication-title: Int J Geogr Inf Sci doi: 10.1080/13658816.2012.654493 – volume: 281 start-page: 85 year: 2014 ident: 9618_CR33 publication-title: J Volcanol Geoth Res doi: 10.1016/j.jvolgeores.2014.02.023 – volume: 4 start-page: 929 issue: 2 year: 2014 ident: 9618_CR19 publication-title: Int J Curr Eng Technol – ident: 9618_CR15 doi: 10.1109/CCDC.2011.5968820 – volume: 1 start-page: 4 issue: 1 year: 1990 ident: 9618_CR30 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80202 – volume: 34 start-page: 23 issue: 1 year: 2013 ident: 9618_CR7 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0474-5 – ident: 9618_CR11 doi: 10.1016/j.sigpro.2005.09.027 – volume: 17 start-page: 635 issue: 4 year: 2013 ident: 9618_CR21 publication-title: Soft Comput doi: 10.1007/s00500-012-0937-y – volume: 11 start-page: 1062 issue: 3 year: 2013 ident: 9618_CR41 publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2012.11.001 – volume: 18 start-page: 1153 issue: 2 year: 2016 ident: 9618_CR8 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2015.2494502 – volume: 22 start-page: 85 issue: 2 year: 2004 ident: 9618_CR23 publication-title: Artif Intell Rev doi: 10.1023/B:AIRE.0000045502.10941.a9 – volume: 22 start-page: 1589 issue: 4 year: 2014 ident: 9618_CR18 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2013.2288519 – volume: 20 start-page: 141 issue: 1 year: 1960 ident: 9618_CR25 publication-title: Educ Psychol Measur doi: 10.1177/001316446002000116 – volume: 12 start-page: 159 issue: 2 year: 2010 ident: 9618_CR40 publication-title: IEEE Commun Surv Tutor doi: 10.1109/SURV.2010.021510.00088 – volume-title: Principal component analysis year: 2002 ident: 9618_CR24 – volume: 26 start-page: 2250 issue: 9 year: 2014 ident: 9618_CR20 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.184 – volume: 52 start-page: 4635 issue: 10 year: 2006 ident: 9618_CR35 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2006.881713 – volume: 25 start-page: 589 issue: 3 year: 2013 ident: 9618_CR36 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2011.261 – volume: 34 start-page: 1302 issue: 4 year: 2011 ident: 9618_CR37 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2011.03.004 – volume: 43 start-page: 95 issue: 1 year: 1995 ident: 9618_CR38 publication-title: IEEE Trans Signal Process doi: 10.1109/78.365290 – volume: 14 start-page: 10432 issue: 6 year: 2014 ident: 9618_CR22 publication-title: Sensors doi: 10.3390/s140610432 – volume: 11 start-page: 1645 issue: 9 year: 1998 ident: 9618_CR28 publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00100-2 – volume: 53 start-page: 2961 issue: 8 year: 2005 ident: 9618_CR13 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2005.851098 – ident: #cr-split#-9618_CR29.2 – volume: 38 start-page: 393 year: 2002 ident: 9618_CR4 publication-title: Comput Netw doi: 10.1016/S1389-1286(01)00302-4 – volume: 22 start-page: 107 year: 1951 ident: 9618_CR5 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729698 – ident: 9618_CR17 doi: 10.1145/2684103.2684105 – volume: 7 start-page: 60 issue: 3 year: 2000 ident: 9618_CR1 publication-title: IEEE Signal Process Lett doi: 10.1109/97.823526 – volume: 60 start-page: 19 year: 2016 ident: 9618_CR3 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2015.11.016 – volume: 54 start-page: 105 issue: 1 year: 2006 ident: 9618_CR9 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2005.861072 – volume: 45 start-page: 235 issue: 2 year: 2016 ident: 9618_CR16 publication-title: Artif Intell Rev doi: 10.1007/s10462-015-9444-8 – ident: 9618_CR27 doi: 10.1002/app.44780 – ident: #cr-split#-9618_CR29.1 doi: 10.1007/978-3-319-22093-2_15 |
SSID | ssj0005243 |
Score | 2.322831 |
Snippet | Detection and accommodation of outliers are crucial in a number of contexts, in which collected data from a given environment is subsequently used for... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2411 |
SubjectTerms | Algorithms Analysis Artificial Intelligence Computer Science Data analysis Data collection Data mining Decision making Empirical analysis Machine learning Methods Multiagent systems Outliers (statistics) Principal components analysis Rankings Remote sensors Sensors Support vector machines Time series Wireless networks Wireless sensor networks |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQduHCGzEYKAckJFCnNm3T5jihjQkEXDZpnKK0TSXE1KG1u_DrsdcWxhhIu_TSJErt2LFr-zPAJUGaodUQWX5Ef6uk1laYaINea5ryMCb4EoroPj6Jwci7H_vjqo47r7Pd65DkQlMvFbt5gtIIUEAFPlDvNn0nlGEDmt27l4feUmZHmSzHhbTQo3DqYOa6RX5cR6tK-Vd0dHHp9HdhWG-3zDV568yLqBN_rCA5bvg9e7BTGaGsW56afdgy2QHs1g0eWCXvhyCe58WEemWzxBSLnK2MlS2nc_aaMYI5nqCmZDn6wtMZy8qU8vwIRv3e8HZgVY0WrBgd1MJK0A2WJuSRQAPMo7oEE8USmRX5iaddRyRC2EGMetPTsdEp942dysAP3MA1WjruMTSyaWZOgOGNzzVPhR8FjpdKWwuZEgRN4qGpFaaiBXZNbxVXKOTUDGOivvGTiS4K6aKILoq34PprynsJwfHf4CtioiLxxHVjXVUZ4O4I6Ep18S7mpOW9FrRrPqtKbnNFSMnclpzLta9dappLkciwBTc1V5dm_7Wr041Gn8E2mmWyTJppQ6OYzc05mj5FdFEd9U_hu_YP priority: 102 providerName: Springer Nature |
Title | Outliers detection methods in wireless sensor networks |
URI | https://link.springer.com/article/10.1007/s10462-018-9618-2 https://www.proquest.com/docview/1994209229 https://www.proquest.com/docview/3195024138 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4QwEJ6oe_Hi27g-Nj2YmGiIUKDQk1l1V6OuGnUTPTUFSmKyYVXw_zuzFN96aQ9QaKadV2f6DcA2QZqh1ZA4YUKnVVJrJ860Qa81z3mcEnwJRXQHl-J0GJzdh_f2wK20aZWNTJwI6myc0hn5PmHYcldyLg-enh2qGkXRVVtCYxpaHmoa2udx_-RTikedNceFdNC18JqoZn11LhCUlIDsLrDhX_TSd-n8I0w60T79BZizZiPr1uu8CFOmWIL5piQDsxy6DOLqtRpRdWuWmWqSZVWwukh0yR4LRsDEI5RtrETvdfzCijoJvFyBYb93d3Tq2NIIToouZeVk6LhKE_NEoMkU0E0Ck6QSyZuEWaB9T2RCuFGKki7QqdE5D42byyiM_Mg3Wnr-KswU48KsAUMdzTXPRZhEXpBLVwuZE2hMFqBxFOeiDW5DGJVa3HAqXzFSH4jHREuFtFRES8XbsPs-5KkGzfjv5R2itiKGwu-m2t4LwNkRNJXqovbkJJeDNmw2C6Isp5XqY1_8-tinMrcUO4zbsNes4afRf81q_f9_bcAsWk6yzmvZhJnq5dVsoXVSJZ3JFuxAq3s8uLil_uThvIf9Ye_y-gafDrwrbIe8-wYOxONI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6lyaG9lNKHSKFlD0WVWll11uu194AqWhIF8mhVgcRtWdtrCSlyIHaE-FP8RmZiuwmU5sbFF3vXq9nZeezMfAPwiSDN0GqIHD-i2ypljBMmxqLXmqY8jAm-hCK6o7Hsn4rjM_-sAbd1LQylVdYycSGok2lMd-TfCMOWu4pz9f3yyqGuURRdrVtolGwxsDfX6LLl-0eHuL97nPe6Jz_7TtVVwInRGyucBH0-ZUMeSbQ2BCXh2yhWuLLIT4TxOjKR0g1iFBLCxNak3LduqgI_8ALPGtXxcN5n0BJU0dqE1o_u-PeflaSSMk-PS-WgM9Op46hlsZ6QlAaBAkbig9_ThA_1wT-B2YW-672Cl5Whyg5KztqEhs1ew0bdBIJVMuENyF_zYkL9tFlii0VeV8bKttQ5u8gYQSFPUJqyHP3l6YxlZdp5_hZOn4Rs76CZTTO7BQytAm54Kv0o6IhUuUaqlGBqEoHmWJjKNrg1YXRcIZVTw4yJXmIsEy010lITLTVvw5e_Qy5LmI51H38mams6wjhvbKpKBFwdgWHpA9TXnDSBaMNOvSG6Otu5XnLio689aqxL0cqwDV_rPVwZ_b9VvV__r1143j8ZDfXwaDzYhhdot6kyq2YHmsVsbj-gbVREHyuGZHD-1GfgDiulGlU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QHzxFldXzYMiKMVu2qbNg8iirvfxoOBbTNsEhKWrtiL-NX-dM9vWW998KZReYTKdI_PlG4AVojTDqCF2gphWq6TWTpRqg1mrtTxKiL6EKrqnZ-Lgyj-6Dq4H4KXeC0Owytom9g112ktojXyTOGy5KzmXm7aCRVzsdrbv7h3qIEWV1rqdRqkix-b5CdO3fOtwF-d6lfPO3uXOgVN1GHASzMwKJ8X8T5qIxwIjD58A-SZOJI4yDlJfey2RCuGGCRoMXydGWx4Y18owCL3QM1q2PHzvIAzjqaTEL-rsf4CXlIg9LqSDaU2rrqiW2_Z8QYAINDUCD_yTT_zqGb6VaPuerzMBY1XIytqljk3CgMmmYLxuB8Eq6zAN4vyx6FJnbZaaoo_wyljZoDpntxkjUuQu2lWWY-bce2BZCUDPZ-DqX4Q2C0NZLzNzwDA-4JpbEcRhy7fS1UJaIqxJfQzMIisa4NaCUUnFWU6tM7rqnW2ZZKlQlopkqXgD1t8euSsJO_66eY2krehnxvcmutqTgKMjWizVRs_NySf4DWjWE6KqvzxX7zr542WPWuxS3TJqwEY9hx-e_m1U839_axlGUPPVyeHZ8QKMYgAnS3hNE4aKh0eziEFSES_1tZHBzX-r_yuXDh0l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outliers+detection+methods+in+wireless+sensor+networks&rft.jtitle=The+Artificial+intelligence+review&rft.au=Gil%2C+Paulo&rft.au=Martins%2C+Hugo&rft.au=Janu%C3%A1rio%2C+F%C3%A1bio&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=52&rft.issue=4&rft.spage=2411&rft.epage=2436&rft_id=info:doi/10.1007%2Fs10462-018-9618-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |