Tangential-force detection ability of three-axis fingernail-color sensor aided by CNN
We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-di...
Saved in:
Published in | Robotica Vol. 41; no. 7; pp. 2050 - 2063 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0
$^\circ$
to 360
$^\circ$
directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an
$F_x$
-
$F_y$
plane within around
$\pm$
2.5
$^\circ$
error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies. |
---|---|
AbstractList | We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0\(^\circ\) to 360\(^\circ\) directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an \(F_x\)-\(F_y\) plane within around \(\pm\)2.5\(^\circ\) error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies. We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0 $^\circ$ to 360 $^\circ$ directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an $F_x$ - $F_y$ plane within around $\pm$ 2.5 $^\circ$ error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies. |
Author | Watanabe, Keisuke Komura, Hiraku Chen, Yandong Ohka, Masahiro |
Author_xml | – sequence: 1 givenname: Keisuke surname: Watanabe fullname: Watanabe, Keisuke organization: 1Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan – sequence: 2 givenname: Yandong surname: Chen fullname: Chen, Yandong organization: 1Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan – sequence: 3 givenname: Hiraku orcidid: 0000-0001-7540-9810 surname: Komura fullname: Komura, Hiraku organization: 2Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, Japan – sequence: 4 givenname: Masahiro orcidid: 0000-0001-5277-4356 surname: Ohka fullname: Ohka, Masahiro email: ohka@i.nagoya-u.ac.jp organization: 1Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan |
BookMark | eNp9kM1OwzAQhC1UJNrCA3CLxDmwtuM4OaKKP6kqB9pz5Djr4iqNi-1K9O1J1EpIIDjNYfbbnZ0JGXWuQ0KuKdxSoPLuDVjOhcwk4wDAoTwjY5rlZVrkeTEi48FOB_-CTELYAFBOMzkmq6Xq1thFq9rUOK8xaTCijtZ1iapta-MhcSaJ7x4xVZ82JMb2gO-UbVPtWueTgF3oRdkGm6Q-JLPF4pKcG9UGvDrplKweH5az53T--vQyu5-nmhc8pk3BjFEi0wIZb2rWAFIhZaMwZwJr4DJnSgsFZSE0aJXnJTJtDDUABbCaT8nNce_Ou489hlht3L7P1oaKFUxSLrL-0JTI45T2LgSPptI2quHF6Ps3KgrV0GH1q8OepD_Inbdb5Q__MvzEqG3tbbPG71B_U19Cj4Qw |
CitedBy_id | crossref_primary_10_1299_jamdsm_2025jamdsm0004 crossref_primary_10_7210_jrsj_42_843 crossref_primary_10_1017_S0263574724002194 crossref_primary_10_1088_1742_6596_2800_1_012009 |
Cites_doi | 10.1109/TMM.2015.2477680 10.1109/WHC.2011.5945506 10.5136/lifesupport.23.124 10.1109/HAPTIC.2010.5444669 10.1109/ICSensT.2015.7438392 10.3390/philosophies6030054 10.1007/s10462-020-09825-6 10.7210/jrsj.30.711 10.1109/TRA.2003.820931 10.1017/S0263574704001535 10.1007/978-4-431-54547-7_4 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0263574723000309 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1469-8668 |
EndPage | 2063 |
ExternalDocumentID | 10_1017_S0263574723000309 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .DC .FH 09C 09E 0E1 0R~ 123 29P 3V. 4.4 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ACBMC ACCHT ACETC ACGFS ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. MVM NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI ADMLS AFZFC AKMAY ANOYL CITATION PHGZM PHGZT 7SC 7SP 7TB 7XB 8AL 8FD 8FK F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c383t-d82ffa54c5e23db2d0e1577dae625eb03762ac5a0985c0ca669e2cff1f00802b3 |
IEDL.DBID | BENPR |
ISSN | 0263-5747 |
IngestDate | Sat Aug 16 21:31:33 EDT 2025 Tue Jul 01 00:58:55 EDT 2025 Thu Apr 24 23:06:12 EDT 2025 Wed Mar 13 05:48:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | sensor or actuator design tactile sensor haptic interfaces fingernail color tangential direction man-machine systems three-axis force convolution neural network |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-d82ffa54c5e23db2d0e1577dae625eb03762ac5a0985c0ca669e2cff1f00802b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5277-4356 0000-0001-7540-9810 |
PQID | 2827135438 |
PQPubID | 37292 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2827135438 crossref_citationtrail_10_1017_S0263574723000309 crossref_primary_10_1017_S0263574723000309 cambridge_journals_10_1017_S0263574723000309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Robotica |
PublicationTitleAlternate | Robotica |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2017; 53 2021; 6 2004; 20 2015; 17 2020; 53 2001; 6 2014; 15 2018 2014; 19 2011; 23 2012; 25 2005; 23 2012; 30 Adbulnabi (S0263574723000309_ref17) 2015; 17 S0263574723000309_ref19 Sakuma (S0263574723000309_ref15) 2018 Nakatani (S0263574723000309_ref2) 2014; 19 Krizhevsky (S0263574723000309_ref8) 2012; 25 Hinatsu (S0263574723000309_ref13) 2017; 53 S0263574723000309_ref1 S0263574723000309_ref3 Nomura (S0263574723000309_ref11) 2001; 6 S0263574723000309_ref5 S0263574723000309_ref4 S0263574723000309_ref7 S0263574723000309_ref6 S0263574723000309_ref21 S0263574723000309_ref10 Srivastava (S0263574723000309_ref9) 2014; 15 S0263574723000309_ref20 S0263574723000309_ref16 S0263574723000309_ref18 S0263574723000309_ref12 S0263574723000309_ref14 |
References_xml | – volume: 30 start-page: 711 issue: 7 year: 2012 end-page: 727 article-title: High-density conformable tactile sensing glove publication-title: J. Robot. Soc. Jpn. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 711 issue: 1 year: 2004 end-page: 717 article-title: Measurement of finger posture and three-axis fingertip touch using fingernail sensors publication-title: IEEE Trans. Robot. Autom. – volume: 6 start-page: 215 issue: 3 year: 2001 end-page: 220 article-title: The study of fingernail sensors for measuring finger forces and bending publication-title: TVRSJ – volume: 6 start-page: 54 issue: 3 year: 2021 article-title: Two experimental devices for record and playback of tactile data publication-title: Philosophies – volume: 53 start-page: 115 issue: 3 year: 2017 end-page: 124 article-title: Estimation of fingertip contact force by plethysmography in proximal part of finger publication-title: Med. Biol. Eng. – volume: 17 start-page: 1949 issue: 11 year: 2015 end-page: 1959 article-title: Multi-task CNN model for attribute prediction publication-title: IEEE Trans. Multimedia – volume: 23 start-page: 457 issue: 4 year: 2005 end-page: 465 article-title: An experimental optical three-axis tactile sensor for micro-robots publication-title: Robotica – volume: 23 start-page: 124 issue: 3 year: 2011 end-page: 129 article-title: Position dependency in photoplethysmographic sensor – comparison of adjoining PPG signals in light sources and measurement sites publication-title: J. Life Support Eng. – volume: 25 start-page: 84 issue: 2 year: 2012 end-page: 90 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neur. Inf. Proc. Syst. – start-page: 1 year: 2018 end-page: 11 article-title: Wearable nail deformation sensing for behavioral and biomechanical monitoring and human-computer interaction publication-title: Sci. Rep. – volume: 53 start-page: 5455 issue: 8 year: 2020 end-page: 5516 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. – volume: 19 start-page: 593 issue: 4 year: 2014 end-page: 603 article-title: TECHTILE workshop for sharing haptic experience publication-title: TVRSJ – volume: 17 start-page: 1949 year: 2015 ident: S0263574723000309_ref17 article-title: Multi-task CNN model for attribute prediction publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2015.2477680 – ident: S0263574723000309_ref14 doi: 10.1109/WHC.2011.5945506 – volume: 25 start-page: 84 year: 2012 ident: S0263574723000309_ref8 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neur. Inf. Proc. Syst. – volume: 15 start-page: 1929 year: 2014 ident: S0263574723000309_ref9 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: S0263574723000309_ref19 doi: 10.5136/lifesupport.23.124 – ident: S0263574723000309_ref16 doi: 10.1109/HAPTIC.2010.5444669 – ident: S0263574723000309_ref5 doi: 10.1109/ICSensT.2015.7438392 – ident: S0263574723000309_ref21 – ident: S0263574723000309_ref6 doi: 10.3390/philosophies6030054 – ident: S0263574723000309_ref20 – volume: 19 start-page: 593 year: 2014 ident: S0263574723000309_ref2 article-title: TECHTILE workshop for sharing haptic experience publication-title: TVRSJ – ident: S0263574723000309_ref18 – ident: S0263574723000309_ref10 doi: 10.1007/s10462-020-09825-6 – ident: S0263574723000309_ref1 – ident: S0263574723000309_ref7 doi: 10.7210/jrsj.30.711 – ident: S0263574723000309_ref12 doi: 10.1109/TRA.2003.820931 – volume: 53 start-page: 115 year: 2017 ident: S0263574723000309_ref13 article-title: Estimation of fingertip contact force by plethysmography in proximal part of finger publication-title: Med. Biol. Eng. – ident: S0263574723000309_ref4 doi: 10.1017/S0263574704001535 – ident: S0263574723000309_ref3 doi: 10.1007/978-4-431-54547-7_4 – volume: 6 start-page: 215 year: 2001 ident: S0263574723000309_ref11 article-title: The study of fingernail sensors for measuring finger forces and bending publication-title: TVRSJ – start-page: 1 year: 2018 ident: S0263574723000309_ref15 article-title: Wearable nail deformation sensing for behavioral and biomechanical monitoring and human-computer interaction publication-title: Sci. Rep. |
SSID | ssj0013147 |
Score | 2.3560553 |
Snippet | We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2050 |
SubjectTerms | Artificial neural networks Big Data Cameras CMOS Color Deep learning Evaluation Human subjects Light emitting diodes Measuring instruments Root-mean-square errors Sensors Strain gauges Three axis |
Title | Tangential-force detection ability of three-axis fingernail-color sensor aided by CNN |
URI | https://www.cambridge.org/core/product/identifier/S0263574723000309/type/journal_article https://www.proquest.com/docview/2827135438 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSwJBFD6kvtRDdCXLZB56iob26q5PYaZJpEQp-CZzBUFW0w3y33dmdr0R-LSwuwPLmbPnPt8HcBdoj6lAuZS5SlH8Ex3KZMgor0dKOFEUc2nODnd7tc4geBuGw7zgtsjHKlc20RpqORWmRv6IqYFhkwv8-Gn2TQ1rlOmu5hQaBSihCY7jIpSeW72Pz00fwbUUY5ho-DTEyHnV17Sg0QaHBe9hEG4bgtvoCrteatdIW8_TPoHjPGQkjWyPT-FAJWdwtAUkeA6DPrNnpFCZKEahQhGpUjtklZAMiHtJppqkuHGKst_xgmhbzkvYeEINbvWcLDCfxYtBjJSEL0mz17uAQbvVb3ZoTphABSaaKZWxpzULAxEqz5fck45ywyiSTGGWo7iDxsRjImROPQ6FI1itVlee0NrV9sgt9y-hmEwTdQVEx5x5Er07DzB5rnH06z4XkSd9JtFIsjI8rIU1ytV-McpGxqLRP9mWwVnJcyRy8HHDgTHZt-R-vWSWIW_se7my2qTN12xU5nr_4xs4NCzy2RRuBYrp_EfdYqyR8ioU4vZrFUqNl-77VzVXrz8wQdCL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQ9IB6tmjaUPZQL6qr22o6dA0IobQgN5JRI3Nx9zEqRIiclRjR_it_I7DomQZVy42TJ9lrW7OzONzsz3wB8i62QGGPIZYjIaSUGXJpEctVOUQdpminjaodvBq3eKP59m9xuwWNdC-PSKus90W_UZqrdGfkPcg1cN7k4ys5nf7nrGuWiq3ULjUot-rh4IJdtfnb1k-b3RIjur2Gnx5ddBbgmb6zkJhPWyiTWCYrIKGECDJM0NRLJFUAV0IoTUicyaGeJDrRstdootLWh9XWpKqLvvoGdOCJL7irTu5erqEXoG5qRWxPxhHB6HUX1FNWO9YXuEeT34cd1LoeXNvGlSfB2rrsHu0uAyi4qjdqHLSwO4P0abeEhjIbSV2SR6nLCvBqZwdKndBWsov1esKllJakJcvlvPGfWHx4WcjzhjiX7js3Je6aL46c0TC1YZzD4AKNXEeRH2C6mBX4CZjMlhSEsoWJy1VuKUESkdCpMJA1tybIB35-FlS8X2TyvEtTS_D_ZNiCo5ZnrJdW567gx2TTk9HnIrOL52PRys56k1d-sFPTz5sfH8LY3vLnOr68G_S_wzvWvr_J_m7Bd3t3jEaGcUn31qsXgz2vr8hN8jwpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tangential-force+detection+ability+of+three-axis+fingernail-color+sensor+aided+by+CNN&rft.jtitle=Robotica&rft.au=Watanabe%2C+Keisuke&rft.au=Chen%2C+Yandong&rft.au=Komura%2C+Hiraku&rft.au=Ohka%2C+Masahiro&rft.date=2023-07-01&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=41&rft.issue=7&rft.spage=2050&rft.epage=2063&rft_id=info:doi/10.1017%2FS0263574723000309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0263574723000309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon |