Tangential-force detection ability of three-axis fingernail-color sensor aided by CNN

We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-di...

Full description

Saved in:
Bibliographic Details
Published inRobotica Vol. 41; no. 7; pp. 2050 - 2063
Main Authors Watanabe, Keisuke, Chen, Yandong, Komura, Hiraku, Ohka, Masahiro
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0 $^\circ$ to 360 $^\circ$ directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an $F_x$ - $F_y$ plane within around $\pm$ 2.5 $^\circ$ error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies.
AbstractList We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0\(^\circ\) to 360\(^\circ\) directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an \(F_x\)-\(F_y\) plane within around \(\pm\)2.5\(^\circ\) error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies.
We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0 $^\circ$ to 360 $^\circ$ directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an $F_x$ - $F_y$ plane within around $\pm$ 2.5 $^\circ$ error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies.
Author Watanabe, Keisuke
Komura, Hiraku
Chen, Yandong
Ohka, Masahiro
Author_xml – sequence: 1
  givenname: Keisuke
  surname: Watanabe
  fullname: Watanabe, Keisuke
  organization: 1Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
– sequence: 2
  givenname: Yandong
  surname: Chen
  fullname: Chen, Yandong
  organization: 1Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
– sequence: 3
  givenname: Hiraku
  orcidid: 0000-0001-7540-9810
  surname: Komura
  fullname: Komura, Hiraku
  organization: 2Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, Japan
– sequence: 4
  givenname: Masahiro
  orcidid: 0000-0001-5277-4356
  surname: Ohka
  fullname: Ohka, Masahiro
  email: ohka@i.nagoya-u.ac.jp
  organization: 1Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
BookMark eNp9kM1OwzAQhC1UJNrCA3CLxDmwtuM4OaKKP6kqB9pz5Djr4iqNi-1K9O1J1EpIIDjNYfbbnZ0JGXWuQ0KuKdxSoPLuDVjOhcwk4wDAoTwjY5rlZVrkeTEi48FOB_-CTELYAFBOMzkmq6Xq1thFq9rUOK8xaTCijtZ1iapta-MhcSaJ7x4xVZ82JMb2gO-UbVPtWueTgF3oRdkGm6Q-JLPF4pKcG9UGvDrplKweH5az53T--vQyu5-nmhc8pk3BjFEi0wIZb2rWAFIhZaMwZwJr4DJnSgsFZSE0aJXnJTJtDDUABbCaT8nNce_Ou489hlht3L7P1oaKFUxSLrL-0JTI45T2LgSPptI2quHF6Ps3KgrV0GH1q8OepD_Inbdb5Q__MvzEqG3tbbPG71B_U19Cj4Qw
CitedBy_id crossref_primary_10_1299_jamdsm_2025jamdsm0004
crossref_primary_10_7210_jrsj_42_843
crossref_primary_10_1017_S0263574724002194
crossref_primary_10_1088_1742_6596_2800_1_012009
Cites_doi 10.1109/TMM.2015.2477680
10.1109/WHC.2011.5945506
10.5136/lifesupport.23.124
10.1109/HAPTIC.2010.5444669
10.1109/ICSensT.2015.7438392
10.3390/philosophies6030054
10.1007/s10462-020-09825-6
10.7210/jrsj.30.711
10.1109/TRA.2003.820931
10.1017/S0263574704001535
10.1007/978-4-431-54547-7_4
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0263574723000309
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1469-8668
EndPage 2063
ExternalDocumentID 10_1017_S0263574723000309
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
123
29P
3V.
4.4
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
MVM
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ADMLS
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
7SC
7SP
7TB
7XB
8AL
8FD
8FK
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c383t-d82ffa54c5e23db2d0e1577dae625eb03762ac5a0985c0ca669e2cff1f00802b3
IEDL.DBID BENPR
ISSN 0263-5747
IngestDate Sat Aug 16 21:31:33 EDT 2025
Tue Jul 01 00:58:55 EDT 2025
Thu Apr 24 23:06:12 EDT 2025
Wed Mar 13 05:48:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords sensor or actuator design
tactile sensor
haptic interfaces
fingernail color
tangential direction
man-machine systems
three-axis force
convolution neural network
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-d82ffa54c5e23db2d0e1577dae625eb03762ac5a0985c0ca669e2cff1f00802b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5277-4356
0000-0001-7540-9810
PQID 2827135438
PQPubID 37292
PageCount 14
ParticipantIDs proquest_journals_2827135438
crossref_citationtrail_10_1017_S0263574723000309
crossref_primary_10_1017_S0263574723000309
cambridge_journals_10_1017_S0263574723000309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Robotica
PublicationTitleAlternate Robotica
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2017; 53
2021; 6
2004; 20
2015; 17
2020; 53
2001; 6
2014; 15
2018
2014; 19
2011; 23
2012; 25
2005; 23
2012; 30
Adbulnabi (S0263574723000309_ref17) 2015; 17
S0263574723000309_ref19
Sakuma (S0263574723000309_ref15) 2018
Nakatani (S0263574723000309_ref2) 2014; 19
Krizhevsky (S0263574723000309_ref8) 2012; 25
Hinatsu (S0263574723000309_ref13) 2017; 53
S0263574723000309_ref1
S0263574723000309_ref3
Nomura (S0263574723000309_ref11) 2001; 6
S0263574723000309_ref5
S0263574723000309_ref4
S0263574723000309_ref7
S0263574723000309_ref6
S0263574723000309_ref21
S0263574723000309_ref10
Srivastava (S0263574723000309_ref9) 2014; 15
S0263574723000309_ref20
S0263574723000309_ref16
S0263574723000309_ref18
S0263574723000309_ref12
S0263574723000309_ref14
References_xml – volume: 30
  start-page: 711
  issue: 7
  year: 2012
  end-page: 727
  article-title: High-density conformable tactile sensing glove
  publication-title: J. Robot. Soc. Jpn.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 711
  issue: 1
  year: 2004
  end-page: 717
  article-title: Measurement of finger posture and three-axis fingertip touch using fingernail sensors
  publication-title: IEEE Trans. Robot. Autom.
– volume: 6
  start-page: 215
  issue: 3
  year: 2001
  end-page: 220
  article-title: The study of fingernail sensors for measuring finger forces and bending
  publication-title: TVRSJ
– volume: 6
  start-page: 54
  issue: 3
  year: 2021
  article-title: Two experimental devices for record and playback of tactile data
  publication-title: Philosophies
– volume: 53
  start-page: 115
  issue: 3
  year: 2017
  end-page: 124
  article-title: Estimation of fingertip contact force by plethysmography in proximal part of finger
  publication-title: Med. Biol. Eng.
– volume: 17
  start-page: 1949
  issue: 11
  year: 2015
  end-page: 1959
  article-title: Multi-task CNN model for attribute prediction
  publication-title: IEEE Trans. Multimedia
– volume: 23
  start-page: 457
  issue: 4
  year: 2005
  end-page: 465
  article-title: An experimental optical three-axis tactile sensor for micro-robots
  publication-title: Robotica
– volume: 23
  start-page: 124
  issue: 3
  year: 2011
  end-page: 129
  article-title: Position dependency in photoplethysmographic sensor – comparison of adjoining PPG signals in light sources and measurement sites
  publication-title: J. Life Support Eng.
– volume: 25
  start-page: 84
  issue: 2
  year: 2012
  end-page: 90
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neur. Inf. Proc. Syst.
– start-page: 1
  year: 2018
  end-page: 11
  article-title: Wearable nail deformation sensing for behavioral and biomechanical monitoring and human-computer interaction
  publication-title: Sci. Rep.
– volume: 53
  start-page: 5455
  issue: 8
  year: 2020
  end-page: 5516
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
– volume: 19
  start-page: 593
  issue: 4
  year: 2014
  end-page: 603
  article-title: TECHTILE workshop for sharing haptic experience
  publication-title: TVRSJ
– volume: 17
  start-page: 1949
  year: 2015
  ident: S0263574723000309_ref17
  article-title: Multi-task CNN model for attribute prediction
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2015.2477680
– ident: S0263574723000309_ref14
  doi: 10.1109/WHC.2011.5945506
– volume: 25
  start-page: 84
  year: 2012
  ident: S0263574723000309_ref8
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neur. Inf. Proc. Syst.
– volume: 15
  start-page: 1929
  year: 2014
  ident: S0263574723000309_ref9
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: S0263574723000309_ref19
  doi: 10.5136/lifesupport.23.124
– ident: S0263574723000309_ref16
  doi: 10.1109/HAPTIC.2010.5444669
– ident: S0263574723000309_ref5
  doi: 10.1109/ICSensT.2015.7438392
– ident: S0263574723000309_ref21
– ident: S0263574723000309_ref6
  doi: 10.3390/philosophies6030054
– ident: S0263574723000309_ref20
– volume: 19
  start-page: 593
  year: 2014
  ident: S0263574723000309_ref2
  article-title: TECHTILE workshop for sharing haptic experience
  publication-title: TVRSJ
– ident: S0263574723000309_ref18
– ident: S0263574723000309_ref10
  doi: 10.1007/s10462-020-09825-6
– ident: S0263574723000309_ref1
– ident: S0263574723000309_ref7
  doi: 10.7210/jrsj.30.711
– ident: S0263574723000309_ref12
  doi: 10.1109/TRA.2003.820931
– volume: 53
  start-page: 115
  year: 2017
  ident: S0263574723000309_ref13
  article-title: Estimation of fingertip contact force by plethysmography in proximal part of finger
  publication-title: Med. Biol. Eng.
– ident: S0263574723000309_ref4
  doi: 10.1017/S0263574704001535
– ident: S0263574723000309_ref3
  doi: 10.1007/978-4-431-54547-7_4
– volume: 6
  start-page: 215
  year: 2001
  ident: S0263574723000309_ref11
  article-title: The study of fingernail sensors for measuring finger forces and bending
  publication-title: TVRSJ
– start-page: 1
  year: 2018
  ident: S0263574723000309_ref15
  article-title: Wearable nail deformation sensing for behavioral and biomechanical monitoring and human-computer interaction
  publication-title: Sci. Rep.
SSID ssj0013147
Score 2.3560553
Snippet We create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2050
SubjectTerms Artificial neural networks
Big Data
Cameras
CMOS
Color
Deep learning
Evaluation
Human subjects
Light emitting diodes
Measuring instruments
Root-mean-square errors
Sensors
Strain gauges
Three axis
Title Tangential-force detection ability of three-axis fingernail-color sensor aided by CNN
URI https://www.cambridge.org/core/product/identifier/S0263574723000309/type/journal_article
https://www.proquest.com/docview/2827135438
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSwJBFD6kvtRDdCXLZB56iob26q5PYaZJpEQp-CZzBUFW0w3y33dmdr0R-LSwuwPLmbPnPt8HcBdoj6lAuZS5SlH8Ex3KZMgor0dKOFEUc2nODnd7tc4geBuGw7zgtsjHKlc20RpqORWmRv6IqYFhkwv8-Gn2TQ1rlOmu5hQaBSihCY7jIpSeW72Pz00fwbUUY5ho-DTEyHnV17Sg0QaHBe9hEG4bgtvoCrteatdIW8_TPoHjPGQkjWyPT-FAJWdwtAUkeA6DPrNnpFCZKEahQhGpUjtklZAMiHtJppqkuHGKst_xgmhbzkvYeEINbvWcLDCfxYtBjJSEL0mz17uAQbvVb3ZoTphABSaaKZWxpzULAxEqz5fck45ywyiSTGGWo7iDxsRjImROPQ6FI1itVlee0NrV9sgt9y-hmEwTdQVEx5x5Er07DzB5rnH06z4XkSd9JtFIsjI8rIU1ytV-McpGxqLRP9mWwVnJcyRy8HHDgTHZt-R-vWSWIW_se7my2qTN12xU5nr_4xs4NCzy2RRuBYrp_EfdYqyR8ioU4vZrFUqNl-77VzVXrz8wQdCL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQ9IB6tmjaUPZQL6qr22o6dA0IobQgN5JRI3Nx9zEqRIiclRjR_it_I7DomQZVy42TJ9lrW7OzONzsz3wB8i62QGGPIZYjIaSUGXJpEctVOUQdpminjaodvBq3eKP59m9xuwWNdC-PSKus90W_UZqrdGfkPcg1cN7k4ys5nf7nrGuWiq3ULjUot-rh4IJdtfnb1k-b3RIjur2Gnx5ddBbgmb6zkJhPWyiTWCYrIKGECDJM0NRLJFUAV0IoTUicyaGeJDrRstdootLWh9XWpKqLvvoGdOCJL7irTu5erqEXoG5qRWxPxhHB6HUX1FNWO9YXuEeT34cd1LoeXNvGlSfB2rrsHu0uAyi4qjdqHLSwO4P0abeEhjIbSV2SR6nLCvBqZwdKndBWsov1esKllJakJcvlvPGfWHx4WcjzhjiX7js3Je6aL46c0TC1YZzD4AKNXEeRH2C6mBX4CZjMlhSEsoWJy1VuKUESkdCpMJA1tybIB35-FlS8X2TyvEtTS_D_ZNiCo5ZnrJdW567gx2TTk9HnIrOL52PRys56k1d-sFPTz5sfH8LY3vLnOr68G_S_wzvWvr_J_m7Bd3t3jEaGcUn31qsXgz2vr8hN8jwpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tangential-force+detection+ability+of+three-axis+fingernail-color+sensor+aided+by+CNN&rft.jtitle=Robotica&rft.au=Watanabe%2C+Keisuke&rft.au=Chen%2C+Yandong&rft.au=Komura%2C+Hiraku&rft.au=Ohka%2C+Masahiro&rft.date=2023-07-01&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=41&rft.issue=7&rft.spage=2050&rft.epage=2063&rft_id=info:doi/10.1017%2FS0263574723000309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0263574723000309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon