A numerical study on the crack tip constraint of pipelines subject to extreme plastic bending
This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bendi...
Saved in:
Published in | Engineering fracture mechanics Vol. 78; no. 6; pp. 1201 - 1217 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0013-7944 1873-7315 |
DOI | 10.1016/j.engfracmech.2010.11.021 |
Cover
Loading…
Abstract | This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the
J–
Q two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a
K–
T modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. −1.4
<
Q
<
−0.4). Additionally,
Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed. |
---|---|
AbstractList | This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the J-Q two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a K-T modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. -1.4 < Q < -0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed. This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the J– Q two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a K– T modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. −1.4 < Q < −0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed. |
Author | Taheri, F. Nourpanah, N. |
Author_xml | – sequence: 1 givenname: N. surname: Nourpanah fullname: Nourpanah, N. – sequence: 2 givenname: F. surname: Taheri fullname: Taheri, F. email: farid.taheri@dal.ca |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24037151$$DView record in Pascal Francis |
BookMark | eNqNkMFq3DAQhkVJoJuk76AeSk-71Vi2JZ1KWJq2EOilOQYhS-NEW1tyJbk0b18tm0LpKacZhn--Yb4LchZiQELeAtsBg_7DYYfhYUzGzmgfdw07zmHHGnhFNiAF3woO3RnZMAa1V237mlzkfGCMiV6yDbm_pmGdMXlrJprL6p5oDLQ8IrUV-oMWv1AbQy7J-FBoHOniF5x8wEzzOhzQFloixd8l4Yx0mUwu3tIBg_Ph4Yqcj2bK-Oa5XpK7m0_f91-2t98-f91f324tl7xsHRcMZNNK4WAQrTLcttw50xuheolCNT0zo0LXdMqybuRMOMVgHETf8UG2_JK8P3GXFH-umIuefbY4TSZgXLOWvZItKNHU5LvnpMn15WouWJ_1kvxs0pNuWsYFdFBzH085m2LOCUdtfTHFx3A0MWlg-uhfH_Q__vXRvwbQ1X8lqP8If4-8ZHd_2sUq7ZfHpLP1GCw6n6px7aJ_AeUPAp6psA |
CODEN | EFMEAH |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2011_03_018 crossref_primary_10_1016_j_engfailanal_2017_02_003 crossref_primary_10_1016_j_euromechsol_2019_103840 crossref_primary_10_1016_j_tafmec_2020_102496 crossref_primary_10_1016_j_ijpvp_2013_03_009 crossref_primary_10_1590_0104_9224_si2301_03 crossref_primary_10_1016_j_engfracmech_2015_03_041 crossref_primary_10_1016_j_ijpvp_2017_12_002 crossref_primary_10_1016_j_engfracmech_2014_04_014 crossref_primary_10_1016_j_engfracmech_2013_10_022 crossref_primary_10_1111_ffe_12407 crossref_primary_10_1016_j_ijpvp_2024_105250 crossref_primary_10_1111_ffe_12233 crossref_primary_10_3934_matersci_2016_4_1321 crossref_primary_10_1111_ffe_12590 crossref_primary_10_1007_s11665_019_04335_1 crossref_primary_10_1016_j_engfracmech_2015_07_043 crossref_primary_10_1016_j_finmec_2024_100279 crossref_primary_10_1016_j_marstruc_2017_11_002 crossref_primary_10_1016_j_ijmecsci_2017_01_026 crossref_primary_10_1080_17445302_2022_2122165 crossref_primary_10_1115_1_4035313 crossref_primary_10_1016_j_marstruc_2013_08_003 crossref_primary_10_1016_j_nucengdes_2013_03_001 crossref_primary_10_1002_mdp2_133 crossref_primary_10_1520_JTE20130333 |
Cites_doi | 10.1520/STP18021S 10.1016/0022-5096(92)90057-9 10.1016/0022-5096(91)90029-N 10.1016/0022-5096(94)00067-F 10.1023/A:1007487911376 10.1016/0022-5096(68)90013-6 10.1016/j.engfracmech.2004.10.010 10.1016/j.engfracmech.2006.04.004 10.1115/1.3122769 10.1520/STP13698S 10.1016/j.engfracmech.2010.04.030 10.1115/OMAE2003-37370 10.1115/1.4011454 10.1115/1.2842121 10.1520/STP35830S 10.1016/0022-5096(91)90049-T 10.1115/IPC2002-27094 10.1016/0022-5096(68)90014-8 10.1115/1.2897135 10.1520/STP18020S 10.1016/0022-5096(81)90003-X 10.1115/1.3167187 10.1016/0013-7944(95)00033-R 10.1016/S0022-5096(97)00068-9 10.1016/j.ijpvp.2004.08.012 10.1007/BF00043119 10.2172/6068291 10.1016/0013-7944(84)90096-1 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.engfracmech.2010.11.021 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1873-7315 |
EndPage | 1217 |
ExternalDocumentID | 24037151 10_1016_j_engfracmech_2010_11_021 S0013794410004960 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c383t-d370182487d1b749a3c43dda6a7968e79260af9ed259c05f307d901fb7653b843 |
IEDL.DBID | .~1 |
ISSN | 0013-7944 |
IngestDate | Thu Jul 10 16:47:28 EDT 2025 Mon Jul 21 09:15:08 EDT 2025 Thu Apr 24 22:51:05 EDT 2025 Tue Jul 01 01:49:56 EDT 2025 Fri Feb 23 02:31:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Crack tip constraint Plastic bending Fracture Pipelines Integrity assessment Near field Constraint Structure integrity Modeling Finite element method Inelasticity Thick wall Crack tip Boundary layer Stress analysis Rupture Stress path Pipeline Fracture toughness Overload Crack length Non linear effect Offshore structure Plastic hinge Crack |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-d370182487d1b749a3c43dda6a7968e79260af9ed259c05f307d901fb7653b843 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 869841972 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_869841972 pascalfrancis_primary_24037151 crossref_citationtrail_10_1016_j_engfracmech_2010_11_021 crossref_primary_10_1016_j_engfracmech_2010_11_021 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2010_11_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | DNV-RP-F108. Offshore standard – fracture control for pipeline installation methods introducing cyclic plastic strain. Hovik (Norway); Det Norske Veritas; 2006. Betegon, Hancock (b0025) 1991; 58 Tkaczyk, O’Dowd, Nikbin (b0165) 2009; 131 O’Dowd, Shih (b0040) 1991; 39 Pisarski HG, Wignall CM. Fracture toughness estimation for pipeline girth welds. In: International pipeline conference – IPC, Calgary, Canada; 2002. p. 1607–11. Shih CF, O’Dowd NP, Kirk MT. A framework for quantifying crack tip constraint. In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 2–20. O’Dowd (b0075) 1995; 52 Chao, Zhu (b0035) 1998; 89 Ainsworth (b0160) 1984; 19 Al-Ani, Hancock (b0140) 1991; 39 Nyhus B, Polanco ML, Ørjasæther O. SENT specimens an alternative to SENB specimens for fracture mechanics testing of pipelines. In: Proceedings of the international conference on offshore mechanics and Arctic engineering – OMAE, vol. 3. Cancun, Mexico; 2003. p. 259–66. Nourpanah, Taheri (b0130) 2010; 77 Kumar V, German MD, Shih CF. An engineering approach for elastic–plastic fracture analysis, EPRI report NP-1931, Electric Power Research Institute, Palo Alto, CA; 1981. APR-RP1111. Design, construction, operation, and maintenance of offshore hydrocarbon pipelines (limit state design). 3rd ed. Washington (DC, USA): American Petroleum Institute; 1999. In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 21–40. Ainsworth, O’Dowd (b0170) 1995; 117 ABAQUS ver 6.8. Users and theory manual. RI (USA): Simulia; 2008. Silva, Cravero, Ruggieri (b0070) 2006; 73 Shih (b0175) 1981; 29 Pisarski, Cheaitani (b0135) 2008; 18 Faleskog (b0120) 1995; 43 Parks (b0020) 1992 Rice, Rosengren (b0100) 1968; 16 Shih, German (b0145) 1981; 17 dominance of crack-tip fields in large-scale yielding. In: Landes JD, Begley JA, Clarke GA, editors. Elastic–plastic fracture, ASTM STP 668. American Society for Testing and Materials; 1979. p. 175–94. Hutchinson (b0105) 1968; 16 DNV-OS-F101. Offshore standard – submarine pipeline systems. Hovik (Norway): Det Norske Veritas; 2000. Øtsby, Jayadevan, Thaulow (b0125) 2005; 82 Hancock JW, Reuter WG, Parks DM. Constraint and toughness parameterized by Cravero, Ruggieri (b0065) 2005; 72 Yuan, Brocks (b0110) 1998; 46 McMeeking RM, Parks DM. On criteria for Hutchinson (b0015) 1983; 50 Williams (b0095) 1957; 24 O’Dowd NP, Shih CF. Two-parameter fracture mechanics: theory and applications. In: Landes John D, McCabe Donald E, Boulet JAM, editors. Fracture mechanics, ASTM STP 1207, vol. 24. Philadelphia: American Society for Testing and Materials; 1994. p. 21–47. O’Dowd, Shih (b0045) 1992; 40 Kyriakides, Corona (b0090) 2007; vol. 1, 1st ed. Parks (10.1016/j.engfracmech.2010.11.021_b0020) 1992 Kyriakides (10.1016/j.engfracmech.2010.11.021_b0090) 2007; vol. 1, 1st ed. 10.1016/j.engfracmech.2010.11.021_b0085 Tkaczyk (10.1016/j.engfracmech.2010.11.021_b0165) 2009; 131 O’Dowd (10.1016/j.engfracmech.2010.11.021_b0040) 1991; 39 10.1016/j.engfracmech.2010.11.021_b0060 Cravero (10.1016/j.engfracmech.2010.11.021_b0065) 2005; 72 10.1016/j.engfracmech.2010.11.021_b0080 Ainsworth (10.1016/j.engfracmech.2010.11.021_b0170) 1995; 117 Shih (10.1016/j.engfracmech.2010.11.021_b0175) 1981; 29 Rice (10.1016/j.engfracmech.2010.11.021_b0100) 1968; 16 10.1016/j.engfracmech.2010.11.021_b0005 Silva (10.1016/j.engfracmech.2010.11.021_b0070) 2006; 73 Chao (10.1016/j.engfracmech.2010.11.021_b0035) 1998; 89 Yuan (10.1016/j.engfracmech.2010.11.021_b0110) 1998; 46 Hutchinson (10.1016/j.engfracmech.2010.11.021_b0105) 1968; 16 Øtsby (10.1016/j.engfracmech.2010.11.021_b0125) 2005; 82 Williams (10.1016/j.engfracmech.2010.11.021_b0095) 1957; 24 10.1016/j.engfracmech.2010.11.021_b0010 Ainsworth (10.1016/j.engfracmech.2010.11.021_b0160) 1984; 19 10.1016/j.engfracmech.2010.11.021_b0030 Shih (10.1016/j.engfracmech.2010.11.021_b0145) 1981; 17 10.1016/j.engfracmech.2010.11.021_b0150 10.1016/j.engfracmech.2010.11.021_b0050 O’Dowd (10.1016/j.engfracmech.2010.11.021_b0045) 1992; 40 O’Dowd (10.1016/j.engfracmech.2010.11.021_b0075) 1995; 52 Hutchinson (10.1016/j.engfracmech.2010.11.021_b0015) 1983; 50 10.1016/j.engfracmech.2010.11.021_b0115 Pisarski (10.1016/j.engfracmech.2010.11.021_b0135) 2008; 18 Betegon (10.1016/j.engfracmech.2010.11.021_b0025) 1991; 58 Al-Ani (10.1016/j.engfracmech.2010.11.021_b0140) 1991; 39 Faleskog (10.1016/j.engfracmech.2010.11.021_b0120) 1995; 43 10.1016/j.engfracmech.2010.11.021_b0155 10.1016/j.engfracmech.2010.11.021_b0055 Nourpanah (10.1016/j.engfracmech.2010.11.021_b0130) 2010; 77 |
References_xml | – reference: . In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 21–40. – reference: Pisarski HG, Wignall CM. Fracture toughness estimation for pipeline girth welds. In: International pipeline conference – IPC, Calgary, Canada; 2002. p. 1607–11. – reference: APR-RP1111. Design, construction, operation, and maintenance of offshore hydrocarbon pipelines (limit state design). 3rd ed. Washington (DC, USA): American Petroleum Institute; 1999. – volume: 16 start-page: 1 year: 1968 end-page: 12 ident: b0100 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J Mech Phys Solids – volume: 50 start-page: 1042 year: 1983 end-page: 1051 ident: b0015 article-title: Fundamentals of the phenomenological theory of nonlinear fracture mechanics publication-title: J Appl Mech – volume: vol. 1, 1st ed. year: 2007 ident: b0090 publication-title: Mechanics of offshore pipelines, Buckling and collapse – volume: 19 start-page: 633 year: 1984 end-page: 642 ident: b0160 article-title: The assessment of defects in structures of strain hardening material publication-title: Engng Fract Mech – reference: DNV-OS-F101. Offshore standard – submarine pipeline systems. Hovik (Norway): Det Norske Veritas; 2000. – volume: 29 start-page: 305 year: 1981 end-page: 326 ident: b0175 article-title: Relationship between the publication-title: J Mech Phys Solids – volume: 16 start-page: 13 year: 1968 end-page: 31 ident: b0105 article-title: Singular behavior at the end of a tensile crack in a hardening material publication-title: J Mech Phys Solids – reference: McMeeking RM, Parks DM. On criteria for – volume: 131 year: 2009 ident: b0165 article-title: Fracture assessment procedures for steel pipelines using a modified reference stress solution publication-title: ASME J Press Vess Technol – reference: -dominance of crack-tip fields in large-scale yielding. In: Landes JD, Begley JA, Clarke GA, editors. Elastic–plastic fracture, ASTM STP 668. American Society for Testing and Materials; 1979. p. 175–94. – volume: 24 start-page: 111 year: 1957 end-page: 114 ident: b0095 article-title: On the stress distribution at the base of a stationary crack publication-title: ASME J Appl Mech – reference: O’Dowd NP, Shih CF. Two-parameter fracture mechanics: theory and applications. In: Landes John D, McCabe Donald E, Boulet JAM, editors. Fracture mechanics, ASTM STP 1207, vol. 24. Philadelphia: American Society for Testing and Materials; 1994. p. 21–47. – volume: 58 start-page: 104 year: 1991 end-page: 110 ident: b0025 article-title: Two-parameter characterization of elastic–plastic crack-tip fields publication-title: J Appl Mech – reference: ABAQUS ver 6.8. Users and theory manual. RI (USA): Simulia; 2008. – volume: 18 start-page: 183 year: 2008 end-page: 187 ident: b0135 article-title: Development of girth weld flaw assessment procedures for pipelines subjected to plastic straining publication-title: Int J Offshore Polar Engng – volume: 82 start-page: 201 year: 2005 end-page: 215 ident: b0125 article-title: Fracture response of pipelines subject to large plastic deformation under bending publication-title: Int J Press Vess Pip – reference: Kumar V, German MD, Shih CF. An engineering approach for elastic–plastic fracture analysis, EPRI report NP-1931, Electric Power Research Institute, Palo Alto, CA; 1981. – reference: Hancock JW, Reuter WG, Parks DM. Constraint and toughness parameterized by – volume: 43 start-page: 447 year: 1995 end-page: 493 ident: b0120 article-title: Effects of local constraint along three dimensional crack fronts – a numerical and experimental investigation publication-title: J Mech Phys Solids – volume: 89 start-page: 285 year: 1998 end-page: 307 ident: b0035 publication-title: Int J Fract – start-page: 59 year: 1992 end-page: 98 ident: b0020 article-title: Advances in characterization of elastic–plastic crack-tip fields publication-title: Topics in fracture and fatigue – reference: DNV-RP-F108. Offshore standard – fracture control for pipeline installation methods introducing cyclic plastic strain. Hovik (Norway); Det Norske Veritas; 2006. – reference: Nyhus B, Polanco ML, Ørjasæther O. SENT specimens an alternative to SENB specimens for fracture mechanics testing of pipelines. In: Proceedings of the international conference on offshore mechanics and Arctic engineering – OMAE, vol. 3. Cancun, Mexico; 2003. p. 259–66. – volume: 40 start-page: 939 year: 1992 end-page: 963 ident: b0045 article-title: Family of crack-tip fields characterized by a triaxiality parameter: part II – fracture applications publication-title: J Mech Phys Solids – volume: 117 start-page: 260 year: 1995 end-page: 267 ident: b0170 article-title: Constraint in the failure assessment diagram approach for fracture assessment publication-title: ASME J Press Vess Technol – volume: 52 start-page: 445 year: 1995 end-page: 465 ident: b0075 article-title: Applications of two parameter approaches in elastic–plastic fracture mechanics publication-title: Engng Fract Mech – volume: 46 start-page: 219 year: 1998 end-page: 241 ident: b0110 article-title: Quantification of constraint effects in elastic–plastic crack front fields publication-title: J Mech Phys Solids – volume: 72 start-page: 1344 year: 2005 end-page: 1360 ident: b0065 article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part I: plane–strain analyses publication-title: Engng Fract Mech – volume: 73 start-page: 2123 year: 2006 end-page: 2138 ident: b0070 article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part II: 3-D effects on constraint publication-title: Engng Fract Mech – volume: 39 start-page: 23 year: 1991 end-page: 43 ident: b0140 publication-title: J Mech Phys Solids – volume: 77 start-page: 2337 year: 2010 end-page: 2353 ident: b0130 article-title: Development of a reference strain approach for assessment of fracture response of reeled pipelines publication-title: J Engng Fract Mech – reference: Shih CF, O’Dowd NP, Kirk MT. A framework for quantifying crack tip constraint. In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 2–20. – volume: 17 start-page: 27 year: 1981 end-page: 43 ident: b0145 article-title: Requirements for a one parameter characterization of crack tip fields by the HRR singularity publication-title: Int J Fract – volume: 39 start-page: 989 year: 1991 end-page: 1015 ident: b0040 article-title: Family of crack-tip fields characterized by a triaxiality parameter: part I – structure of fields publication-title: J Mech Phys Solids – ident: 10.1016/j.engfracmech.2010.11.021_b0030 doi: 10.1520/STP18021S – volume: 40 start-page: 939 issue: 5 year: 1992 ident: 10.1016/j.engfracmech.2010.11.021_b0045 article-title: Family of crack-tip fields characterized by a triaxiality parameter: part II – fracture applications publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(92)90057-9 – volume: vol. 1, 1st ed. year: 2007 ident: 10.1016/j.engfracmech.2010.11.021_b0090 – volume: 39 start-page: 23 issue: 1 year: 1991 ident: 10.1016/j.engfracmech.2010.11.021_b0140 article-title: J-dominance of short cracks in tension and bending publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(91)90029-N – ident: 10.1016/j.engfracmech.2010.11.021_b0050 – volume: 18 start-page: 183 issue: 3 year: 2008 ident: 10.1016/j.engfracmech.2010.11.021_b0135 article-title: Development of girth weld flaw assessment procedures for pipelines subjected to plastic straining publication-title: Int J Offshore Polar Engng – volume: 43 start-page: 447 year: 1995 ident: 10.1016/j.engfracmech.2010.11.021_b0120 article-title: Effects of local constraint along three dimensional crack fronts – a numerical and experimental investigation publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(94)00067-F – volume: 89 start-page: 285 year: 1998 ident: 10.1016/j.engfracmech.2010.11.021_b0035 article-title: J–A2 characterization of crack-tip fields: extent of J–A2 dominance and size requirements publication-title: Int J Fract doi: 10.1023/A:1007487911376 – volume: 16 start-page: 1 year: 1968 ident: 10.1016/j.engfracmech.2010.11.021_b0100 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(68)90013-6 – volume: 72 start-page: 1344 year: 2005 ident: 10.1016/j.engfracmech.2010.11.021_b0065 article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part I: plane–strain analyses publication-title: Engng Fract Mech doi: 10.1016/j.engfracmech.2004.10.010 – volume: 73 start-page: 2123 year: 2006 ident: 10.1016/j.engfracmech.2010.11.021_b0070 article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part II: 3-D effects on constraint publication-title: Engng Fract Mech doi: 10.1016/j.engfracmech.2006.04.004 – ident: 10.1016/j.engfracmech.2010.11.021_b0085 – ident: 10.1016/j.engfracmech.2010.11.021_b0010 – volume: 131 year: 2009 ident: 10.1016/j.engfracmech.2010.11.021_b0165 article-title: Fracture assessment procedures for steel pipelines using a modified reference stress solution publication-title: ASME J Press Vess Technol doi: 10.1115/1.3122769 – ident: 10.1016/j.engfracmech.2010.11.021_b0080 doi: 10.1520/STP13698S – volume: 77 start-page: 2337 year: 2010 ident: 10.1016/j.engfracmech.2010.11.021_b0130 article-title: Development of a reference strain approach for assessment of fracture response of reeled pipelines publication-title: J Engng Fract Mech doi: 10.1016/j.engfracmech.2010.04.030 – ident: 10.1016/j.engfracmech.2010.11.021_b0060 doi: 10.1115/OMAE2003-37370 – volume: 24 start-page: 111 year: 1957 ident: 10.1016/j.engfracmech.2010.11.021_b0095 article-title: On the stress distribution at the base of a stationary crack publication-title: ASME J Appl Mech doi: 10.1115/1.4011454 – volume: 117 start-page: 260 year: 1995 ident: 10.1016/j.engfracmech.2010.11.021_b0170 article-title: Constraint in the failure assessment diagram approach for fracture assessment publication-title: ASME J Press Vess Technol doi: 10.1115/1.2842121 – ident: 10.1016/j.engfracmech.2010.11.021_b0150 doi: 10.1520/STP35830S – volume: 39 start-page: 989 issue: 8 year: 1991 ident: 10.1016/j.engfracmech.2010.11.021_b0040 article-title: Family of crack-tip fields characterized by a triaxiality parameter: part I – structure of fields publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(91)90049-T – ident: 10.1016/j.engfracmech.2010.11.021_b0055 doi: 10.1115/IPC2002-27094 – ident: 10.1016/j.engfracmech.2010.11.021_b0005 – volume: 16 start-page: 13 year: 1968 ident: 10.1016/j.engfracmech.2010.11.021_b0105 article-title: Singular behavior at the end of a tensile crack in a hardening material publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(68)90014-8 – volume: 58 start-page: 104 year: 1991 ident: 10.1016/j.engfracmech.2010.11.021_b0025 article-title: Two-parameter characterization of elastic–plastic crack-tip fields publication-title: J Appl Mech doi: 10.1115/1.2897135 – ident: 10.1016/j.engfracmech.2010.11.021_b0115 doi: 10.1520/STP18020S – volume: 29 start-page: 305 year: 1981 ident: 10.1016/j.engfracmech.2010.11.021_b0175 article-title: Relationship between the J-integral and crack opening displacement for stationary and extending cracks publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(81)90003-X – volume: 50 start-page: 1042 year: 1983 ident: 10.1016/j.engfracmech.2010.11.021_b0015 article-title: Fundamentals of the phenomenological theory of nonlinear fracture mechanics publication-title: J Appl Mech doi: 10.1115/1.3167187 – volume: 52 start-page: 445 issue: 3 year: 1995 ident: 10.1016/j.engfracmech.2010.11.021_b0075 article-title: Applications of two parameter approaches in elastic–plastic fracture mechanics publication-title: Engng Fract Mech doi: 10.1016/0013-7944(95)00033-R – volume: 46 start-page: 219 issue: 2 year: 1998 ident: 10.1016/j.engfracmech.2010.11.021_b0110 article-title: Quantification of constraint effects in elastic–plastic crack front fields publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(97)00068-9 – start-page: 59 year: 1992 ident: 10.1016/j.engfracmech.2010.11.021_b0020 article-title: Advances in characterization of elastic–plastic crack-tip fields – volume: 82 start-page: 201 year: 2005 ident: 10.1016/j.engfracmech.2010.11.021_b0125 article-title: Fracture response of pipelines subject to large plastic deformation under bending publication-title: Int J Press Vess Pip doi: 10.1016/j.ijpvp.2004.08.012 – volume: 17 start-page: 27 issue: 1 year: 1981 ident: 10.1016/j.engfracmech.2010.11.021_b0145 article-title: Requirements for a one parameter characterization of crack tip fields by the HRR singularity publication-title: Int J Fract doi: 10.1007/BF00043119 – ident: 10.1016/j.engfracmech.2010.11.021_b0155 doi: 10.2172/6068291 – volume: 19 start-page: 633 issue: 4 year: 1984 ident: 10.1016/j.engfracmech.2010.11.021_b0160 article-title: The assessment of defects in structures of strain hardening material publication-title: Engng Fract Mech doi: 10.1016/0013-7944(84)90096-1 |
SSID | ssj0007680 |
Score | 2.1053262 |
Snippet | This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1201 |
SubjectTerms | Applied sciences Assessments Bending Correlation Crack tip constraint Crude oil, natural gas and petroleum products Energy Exact sciences and technology Fracture Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fuels Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Integrity assessment Mathematical analysis Mathematical models Physics Pipelines Plastic bending Solid mechanics Strain Structural and continuum mechanics Three dimensional Transportation and distribution of crude oils and liquid petroleum products. Ships. Pipelines. Terminals. Service stations |
Title | A numerical study on the crack tip constraint of pipelines subject to extreme plastic bending |
URI | https://dx.doi.org/10.1016/j.engfracmech.2010.11.021 https://www.proquest.com/docview/869841972 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC6WFUQR8YnjYyjBa3aT6Z50Al6GxWVU3JMLe5GmH9UyuiZhJ3P1t1vdSfaBCAteQ5rufF2p-qq7HgDv6sBWwlLIbE4qk6ESWVVZlbHpl54Ci3TqRfDlpFyfyk9ny7M9OJpyYWJY5aj7B52etPX45HBE87DbbGKObyFYmmSRaG4Z_fZYvY5l-uD3VZgH0-l86mIQ374Lb69ivKj5Hi6M-0XpXiIpkIN8UfzLRj3ozJaRC0PLi7-0dzJJx4_g4cglcTUs9zHsUfME7l-rMPgUvq2w2Q2XMueYSsli2yCTPnS8op_Ybzp0kSLGThE9tgG7TRdT1GmL252NhzTYt8gaPJ4jYsdcmydDSykZ5hmcHn_4erTOxo4KmWNPtM-8UDk7FOyk-MIqWRvhpPDelEbVZUWqZu_GhJo8O0UuXwZWAJ4JQ7CqXApbSfEc9pu2oReADCiJhXeGhJReFMbXplC5dcq6UBDNoJow1G4sNx6_5VxPcWU_9DX4dYSf3RHN8M9gcTm0G2pu3GbQ-2mj9A0B0mwbbjN8fmNzLyeO9QoV06IZ4LTbmv_AeK1iGmp3W12VdSVj97aX_7eEV3BvOLCOYUGvYb-_2NEbZjy9nSeRnsOd1cfP65M_m8oCqA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS9xAEB_kBFsRsS88W3UL_Zqa3O5lE-iXQ5TzdZ8U_FKWfcyWazUJXu7_dzaPq1IKgl8DQzazk9_8ZnceAN9yT17CoI9MjDISPuNRlhkZkesXDj2ZdDOL4GqWTm_E-e34dg2O-1qYkFbZYX-L6Q1ad0-OOm0eVfN5qPFNOFmTSBqam1Lcvh66U4kBrE_OLqazFSATo477QQZBYAO-_k3zwuKXf9D2HpuriQZDvsej5H9uaqvSC1Keb6de_APgjVc63YHtjk6ySbvid7CGxXvYfNJk8AP8nLBi2d7L3LGmmywrC0a8j1la0R9WzytmA0sMwyJqVnpWzatQpY4LtliacE7D6pIRiIejRFYR3aaXMYNNPcxHuDk9uT6eRt1QhchSMFpHjsuYYgqKU1xipMg1t4I7p1Mt8zRDmVOAo32OjuIiG489YYAjzuCNTMfcZIJ_gkFRFrgLjBSKfOSsRi6E44l2uU5kbKw01ieIQ8h6HSrbdRwP33Kn-tSy3-qJ-lVQP0UkitQ_hNFKtGrbbrxE6Ee_UeqZDSlyDy8RP3i2uasXh5aFkpjREFi_24p-wnCzogsslwuVpXkmwgC3vdct4RDeTK-vLtXl2eziM7xtz69DltAXGNQPS9wnAlSbg87AHwFsHgVZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+on+the+crack+tip+constraint+of+pipelines+subject+to+extreme+plastic+bending&rft.jtitle=Engineering+fracture+mechanics&rft.au=Nourpanah%2C+N&rft.au=Taheri%2C+F&rft.date=2011-04-01&rft.issn=0013-7944&rft.volume=78&rft.issue=6&rft.spage=1201&rft.epage=1217&rft_id=info:doi/10.1016%2Fj.engfracmech.2010.11.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |