A numerical study on the crack tip constraint of pipelines subject to extreme plastic bending

This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bendi...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 78; no. 6; pp. 1201 - 1217
Main Authors Nourpanah, N., Taheri, F.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0013-7944
1873-7315
DOI10.1016/j.engfracmech.2010.11.021

Cover

Loading…
Abstract This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the J– Q two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a K– T modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. −1.4 < Q < −0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed.
AbstractList This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the J-Q two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a K-T modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. -1.4 < Q < -0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed.
This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently occurs during the installation of offshore pipelines (such as the reeling method), and accidental overloading, both inducing inelastic bending. The near-tip stress and strain fields are obtained through the fully nonlinear 3D finite element models constructed to examine the response of a practical range of cracked pipeline geometries and material properties. It is observed that throughout the loading history (up to the large scale yielding of the pipeline), by incorporation of the J– Q two parameter fracture theory, the near crack tip fields do indeed resemble those obtained from a K– T modified boundary layer formulation. This analogy provides sufficient proof for the applicability of the similitude concept inherent and fundamental to any fracture assessment procedure. All the pipelines considered in this study, which had realistic crack sizes, exhibited low constraint behavior (i.e. −1.4 < Q < −0.4). Additionally, Q was observed to decrease as a linear function of the global bending strain. Based on this correlation, simplified design equations are presented by which the constraint of such pipelines could be effectively estimated. The equations would be suitable for incorporation in the constraint-matched integrity assessment procedures that would in turn overcome the overt conservatism produced by the use of single parameter fracture mechanics approaches. Suitability of the low constraint laboratory specimens for fracture toughness measurements is also confirmed.
Author Taheri, F.
Nourpanah, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Nourpanah
  fullname: Nourpanah, N.
– sequence: 2
  givenname: F.
  surname: Taheri
  fullname: Taheri, F.
  email: farid.taheri@dal.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24037151$$DView record in Pascal Francis
BookMark eNqNkMFq3DAQhkVJoJuk76AeSk-71Vi2JZ1KWJq2EOilOQYhS-NEW1tyJbk0b18tm0LpKacZhn--Yb4LchZiQELeAtsBg_7DYYfhYUzGzmgfdw07zmHHGnhFNiAF3woO3RnZMAa1V237mlzkfGCMiV6yDbm_pmGdMXlrJprL6p5oDLQ8IrUV-oMWv1AbQy7J-FBoHOniF5x8wEzzOhzQFloixd8l4Yx0mUwu3tIBg_Ph4Yqcj2bK-Oa5XpK7m0_f91-2t98-f91f324tl7xsHRcMZNNK4WAQrTLcttw50xuheolCNT0zo0LXdMqybuRMOMVgHETf8UG2_JK8P3GXFH-umIuefbY4TSZgXLOWvZItKNHU5LvnpMn15WouWJ_1kvxs0pNuWsYFdFBzH085m2LOCUdtfTHFx3A0MWlg-uhfH_Q__vXRvwbQ1X8lqP8If4-8ZHd_2sUq7ZfHpLP1GCw6n6px7aJ_AeUPAp6psA
CODEN EFMEAH
CitedBy_id crossref_primary_10_1016_j_engfracmech_2011_03_018
crossref_primary_10_1016_j_engfailanal_2017_02_003
crossref_primary_10_1016_j_euromechsol_2019_103840
crossref_primary_10_1016_j_tafmec_2020_102496
crossref_primary_10_1016_j_ijpvp_2013_03_009
crossref_primary_10_1590_0104_9224_si2301_03
crossref_primary_10_1016_j_engfracmech_2015_03_041
crossref_primary_10_1016_j_ijpvp_2017_12_002
crossref_primary_10_1016_j_engfracmech_2014_04_014
crossref_primary_10_1016_j_engfracmech_2013_10_022
crossref_primary_10_1111_ffe_12407
crossref_primary_10_1016_j_ijpvp_2024_105250
crossref_primary_10_1111_ffe_12233
crossref_primary_10_3934_matersci_2016_4_1321
crossref_primary_10_1111_ffe_12590
crossref_primary_10_1007_s11665_019_04335_1
crossref_primary_10_1016_j_engfracmech_2015_07_043
crossref_primary_10_1016_j_finmec_2024_100279
crossref_primary_10_1016_j_marstruc_2017_11_002
crossref_primary_10_1016_j_ijmecsci_2017_01_026
crossref_primary_10_1080_17445302_2022_2122165
crossref_primary_10_1115_1_4035313
crossref_primary_10_1016_j_marstruc_2013_08_003
crossref_primary_10_1016_j_nucengdes_2013_03_001
crossref_primary_10_1002_mdp2_133
crossref_primary_10_1520_JTE20130333
Cites_doi 10.1520/STP18021S
10.1016/0022-5096(92)90057-9
10.1016/0022-5096(91)90029-N
10.1016/0022-5096(94)00067-F
10.1023/A:1007487911376
10.1016/0022-5096(68)90013-6
10.1016/j.engfracmech.2004.10.010
10.1016/j.engfracmech.2006.04.004
10.1115/1.3122769
10.1520/STP13698S
10.1016/j.engfracmech.2010.04.030
10.1115/OMAE2003-37370
10.1115/1.4011454
10.1115/1.2842121
10.1520/STP35830S
10.1016/0022-5096(91)90049-T
10.1115/IPC2002-27094
10.1016/0022-5096(68)90014-8
10.1115/1.2897135
10.1520/STP18020S
10.1016/0022-5096(81)90003-X
10.1115/1.3167187
10.1016/0013-7944(95)00033-R
10.1016/S0022-5096(97)00068-9
10.1016/j.ijpvp.2004.08.012
10.1007/BF00043119
10.2172/6068291
10.1016/0013-7944(84)90096-1
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engfracmech.2010.11.021
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1873-7315
EndPage 1217
ExternalDocumentID 24037151
10_1016_j_engfracmech_2010_11_021
S0013794410004960
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c383t-d370182487d1b749a3c43dda6a7968e79260af9ed259c05f307d901fb7653b843
IEDL.DBID .~1
ISSN 0013-7944
IngestDate Thu Jul 10 16:47:28 EDT 2025
Mon Jul 21 09:15:08 EDT 2025
Thu Apr 24 22:51:05 EDT 2025
Tue Jul 01 01:49:56 EDT 2025
Fri Feb 23 02:31:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Crack tip constraint
Plastic bending
Fracture
Pipelines
Integrity assessment
Near field
Constraint
Structure integrity
Modeling
Finite element method
Inelasticity
Thick wall
Crack tip
Boundary layer
Stress analysis
Rupture
Stress path
Pipeline
Fracture toughness
Overload
Crack length
Non linear effect
Offshore structure
Plastic hinge
Crack
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-d370182487d1b749a3c43dda6a7968e79260af9ed259c05f307d901fb7653b843
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 869841972
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_869841972
pascalfrancis_primary_24037151
crossref_citationtrail_10_1016_j_engfracmech_2010_11_021
crossref_primary_10_1016_j_engfracmech_2010_11_021
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2010_11_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering fracture mechanics
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References DNV-RP-F108. Offshore standard – fracture control for pipeline installation methods introducing cyclic plastic strain. Hovik (Norway); Det Norske Veritas; 2006.
Betegon, Hancock (b0025) 1991; 58
Tkaczyk, O’Dowd, Nikbin (b0165) 2009; 131
O’Dowd, Shih (b0040) 1991; 39
Pisarski HG, Wignall CM. Fracture toughness estimation for pipeline girth welds. In: International pipeline conference – IPC, Calgary, Canada; 2002. p. 1607–11.
Shih CF, O’Dowd NP, Kirk MT. A framework for quantifying crack tip constraint. In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 2–20.
O’Dowd (b0075) 1995; 52
Chao, Zhu (b0035) 1998; 89
Ainsworth (b0160) 1984; 19
Al-Ani, Hancock (b0140) 1991; 39
Nyhus B, Polanco ML, Ørjasæther O. SENT specimens an alternative to SENB specimens for fracture mechanics testing of pipelines. In: Proceedings of the international conference on offshore mechanics and Arctic engineering – OMAE, vol. 3. Cancun, Mexico; 2003. p. 259–66.
Nourpanah, Taheri (b0130) 2010; 77
Kumar V, German MD, Shih CF. An engineering approach for elastic–plastic fracture analysis, EPRI report NP-1931, Electric Power Research Institute, Palo Alto, CA; 1981.
APR-RP1111. Design, construction, operation, and maintenance of offshore hydrocarbon pipelines (limit state design). 3rd ed. Washington (DC, USA): American Petroleum Institute; 1999.
In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 21–40.
Ainsworth, O’Dowd (b0170) 1995; 117
ABAQUS ver 6.8. Users and theory manual. RI (USA): Simulia; 2008.
Silva, Cravero, Ruggieri (b0070) 2006; 73
Shih (b0175) 1981; 29
Pisarski, Cheaitani (b0135) 2008; 18
Faleskog (b0120) 1995; 43
Parks (b0020) 1992
Rice, Rosengren (b0100) 1968; 16
Shih, German (b0145) 1981; 17
dominance of crack-tip fields in large-scale yielding. In: Landes JD, Begley JA, Clarke GA, editors. Elastic–plastic fracture, ASTM STP 668. American Society for Testing and Materials; 1979. p. 175–94.
Hutchinson (b0105) 1968; 16
DNV-OS-F101. Offshore standard – submarine pipeline systems. Hovik (Norway): Det Norske Veritas; 2000.
Øtsby, Jayadevan, Thaulow (b0125) 2005; 82
Hancock JW, Reuter WG, Parks DM. Constraint and toughness parameterized by
Cravero, Ruggieri (b0065) 2005; 72
Yuan, Brocks (b0110) 1998; 46
McMeeking RM, Parks DM. On criteria for
Hutchinson (b0015) 1983; 50
Williams (b0095) 1957; 24
O’Dowd NP, Shih CF. Two-parameter fracture mechanics: theory and applications. In: Landes John D, McCabe Donald E, Boulet JAM, editors. Fracture mechanics, ASTM STP 1207, vol. 24. Philadelphia: American Society for Testing and Materials; 1994. p. 21–47.
O’Dowd, Shih (b0045) 1992; 40
Kyriakides, Corona (b0090) 2007; vol. 1, 1st ed.
Parks (10.1016/j.engfracmech.2010.11.021_b0020) 1992
Kyriakides (10.1016/j.engfracmech.2010.11.021_b0090) 2007; vol. 1, 1st ed.
10.1016/j.engfracmech.2010.11.021_b0085
Tkaczyk (10.1016/j.engfracmech.2010.11.021_b0165) 2009; 131
O’Dowd (10.1016/j.engfracmech.2010.11.021_b0040) 1991; 39
10.1016/j.engfracmech.2010.11.021_b0060
Cravero (10.1016/j.engfracmech.2010.11.021_b0065) 2005; 72
10.1016/j.engfracmech.2010.11.021_b0080
Ainsworth (10.1016/j.engfracmech.2010.11.021_b0170) 1995; 117
Shih (10.1016/j.engfracmech.2010.11.021_b0175) 1981; 29
Rice (10.1016/j.engfracmech.2010.11.021_b0100) 1968; 16
10.1016/j.engfracmech.2010.11.021_b0005
Silva (10.1016/j.engfracmech.2010.11.021_b0070) 2006; 73
Chao (10.1016/j.engfracmech.2010.11.021_b0035) 1998; 89
Yuan (10.1016/j.engfracmech.2010.11.021_b0110) 1998; 46
Hutchinson (10.1016/j.engfracmech.2010.11.021_b0105) 1968; 16
Øtsby (10.1016/j.engfracmech.2010.11.021_b0125) 2005; 82
Williams (10.1016/j.engfracmech.2010.11.021_b0095) 1957; 24
10.1016/j.engfracmech.2010.11.021_b0010
Ainsworth (10.1016/j.engfracmech.2010.11.021_b0160) 1984; 19
10.1016/j.engfracmech.2010.11.021_b0030
Shih (10.1016/j.engfracmech.2010.11.021_b0145) 1981; 17
10.1016/j.engfracmech.2010.11.021_b0150
10.1016/j.engfracmech.2010.11.021_b0050
O’Dowd (10.1016/j.engfracmech.2010.11.021_b0045) 1992; 40
O’Dowd (10.1016/j.engfracmech.2010.11.021_b0075) 1995; 52
Hutchinson (10.1016/j.engfracmech.2010.11.021_b0015) 1983; 50
10.1016/j.engfracmech.2010.11.021_b0115
Pisarski (10.1016/j.engfracmech.2010.11.021_b0135) 2008; 18
Betegon (10.1016/j.engfracmech.2010.11.021_b0025) 1991; 58
Al-Ani (10.1016/j.engfracmech.2010.11.021_b0140) 1991; 39
Faleskog (10.1016/j.engfracmech.2010.11.021_b0120) 1995; 43
10.1016/j.engfracmech.2010.11.021_b0155
10.1016/j.engfracmech.2010.11.021_b0055
Nourpanah (10.1016/j.engfracmech.2010.11.021_b0130) 2010; 77
References_xml – reference: . In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 21–40.
– reference: Pisarski HG, Wignall CM. Fracture toughness estimation for pipeline girth welds. In: International pipeline conference – IPC, Calgary, Canada; 2002. p. 1607–11.
– reference: APR-RP1111. Design, construction, operation, and maintenance of offshore hydrocarbon pipelines (limit state design). 3rd ed. Washington (DC, USA): American Petroleum Institute; 1999.
– volume: 16
  start-page: 1
  year: 1968
  end-page: 12
  ident: b0100
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J Mech Phys Solids
– volume: 50
  start-page: 1042
  year: 1983
  end-page: 1051
  ident: b0015
  article-title: Fundamentals of the phenomenological theory of nonlinear fracture mechanics
  publication-title: J Appl Mech
– volume: vol. 1, 1st ed.
  year: 2007
  ident: b0090
  publication-title: Mechanics of offshore pipelines, Buckling and collapse
– volume: 19
  start-page: 633
  year: 1984
  end-page: 642
  ident: b0160
  article-title: The assessment of defects in structures of strain hardening material
  publication-title: Engng Fract Mech
– reference: DNV-OS-F101. Offshore standard – submarine pipeline systems. Hovik (Norway): Det Norske Veritas; 2000.
– volume: 29
  start-page: 305
  year: 1981
  end-page: 326
  ident: b0175
  article-title: Relationship between the
  publication-title: J Mech Phys Solids
– volume: 16
  start-page: 13
  year: 1968
  end-page: 31
  ident: b0105
  article-title: Singular behavior at the end of a tensile crack in a hardening material
  publication-title: J Mech Phys Solids
– reference: McMeeking RM, Parks DM. On criteria for
– volume: 131
  year: 2009
  ident: b0165
  article-title: Fracture assessment procedures for steel pipelines using a modified reference stress solution
  publication-title: ASME J Press Vess Technol
– reference: -dominance of crack-tip fields in large-scale yielding. In: Landes JD, Begley JA, Clarke GA, editors. Elastic–plastic fracture, ASTM STP 668. American Society for Testing and Materials; 1979. p. 175–94.
– volume: 24
  start-page: 111
  year: 1957
  end-page: 114
  ident: b0095
  article-title: On the stress distribution at the base of a stationary crack
  publication-title: ASME J Appl Mech
– reference: O’Dowd NP, Shih CF. Two-parameter fracture mechanics: theory and applications. In: Landes John D, McCabe Donald E, Boulet JAM, editors. Fracture mechanics, ASTM STP 1207, vol. 24. Philadelphia: American Society for Testing and Materials; 1994. p. 21–47.
– volume: 58
  start-page: 104
  year: 1991
  end-page: 110
  ident: b0025
  article-title: Two-parameter characterization of elastic–plastic crack-tip fields
  publication-title: J Appl Mech
– reference: ABAQUS ver 6.8. Users and theory manual. RI (USA): Simulia; 2008.
– volume: 18
  start-page: 183
  year: 2008
  end-page: 187
  ident: b0135
  article-title: Development of girth weld flaw assessment procedures for pipelines subjected to plastic straining
  publication-title: Int J Offshore Polar Engng
– volume: 82
  start-page: 201
  year: 2005
  end-page: 215
  ident: b0125
  article-title: Fracture response of pipelines subject to large plastic deformation under bending
  publication-title: Int J Press Vess Pip
– reference: Kumar V, German MD, Shih CF. An engineering approach for elastic–plastic fracture analysis, EPRI report NP-1931, Electric Power Research Institute, Palo Alto, CA; 1981.
– reference: Hancock JW, Reuter WG, Parks DM. Constraint and toughness parameterized by
– volume: 43
  start-page: 447
  year: 1995
  end-page: 493
  ident: b0120
  article-title: Effects of local constraint along three dimensional crack fronts – a numerical and experimental investigation
  publication-title: J Mech Phys Solids
– volume: 89
  start-page: 285
  year: 1998
  end-page: 307
  ident: b0035
  publication-title: Int J Fract
– start-page: 59
  year: 1992
  end-page: 98
  ident: b0020
  article-title: Advances in characterization of elastic–plastic crack-tip fields
  publication-title: Topics in fracture and fatigue
– reference: DNV-RP-F108. Offshore standard – fracture control for pipeline installation methods introducing cyclic plastic strain. Hovik (Norway); Det Norske Veritas; 2006.
– reference: Nyhus B, Polanco ML, Ørjasæther O. SENT specimens an alternative to SENB specimens for fracture mechanics testing of pipelines. In: Proceedings of the international conference on offshore mechanics and Arctic engineering – OMAE, vol. 3. Cancun, Mexico; 2003. p. 259–66.
– volume: 40
  start-page: 939
  year: 1992
  end-page: 963
  ident: b0045
  article-title: Family of crack-tip fields characterized by a triaxiality parameter: part II – fracture applications
  publication-title: J Mech Phys Solids
– volume: 117
  start-page: 260
  year: 1995
  end-page: 267
  ident: b0170
  article-title: Constraint in the failure assessment diagram approach for fracture assessment
  publication-title: ASME J Press Vess Technol
– volume: 52
  start-page: 445
  year: 1995
  end-page: 465
  ident: b0075
  article-title: Applications of two parameter approaches in elastic–plastic fracture mechanics
  publication-title: Engng Fract Mech
– volume: 46
  start-page: 219
  year: 1998
  end-page: 241
  ident: b0110
  article-title: Quantification of constraint effects in elastic–plastic crack front fields
  publication-title: J Mech Phys Solids
– volume: 72
  start-page: 1344
  year: 2005
  end-page: 1360
  ident: b0065
  article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part I: plane–strain analyses
  publication-title: Engng Fract Mech
– volume: 73
  start-page: 2123
  year: 2006
  end-page: 2138
  ident: b0070
  article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part II: 3-D effects on constraint
  publication-title: Engng Fract Mech
– volume: 39
  start-page: 23
  year: 1991
  end-page: 43
  ident: b0140
  publication-title: J Mech Phys Solids
– volume: 77
  start-page: 2337
  year: 2010
  end-page: 2353
  ident: b0130
  article-title: Development of a reference strain approach for assessment of fracture response of reeled pipelines
  publication-title: J Engng Fract Mech
– reference: Shih CF, O’Dowd NP, Kirk MT. A framework for quantifying crack tip constraint. In: Hackett EM, Schwalbe KH, Dodds RH, editors. Constraint effects in fracture, ASTM STP 1171. Philadelphia: American Society for Testing and Materials; 1993. p. 2–20.
– volume: 17
  start-page: 27
  year: 1981
  end-page: 43
  ident: b0145
  article-title: Requirements for a one parameter characterization of crack tip fields by the HRR singularity
  publication-title: Int J Fract
– volume: 39
  start-page: 989
  year: 1991
  end-page: 1015
  ident: b0040
  article-title: Family of crack-tip fields characterized by a triaxiality parameter: part I – structure of fields
  publication-title: J Mech Phys Solids
– ident: 10.1016/j.engfracmech.2010.11.021_b0030
  doi: 10.1520/STP18021S
– volume: 40
  start-page: 939
  issue: 5
  year: 1992
  ident: 10.1016/j.engfracmech.2010.11.021_b0045
  article-title: Family of crack-tip fields characterized by a triaxiality parameter: part II – fracture applications
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(92)90057-9
– volume: vol. 1, 1st ed.
  year: 2007
  ident: 10.1016/j.engfracmech.2010.11.021_b0090
– volume: 39
  start-page: 23
  issue: 1
  year: 1991
  ident: 10.1016/j.engfracmech.2010.11.021_b0140
  article-title: J-dominance of short cracks in tension and bending
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(91)90029-N
– ident: 10.1016/j.engfracmech.2010.11.021_b0050
– volume: 18
  start-page: 183
  issue: 3
  year: 2008
  ident: 10.1016/j.engfracmech.2010.11.021_b0135
  article-title: Development of girth weld flaw assessment procedures for pipelines subjected to plastic straining
  publication-title: Int J Offshore Polar Engng
– volume: 43
  start-page: 447
  year: 1995
  ident: 10.1016/j.engfracmech.2010.11.021_b0120
  article-title: Effects of local constraint along three dimensional crack fronts – a numerical and experimental investigation
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(94)00067-F
– volume: 89
  start-page: 285
  year: 1998
  ident: 10.1016/j.engfracmech.2010.11.021_b0035
  article-title: J–A2 characterization of crack-tip fields: extent of J–A2 dominance and size requirements
  publication-title: Int J Fract
  doi: 10.1023/A:1007487911376
– volume: 16
  start-page: 1
  year: 1968
  ident: 10.1016/j.engfracmech.2010.11.021_b0100
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(68)90013-6
– volume: 72
  start-page: 1344
  year: 2005
  ident: 10.1016/j.engfracmech.2010.11.021_b0065
  article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part I: plane–strain analyses
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2004.10.010
– volume: 73
  start-page: 2123
  year: 2006
  ident: 10.1016/j.engfracmech.2010.11.021_b0070
  article-title: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – part II: 3-D effects on constraint
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2006.04.004
– ident: 10.1016/j.engfracmech.2010.11.021_b0085
– ident: 10.1016/j.engfracmech.2010.11.021_b0010
– volume: 131
  year: 2009
  ident: 10.1016/j.engfracmech.2010.11.021_b0165
  article-title: Fracture assessment procedures for steel pipelines using a modified reference stress solution
  publication-title: ASME J Press Vess Technol
  doi: 10.1115/1.3122769
– ident: 10.1016/j.engfracmech.2010.11.021_b0080
  doi: 10.1520/STP13698S
– volume: 77
  start-page: 2337
  year: 2010
  ident: 10.1016/j.engfracmech.2010.11.021_b0130
  article-title: Development of a reference strain approach for assessment of fracture response of reeled pipelines
  publication-title: J Engng Fract Mech
  doi: 10.1016/j.engfracmech.2010.04.030
– ident: 10.1016/j.engfracmech.2010.11.021_b0060
  doi: 10.1115/OMAE2003-37370
– volume: 24
  start-page: 111
  year: 1957
  ident: 10.1016/j.engfracmech.2010.11.021_b0095
  article-title: On the stress distribution at the base of a stationary crack
  publication-title: ASME J Appl Mech
  doi: 10.1115/1.4011454
– volume: 117
  start-page: 260
  year: 1995
  ident: 10.1016/j.engfracmech.2010.11.021_b0170
  article-title: Constraint in the failure assessment diagram approach for fracture assessment
  publication-title: ASME J Press Vess Technol
  doi: 10.1115/1.2842121
– ident: 10.1016/j.engfracmech.2010.11.021_b0150
  doi: 10.1520/STP35830S
– volume: 39
  start-page: 989
  issue: 8
  year: 1991
  ident: 10.1016/j.engfracmech.2010.11.021_b0040
  article-title: Family of crack-tip fields characterized by a triaxiality parameter: part I – structure of fields
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(91)90049-T
– ident: 10.1016/j.engfracmech.2010.11.021_b0055
  doi: 10.1115/IPC2002-27094
– ident: 10.1016/j.engfracmech.2010.11.021_b0005
– volume: 16
  start-page: 13
  year: 1968
  ident: 10.1016/j.engfracmech.2010.11.021_b0105
  article-title: Singular behavior at the end of a tensile crack in a hardening material
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(68)90014-8
– volume: 58
  start-page: 104
  year: 1991
  ident: 10.1016/j.engfracmech.2010.11.021_b0025
  article-title: Two-parameter characterization of elastic–plastic crack-tip fields
  publication-title: J Appl Mech
  doi: 10.1115/1.2897135
– ident: 10.1016/j.engfracmech.2010.11.021_b0115
  doi: 10.1520/STP18020S
– volume: 29
  start-page: 305
  year: 1981
  ident: 10.1016/j.engfracmech.2010.11.021_b0175
  article-title: Relationship between the J-integral and crack opening displacement for stationary and extending cracks
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(81)90003-X
– volume: 50
  start-page: 1042
  year: 1983
  ident: 10.1016/j.engfracmech.2010.11.021_b0015
  article-title: Fundamentals of the phenomenological theory of nonlinear fracture mechanics
  publication-title: J Appl Mech
  doi: 10.1115/1.3167187
– volume: 52
  start-page: 445
  issue: 3
  year: 1995
  ident: 10.1016/j.engfracmech.2010.11.021_b0075
  article-title: Applications of two parameter approaches in elastic–plastic fracture mechanics
  publication-title: Engng Fract Mech
  doi: 10.1016/0013-7944(95)00033-R
– volume: 46
  start-page: 219
  issue: 2
  year: 1998
  ident: 10.1016/j.engfracmech.2010.11.021_b0110
  article-title: Quantification of constraint effects in elastic–plastic crack front fields
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(97)00068-9
– start-page: 59
  year: 1992
  ident: 10.1016/j.engfracmech.2010.11.021_b0020
  article-title: Advances in characterization of elastic–plastic crack-tip fields
– volume: 82
  start-page: 201
  year: 2005
  ident: 10.1016/j.engfracmech.2010.11.021_b0125
  article-title: Fracture response of pipelines subject to large plastic deformation under bending
  publication-title: Int J Press Vess Pip
  doi: 10.1016/j.ijpvp.2004.08.012
– volume: 17
  start-page: 27
  issue: 1
  year: 1981
  ident: 10.1016/j.engfracmech.2010.11.021_b0145
  article-title: Requirements for a one parameter characterization of crack tip fields by the HRR singularity
  publication-title: Int J Fract
  doi: 10.1007/BF00043119
– ident: 10.1016/j.engfracmech.2010.11.021_b0155
  doi: 10.2172/6068291
– volume: 19
  start-page: 633
  issue: 4
  year: 1984
  ident: 10.1016/j.engfracmech.2010.11.021_b0160
  article-title: The assessment of defects in structures of strain hardening material
  publication-title: Engng Fract Mech
  doi: 10.1016/0013-7944(84)90096-1
SSID ssj0007680
Score 2.1053262
Snippet This study investigates the fracture response and crack tip constraint of thick wall pipelines subject to large plastic bending. Such a circumstance frequently...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1201
SubjectTerms Applied sciences
Assessments
Bending
Correlation
Crack tip constraint
Crude oil, natural gas and petroleum products
Energy
Exact sciences and technology
Fracture
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fuels
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Integrity assessment
Mathematical analysis
Mathematical models
Physics
Pipelines
Plastic bending
Solid mechanics
Strain
Structural and continuum mechanics
Three dimensional
Transportation and distribution of crude oils and liquid petroleum products. Ships. Pipelines. Terminals. Service stations
Title A numerical study on the crack tip constraint of pipelines subject to extreme plastic bending
URI https://dx.doi.org/10.1016/j.engfracmech.2010.11.021
https://www.proquest.com/docview/869841972
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC6WFUQR8YnjYyjBa3aT6Z50Al6GxWVU3JMLe5GmH9UyuiZhJ3P1t1vdSfaBCAteQ5rufF2p-qq7HgDv6sBWwlLIbE4qk6ESWVVZlbHpl54Ci3TqRfDlpFyfyk9ny7M9OJpyYWJY5aj7B52etPX45HBE87DbbGKObyFYmmSRaG4Z_fZYvY5l-uD3VZgH0-l86mIQ374Lb69ivKj5Hi6M-0XpXiIpkIN8UfzLRj3ozJaRC0PLi7-0dzJJx4_g4cglcTUs9zHsUfME7l-rMPgUvq2w2Q2XMueYSsli2yCTPnS8op_Ybzp0kSLGThE9tgG7TRdT1GmL252NhzTYt8gaPJ4jYsdcmydDSykZ5hmcHn_4erTOxo4KmWNPtM-8UDk7FOyk-MIqWRvhpPDelEbVZUWqZu_GhJo8O0UuXwZWAJ4JQ7CqXApbSfEc9pu2oReADCiJhXeGhJReFMbXplC5dcq6UBDNoJow1G4sNx6_5VxPcWU_9DX4dYSf3RHN8M9gcTm0G2pu3GbQ-2mj9A0B0mwbbjN8fmNzLyeO9QoV06IZ4LTbmv_AeK1iGmp3W12VdSVj97aX_7eEV3BvOLCOYUGvYb-_2NEbZjy9nSeRnsOd1cfP65M_m8oCqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS9xAEB_kBFsRsS88W3UL_Zqa3O5lE-iXQ5TzdZ8U_FKWfcyWazUJXu7_dzaPq1IKgl8DQzazk9_8ZnceAN9yT17CoI9MjDISPuNRlhkZkesXDj2ZdDOL4GqWTm_E-e34dg2O-1qYkFbZYX-L6Q1ad0-OOm0eVfN5qPFNOFmTSBqam1Lcvh66U4kBrE_OLqazFSATo477QQZBYAO-_k3zwuKXf9D2HpuriQZDvsej5H9uaqvSC1Keb6de_APgjVc63YHtjk6ySbvid7CGxXvYfNJk8AP8nLBi2d7L3LGmmywrC0a8j1la0R9WzytmA0sMwyJqVnpWzatQpY4LtliacE7D6pIRiIejRFYR3aaXMYNNPcxHuDk9uT6eRt1QhchSMFpHjsuYYgqKU1xipMg1t4I7p1Mt8zRDmVOAo32OjuIiG489YYAjzuCNTMfcZIJ_gkFRFrgLjBSKfOSsRi6E44l2uU5kbKw01ieIQ8h6HSrbdRwP33Kn-tSy3-qJ-lVQP0UkitQ_hNFKtGrbbrxE6Ee_UeqZDSlyDy8RP3i2uasXh5aFkpjREFi_24p-wnCzogsslwuVpXkmwgC3vdct4RDeTK-vLtXl2eziM7xtz69DltAXGNQPS9wnAlSbg87AHwFsHgVZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+on+the+crack+tip+constraint+of+pipelines+subject+to+extreme+plastic+bending&rft.jtitle=Engineering+fracture+mechanics&rft.au=Nourpanah%2C+N&rft.au=Taheri%2C+F&rft.date=2011-04-01&rft.issn=0013-7944&rft.volume=78&rft.issue=6&rft.spage=1201&rft.epage=1217&rft_id=info:doi/10.1016%2Fj.engfracmech.2010.11.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon