Probabilistic Fatigue/Creep Optimization of Turbine Bladed Disk with Fuzzy Multi-Extremum Response Surface Method

To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas o...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 12; no. 20; p. 3367
Main Authors Zhang, Chun-Yi, Yuan, Zhe-Shan, Wang, Ze, Fei, Cheng-Wei, Lu, Cheng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 15.10.2019
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma12203367

Cover

Loading…
Abstract To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.
AbstractList To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.
If we directly establish the reliability optimization design model of an overall structure involving multi-material, multi-disciplinary, and multi-physics structures, the computational burden will become very large in analysis, so that computational efficiency is unacceptable [2]. [...]it is significant to propose an efficient method for an overall reliability optimization design of multi-component and multi-failure modes, to make computational precision and efficiency satisfy engineering requirements. [...]the probabilistic fatigue/creep optimization design of turbine bladed disks involves an obvious fuzziness for design parameters and constraint conditions as well as the coupling among many failure modes such as stress failure, strain failure, creep damage, fatigue damage, and so on [15,16,17,18]. [...]the fuzziness and coupling seriously negatively influence the design precision and efficiency of multi-object optimization when the above methods are directly applied. [...]it is urgent to propose an effective method for multi-object reliability-based optimization, in which the fuzziness for design parameters and constraint conditions as well as the coupling among many failure modes are fully considered in order to improve the modeling accuracy and simulation efficiency. In most of the structural probabilistic designs, in fact, influential parameters and constraint conditions hold obvious fuzziness and seriously influence design precision. [...]it is reasonable to consider the fuzziness of design parameters and constraint conditions to improve the probabilistic design of structures, especially with multi-failure modes or multi-component structures.
To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.
To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.
Author Lu, Cheng
Zhang, Chun-Yi
Wang, Ze
Fei, Cheng-Wei
Yuan, Zhe-Shan
AuthorAffiliation 2 Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
1 School of Mechanical and Power Engineering, Harbin University of Science and Technology, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin 150080, China; zhangchunyi@hrbust.edu.cn (C.-Y.Z.); yuanzheshan_ma17@hrbust.edu.cn (Z.-S.Y.); wangze_ma17@hrbust.edu.cn (Z.W.)
3 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; lucheng2013@163.com
AuthorAffiliation_xml – name: 2 Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
– name: 1 School of Mechanical and Power Engineering, Harbin University of Science and Technology, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin 150080, China; zhangchunyi@hrbust.edu.cn (C.-Y.Z.); yuanzheshan_ma17@hrbust.edu.cn (Z.-S.Y.); wangze_ma17@hrbust.edu.cn (Z.W.)
– name: 3 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; lucheng2013@163.com
Author_xml – sequence: 1
  givenname: Chun-Yi
  surname: Zhang
  fullname: Zhang, Chun-Yi
– sequence: 2
  givenname: Zhe-Shan
  surname: Yuan
  fullname: Yuan, Zhe-Shan
– sequence: 3
  givenname: Ze
  surname: Wang
  fullname: Wang, Ze
– sequence: 4
  givenname: Cheng-Wei
  orcidid: 0000-0001-5333-1055
  surname: Fei
  fullname: Fei, Cheng-Wei
– sequence: 5
  givenname: Cheng
  orcidid: 0000-0002-5939-1048
  surname: Lu
  fullname: Lu, Cheng
BookMark eNptUU1v1EAMHaEiWpZe-AUjcUFIoZnxbDa5IMHSBaRWRVDOI2fidKckmXQ-gO6vZ0qLgApfbNnP9vPzY7Y3uYkYeyrKlwBNeTSikLIEqFYP2IFomqoQjVJ7f8X77DCEyzIbgKhl84jtg6hE3QAcsKuP3rXY2sGGaA3fYLQXiY7WnmjmZ3O0o93lnJu46_l58q2diL8ZsKOOv7XhK_9u45Zv0m53zU_TEG1x_CN6GtPIP1GY3RSIf06-R0P8lOLWdU_Ywx6HQId3fsG-bI7P1--Lk7N3H9avTwoDNcTCGAEKuroVS9lJlBWq1tSY48aoZkVGoejLZS9bkh0SVHVXAQoktZRYixUs2KvbuXNqR-oMTdHjoGdvR_TX2qHV_1Ymu9UX7puuskYyc1iw53cDvLtKFKIebTA0DDiRS0FLKCuV9c1CLtize9BLl_yUz8soACVWQt4wKm9RxrsQPPXa2PhL3LzfDlqU-ual-s9Lc8uLey2_-f8H_BOWu6N_
CitedBy_id crossref_primary_10_1155_2020_3982450
crossref_primary_10_1016_j_ast_2023_108325
crossref_primary_10_1155_2021_8085421
crossref_primary_10_1007_s12517_021_07866_x
crossref_primary_10_1016_j_ast_2022_107998
crossref_primary_10_3390_ma13010147
crossref_primary_10_1108_IJSI_04_2022_0050
crossref_primary_10_3390_ma13143239
crossref_primary_10_1177_01423312211068949
crossref_primary_10_3390_app9204357
crossref_primary_10_3390_ma12213552
crossref_primary_10_1109_ACCESS_2019_2952358
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_21595_jets_2024_23922
crossref_primary_10_1109_ACCESS_2020_2975316
crossref_primary_10_1051_jnwpu_20213961240
crossref_primary_10_1016_j_ress_2025_110811
crossref_primary_10_1016_j_cja_2020_10_036
Cites_doi 10.1016/j.ijmecsci.2018.04.050
10.1016/j.ast.2015.11.025
10.1016/j.oceaneng.2015.07.032
10.1016/j.ast.2015.12.017
10.1016/j.cja.2016.06.017
10.1016/j.ast.2019.105466
10.1016/B978-0-444-89970-5.50007-8
10.1016/j.engfailanal.2015.04.009
10.1016/j.ast.2018.02.012
10.1016/j.nme.2016.05.017
10.1007/s11771-018-3946-x
10.1016/j.compstruc.2015.09.004
10.1016/j.ymssp.2016.05.026
10.1177/002199838602000202
10.3390/app9173578
10.1016/j.ast.2014.07.003
10.3390/ma12091545
10.1016/j.cma.2008.12.022
10.1016/j.engfracmech.2018.08.009
10.1007/s12666-010-0089-7
10.3390/en12091588
10.4028/www.scientific.net/KEM.697.664
10.1016/j.ast.2018.06.023
10.1016/j.engfailanal.2019.01.015
10.1155/2015/649046
10.1007/s11771-016-3079-z
10.1016/j.applthermaleng.2014.09.065
10.1016/j.ast.2019.06.026
10.1177/0954406214525137
10.1080/00207727308920064
10.1016/j.ijfatigue.2018.10.005
10.1016/j.ast.2017.01.018
10.1016/j.cma.2019.06.036
10.1016/j.ijfatigue.2019.05.005
10.1007/978-81-322-0487-9_74
10.1007/s11771-012-0978-5
10.1002/nme.1883
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma12203367
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6829238
10_3390_ma12203367
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c383t-cc1343d8b152d2a26a4bc8a2d29c497ec4a1f05f2be2dae368d63a1ae452a8173
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 14:04:53 EDT 2025
Fri Jul 11 15:51:35 EDT 2025
Fri Jul 25 11:53:41 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 03:56:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-cc1343d8b152d2a26a4bc8a2d29c497ec4a1f05f2be2dae368d63a1ae452a8173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5333-1055
0000-0002-5939-1048
OpenAccessLink https://www.proquest.com/docview/2333417127?pq-origsite=%requestingapplication%
PMID 31618933
PQID 2333417127
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6829238
proquest_miscellaneous_2306494489
proquest_journals_2333417127
crossref_citationtrail_10_3390_ma12203367
crossref_primary_10_3390_ma12203367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191015
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 20191015
  day: 15
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fei (ref_8) 2014; 39
Kemp (ref_26) 1979; 41
Hamzaoui (ref_11) 2015; 75
Fei (ref_9) 2014; 228
Song (ref_16) 2019; 119
Li (ref_3) 2016; 162
Zhao (ref_31) 2016; 697
ref_33
Devloo (ref_34) 2009; 198
Gao (ref_14) 2018; 79
Ai (ref_15) 2019; 126
Fei (ref_22) 2013; 10
Fei (ref_2) 2016; 50
Chakraborty (ref_27) 2007; 70
ref_19
ref_18
Garcia (ref_12) 2015; 56
Wang (ref_13) 2019; 355
Zhang (ref_36) 2015; 2015
Mahler (ref_29) 2016; 9
Zhang (ref_24) 2016; 29
Zhu (ref_38) 2018; 142
Zhai (ref_30) 2017; 82
Wang (ref_39) 2015; 107
Cano (ref_17) 2019; 97
Gao (ref_21) 2016; 49
ref_23
Liao (ref_32) 2018; 202
Fei (ref_7) 2016; 23
Song (ref_10) 2017; 64
Hashiguchi (ref_35) 1993; 1993
Song (ref_5) 2019; 92
Zhang (ref_6) 2012; 19
Lu (ref_20) 2018; 76
Titli (ref_25) 1973; 4
Hwang (ref_28) 1986; 20
Zhang (ref_1) 2018; 25
ref_4
Asraff (ref_37) 2010; 63
References_xml – volume: 142
  start-page: 502
  year: 2018
  ident: ref_38
  article-title: Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.04.050
– volume: 50
  start-page: 62
  year: 2016
  ident: ref_2
  article-title: Transient probabilistic analysis for turbine blade-tip radial clearance with multi-component and multi-physics fields based on DCERSM
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.11.025
– volume: 107
  start-page: 54
  year: 2015
  ident: ref_39
  article-title: Assessing operational ocean observing equipment (OOOE) based on the fuzzy comprehensive evaluation method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.07.032
– volume: 49
  start-page: 289
  year: 2016
  ident: ref_21
  article-title: Reliability-based low-cycle fatigue life analysis of turbine blade with thermo- structural interaction
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.12.017
– volume: 29
  start-page: 962
  year: 2016
  ident: ref_24
  article-title: Advanced multiple response surface method for reliability sensitivity analysis of turbine blisk with multi-physics coupling
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2016.06.017
– ident: ref_18
  doi: 10.1016/j.ast.2019.105466
– volume: 1993
  start-page: 39
  year: 1993
  ident: ref_35
  article-title: A basic formulation of elastoplastic constitutive equations
  publication-title: Mod. Approaches Plast.
  doi: 10.1016/B978-0-444-89970-5.50007-8
– volume: 56
  start-page: 80
  year: 2015
  ident: ref_12
  article-title: Failure probability estimation of steam turbine blades by enhanced Monte Carlo Method
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2015.04.009
– volume: 10
  start-page: 47
  year: 2013
  ident: ref_22
  article-title: Extremum response surface method for casing radial deformation probabilistic analysis
  publication-title: J. Aerosp. Inf. Syst.
– volume: 76
  start-page: 164
  year: 2018
  ident: ref_20
  article-title: Improved kriging with extremum response surface method for structural dynamic reliability and sensitivity analyses
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.02.012
– volume: 9
  start-page: 535
  year: 2016
  ident: ref_29
  article-title: ANSYS creep-fatigue assessment tool for EUROFER97 components
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2016.05.017
– volume: 25
  start-page: 2688
  year: 2018
  ident: ref_1
  article-title: Dynamic probabilistic design technique for multi-component system with multi-failure modes
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-018-3946-x
– volume: 162
  start-page: 102
  year: 2016
  ident: ref_3
  article-title: A local Kriging approximation method using MPP for reliability-based design optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2015.09.004
– volume: 82
  start-page: 323
  year: 2017
  ident: ref_30
  article-title: A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.05.026
– volume: 20
  start-page: 125
  year: 1986
  ident: ref_28
  article-title: Cumulative damage models and multi-stress fatigue life prediction
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199838602000202
– volume: 41
  start-page: 232
  year: 1979
  ident: ref_26
  article-title: Convolutions Involving binomial pseudo-variables
  publication-title: Sankhyā Indian J. Stat. Ser. A
– ident: ref_33
  doi: 10.3390/app9173578
– volume: 39
  start-page: 588
  year: 2014
  ident: ref_8
  article-title: Novel method and model for dynamic reliability optimal design of turbine blade deformation
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2014.07.003
– ident: ref_19
  doi: 10.3390/ma12091545
– volume: 198
  start-page: 1716
  year: 2009
  ident: ref_34
  article-title: Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.12.022
– volume: 202
  start-page: 423
  year: 2018
  ident: ref_32
  article-title: Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effects
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.08.009
– volume: 63
  start-page: 601
  year: 2010
  ident: ref_37
  article-title: Stress analysis & life prediction of a cryogenic rocket engine thrust chamber considering low cycle fatigue, creep and thermal ratchetting
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-010-0089-7
– ident: ref_23
  doi: 10.3390/en12091588
– volume: 697
  start-page: 664
  year: 2016
  ident: ref_31
  article-title: Research on transition from short to long fatigue crack propagation of GH4133B superalloy used in turbine disk of aeroengine
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.697.664
– volume: 79
  start-page: 636
  year: 2018
  ident: ref_14
  article-title: Substructure-based distributed collaborative probabilistic analysis method for low-cycle fatigue damage assessment of turbine blade–disk
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.06.023
– volume: 97
  start-page: 579
  year: 2019
  ident: ref_17
  article-title: Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.01.015
– volume: 2015
  start-page: 519
  year: 2015
  ident: ref_36
  article-title: Multiobject reliability analysis of turbine blisk with multidiscipline under multiphysical field interaction
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2015/649046
– volume: 23
  start-page: 344
  year: 2016
  ident: ref_7
  article-title: Transient reliability optimization for turbine disk radial deformation
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-016-3079-z
– volume: 75
  start-page: 648
  year: 2015
  ident: ref_11
  article-title: Optimization of operating conditions for steam turbine using an artificial neural network inverse
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.09.065
– volume: 92
  start-page: 464
  year: 2019
  ident: ref_5
  article-title: Multi-failure probabilistic design for turbine bladed disks using neural network regression with distributed collaborative strategy
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.06.026
– volume: 228
  start-page: 3019
  year: 2014
  ident: ref_9
  article-title: Study on the theory, method and model for mechanical dynamic assembly reliability optimization
  publication-title: Proc. IME Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406214525137
– volume: 4
  start-page: 865
  year: 1973
  ident: ref_25
  article-title: Multilevel optimization methods for non-separable problems and application
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207727308920064
– volume: 119
  start-page: 204
  year: 2019
  ident: ref_16
  article-title: Probabilistic LCF life assessment of turbine discs using DC-based wavelet neural network regression
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.10.005
– volume: 64
  start-page: 52
  year: 2017
  ident: ref_10
  article-title: Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.01.018
– volume: 355
  start-page: 438
  year: 2019
  ident: ref_13
  article-title: Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.06.036
– volume: 126
  start-page: 165
  year: 2019
  ident: ref_15
  article-title: Probabilistic modeling of fatigue life distribution and size effect of components with random defects
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2019.05.005
– ident: ref_4
  doi: 10.1007/978-81-322-0487-9_74
– volume: 19
  start-page: 101
  year: 2012
  ident: ref_6
  article-title: Extremum response surface method of reliability analysis on two-link flexible robot manipulator
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-012-0978-5
– volume: 70
  start-page: 405
  year: 2007
  ident: ref_27
  article-title: Probabilistic safety analysis of structures under hybrid uncertainty
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1883
SSID ssj0000331829
Score 2.3263054
Snippet To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response...
If we directly establish the reliability optimization design model of an overall structure involving multi-material, multi-disciplinary, and multi-physics...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3367
SubjectTerms Accuracy
Boundary conditions
Collaboration
Component reliability
Computational efficiency
Computer simulation
Computing time
Coupling
Creep (materials)
Damage
Design optimization
Design parameters
Disks
Efficiency
Failure modes
Fatigue failure
Mathematical models
Methods
Model accuracy
Neural networks
Optimization
Response surface methodology
Turbines
Title Probabilistic Fatigue/Creep Optimization of Turbine Bladed Disk with Fuzzy Multi-Extremum Response Surface Method
URI https://www.proquest.com/docview/2333417127
https://www.proquest.com/docview/2306494489
https://pubmed.ncbi.nlm.nih.gov/PMC6829238
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9gIHRHmIhVIZwYWDtWs7zxOiZdMKqaUqrbS3yI8JVHSz2-xGgv56xlnvS6q4JbGlSOPxzPeNxzMAH2OhTWpNxZXUhke5jblxwvCBi9F5tlh1d6vOzpPT6-jbKB6FgNsspFUubWJnqN3E-hh5XypFBjcVMv08veO-a5Q_XQ0tNHZgj0xwRuRr72h4fnG5irIMFOmszBd1SRXx-_5YCynpc9dYfsMTreHldnLkhrcpnsHTABPZl8W67sMjrJ_Dk43igS_g7qKhvehzW32pZVaQiH-22D9uEKfsO1mCcbhiySYVu2obosDIjm61Q8e-3sx-Mx-CZUV7f_-Xdddw-fDPvMFxO2aXi8RZZD_aptIW2VnXZ_olXBfDq-NTHhoocEvEc86tFSpSLjPkpJ3UMtGRsZmm59xGeYo20qIaxJU0KJ1GlWQuUVpojGKpM5GqV7BbT2p8DaxKCXf4CJQhBqakzYUU1sYYJZ5eZ1UPPi2FWdpQXdw3ubgtiWV4wZdrwffgw2rudFFT48FZB8s1KcO-mpVrLejB-9Uw7Qh_zKFrnLR-DsGsnGhn3oN0ay1Xf_M1tbdH6ptfXW3thLSFUMyb___8LTwm4JR7HybiA9idNy2-I3AyN4ewkxUnh0EP6e1kJP4Bq6vqdg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcIFFgEHDhYye76eUAI2pqUNgVBKvXm7mMMFY2TOrGg_VH8RmYdOw8JcevN8q5saXZe3-w8AF4FXOnI6NyTQmnPT0zgacu117MBWocW87q2anAY9o_8T8fB8Qb8aWthXFplqxNrRW3HxsXIu0JKUrgRF9G7ybnnpka529V2hMacLfbx4hdBtunbvR0639dCpLvD7b7XTBXwDKGxmWcMl760sSbLZYUSofK1iRU9J8ZPIjS-4nkvyIVGYRXKMLahVFyhHwgV80jSd6_BdV_KxElUnH5cxHR6kiREJPMuqLTe644UF4Je12PsV-ze0pldT8VcsW3pHbjdOKXs_ZyL7sIGFvfg1kqrwvtw_qUkyXeZtK6xM0vpQL9X2N0uESfsM-mdUVPQycY5G1YlAW5kH86URct2Tqc_mQv4srS6vLxgddGvt_t7VuKoGrGv8zRdZN-qMlcG2aCeav0Ajq6EsA9hsxgX-AhYHpGX4-JdmvCeFCbhghsToB86MB_nHXjTEjMzTS9zN1LjLCNM4wifLQnfgZeLvZN5B49_7tpqzyRrpHiaLXmuAy8WyyR_7lJFFTiu3B5y6hICuUkHorWzXPzNdfBeXylOf9SdvEPiFvKZHv__58_hRn84OMgO9g73n8BNctkSZz15sAWbs7LCp-QWzfSzmhcZnFw18_8Fb2Uk3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoFFwIGDFe-unweEaBOrpTREpZV6c_dlqNo4qRML2p_Gr2PWjzwkxK03y155pZnZmflm5wHwzqdChkpmDmdCOl6sfEdqKh1X-0ZbtJhVtVWHw2DvxPty6p9uwJ-2FsamVbY6sVLUeqJsjLzHOEeFG1KE6lmTFjHqJ5-mV46dIGVvWttxGrWIHJjrXwjfZh_3-8jr94wlg-PdPaeZMOAoRGZzRynKPa4jiVZMM8EC4UkVCXyOlReHRnmCZq6fMWmYFoYHkQ64oMJ4PhMRDTn-9w5shoiK3A5s7gyGo6NFhMfleF5YXPdE5Tx2e2NBGcPX1VD7FSu4dG3XEzNXLF3yEB40Lir5XMvUI9gw-WO4v9K48AlcjQrUAzav1rZ5Jgmy90dperuFMVPyDbXQuCnvJJOMHJcFwm9Ddi6FNpr0z2cXxIZ_SVLe3FyTqgTYGfyeF2ZcjslRnbRryPeyyIQy5LCacf0UTm6FtM-gk09y8xxIFqLPY6NfEtEfZyqmjCrlGy-w0D7KuvChJWaqms7mdsDGZYoIxxI-XRK-C28Xa6d1P49_rtpueZI2Z3qWLiWwC28Wn_E02isWkZtJadegixcj5I27EK7xcrGb7ee9_iU__1n19Q5QWtCD2vr_5q_hLgp--nV_ePAC7qH_FltTSv1t6MyL0rxEH2kuXzXCSODstuX_L474Km4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Fatigue%2FCreep+Optimization+of+Turbine+Bladed+Disk+with+Fuzzy+Multi-Extremum+Response+Surface+Method&rft.jtitle=Materials&rft.au=Chun-Yi%2C+Zhang&rft.au=Zhe-Shan+Yuan&rft.au=Wang%2C+Ze&rft.au=Cheng-Wei%2C+Fei&rft.date=2019-10-15&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=12&rft.issue=20&rft_id=info:doi/10.3390%2Fma12203367&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon