Probabilistic Fatigue/Creep Optimization of Turbine Bladed Disk with Fuzzy Multi-Extremum Response Surface Method
To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas o...
Saved in:
Published in | Materials Vol. 12; no. 20; p. 3367 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
15.10.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma12203367 |
Cover
Loading…
Abstract | To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory. |
---|---|
AbstractList | To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory. If we directly establish the reliability optimization design model of an overall structure involving multi-material, multi-disciplinary, and multi-physics structures, the computational burden will become very large in analysis, so that computational efficiency is unacceptable [2]. [...]it is significant to propose an efficient method for an overall reliability optimization design of multi-component and multi-failure modes, to make computational precision and efficiency satisfy engineering requirements. [...]the probabilistic fatigue/creep optimization design of turbine bladed disks involves an obvious fuzziness for design parameters and constraint conditions as well as the coupling among many failure modes such as stress failure, strain failure, creep damage, fatigue damage, and so on [15,16,17,18]. [...]the fuzziness and coupling seriously negatively influence the design precision and efficiency of multi-object optimization when the above methods are directly applied. [...]it is urgent to propose an effective method for multi-object reliability-based optimization, in which the fuzziness for design parameters and constraint conditions as well as the coupling among many failure modes are fully considered in order to improve the modeling accuracy and simulation efficiency. In most of the structural probabilistic designs, in fact, influential parameters and constraint conditions hold obvious fuzziness and seriously influence design precision. [...]it is reasonable to consider the fuzziness of design parameters and constraint conditions to improve the probabilistic design of structures, especially with multi-failure modes or multi-component structures. To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory. To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for the comprehensive probabilistic optimization of multi-failure/multi-component structures, which absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory. We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint functions. The results show that gas temperature T and rotor speed ω are the key parameters that should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s after optimization, which is promising to extend bladed disk life and decrease failure damages. The simulation results show that this method has a higher modeling accuracy and computational efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method for overall probabilistic multi-failure optimization and enrich mechanical reliability theory. |
Author | Lu, Cheng Zhang, Chun-Yi Wang, Ze Fei, Cheng-Wei Yuan, Zhe-Shan |
AuthorAffiliation | 2 Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China 1 School of Mechanical and Power Engineering, Harbin University of Science and Technology, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin 150080, China; zhangchunyi@hrbust.edu.cn (C.-Y.Z.); yuanzheshan_ma17@hrbust.edu.cn (Z.-S.Y.); wangze_ma17@hrbust.edu.cn (Z.W.) 3 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; lucheng2013@163.com |
AuthorAffiliation_xml | – name: 2 Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China – name: 1 School of Mechanical and Power Engineering, Harbin University of Science and Technology, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin 150080, China; zhangchunyi@hrbust.edu.cn (C.-Y.Z.); yuanzheshan_ma17@hrbust.edu.cn (Z.-S.Y.); wangze_ma17@hrbust.edu.cn (Z.W.) – name: 3 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; lucheng2013@163.com |
Author_xml | – sequence: 1 givenname: Chun-Yi surname: Zhang fullname: Zhang, Chun-Yi – sequence: 2 givenname: Zhe-Shan surname: Yuan fullname: Yuan, Zhe-Shan – sequence: 3 givenname: Ze surname: Wang fullname: Wang, Ze – sequence: 4 givenname: Cheng-Wei orcidid: 0000-0001-5333-1055 surname: Fei fullname: Fei, Cheng-Wei – sequence: 5 givenname: Cheng orcidid: 0000-0002-5939-1048 surname: Lu fullname: Lu, Cheng |
BookMark | eNptUU1v1EAMHaEiWpZe-AUjcUFIoZnxbDa5IMHSBaRWRVDOI2fidKckmXQ-gO6vZ0qLgApfbNnP9vPzY7Y3uYkYeyrKlwBNeTSikLIEqFYP2IFomqoQjVJ7f8X77DCEyzIbgKhl84jtg6hE3QAcsKuP3rXY2sGGaA3fYLQXiY7WnmjmZ3O0o93lnJu46_l58q2diL8ZsKOOv7XhK_9u45Zv0m53zU_TEG1x_CN6GtPIP1GY3RSIf06-R0P8lOLWdU_Ywx6HQId3fsG-bI7P1--Lk7N3H9avTwoDNcTCGAEKuroVS9lJlBWq1tSY48aoZkVGoejLZS9bkh0SVHVXAQoktZRYixUs2KvbuXNqR-oMTdHjoGdvR_TX2qHV_1Ymu9UX7puuskYyc1iw53cDvLtKFKIebTA0DDiRS0FLKCuV9c1CLtize9BLl_yUz8soACVWQt4wKm9RxrsQPPXa2PhL3LzfDlqU-ual-s9Lc8uLey2_-f8H_BOWu6N_ |
CitedBy_id | crossref_primary_10_1155_2020_3982450 crossref_primary_10_1016_j_ast_2023_108325 crossref_primary_10_1155_2021_8085421 crossref_primary_10_1007_s12517_021_07866_x crossref_primary_10_1016_j_ast_2022_107998 crossref_primary_10_3390_ma13010147 crossref_primary_10_1108_IJSI_04_2022_0050 crossref_primary_10_3390_ma13143239 crossref_primary_10_1177_01423312211068949 crossref_primary_10_3390_app9204357 crossref_primary_10_3390_ma12213552 crossref_primary_10_1109_ACCESS_2019_2952358 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_21595_jets_2024_23922 crossref_primary_10_1109_ACCESS_2020_2975316 crossref_primary_10_1051_jnwpu_20213961240 crossref_primary_10_1016_j_ress_2025_110811 crossref_primary_10_1016_j_cja_2020_10_036 |
Cites_doi | 10.1016/j.ijmecsci.2018.04.050 10.1016/j.ast.2015.11.025 10.1016/j.oceaneng.2015.07.032 10.1016/j.ast.2015.12.017 10.1016/j.cja.2016.06.017 10.1016/j.ast.2019.105466 10.1016/B978-0-444-89970-5.50007-8 10.1016/j.engfailanal.2015.04.009 10.1016/j.ast.2018.02.012 10.1016/j.nme.2016.05.017 10.1007/s11771-018-3946-x 10.1016/j.compstruc.2015.09.004 10.1016/j.ymssp.2016.05.026 10.1177/002199838602000202 10.3390/app9173578 10.1016/j.ast.2014.07.003 10.3390/ma12091545 10.1016/j.cma.2008.12.022 10.1016/j.engfracmech.2018.08.009 10.1007/s12666-010-0089-7 10.3390/en12091588 10.4028/www.scientific.net/KEM.697.664 10.1016/j.ast.2018.06.023 10.1016/j.engfailanal.2019.01.015 10.1155/2015/649046 10.1007/s11771-016-3079-z 10.1016/j.applthermaleng.2014.09.065 10.1016/j.ast.2019.06.026 10.1177/0954406214525137 10.1080/00207727308920064 10.1016/j.ijfatigue.2018.10.005 10.1016/j.ast.2017.01.018 10.1016/j.cma.2019.06.036 10.1016/j.ijfatigue.2019.05.005 10.1007/978-81-322-0487-9_74 10.1007/s11771-012-0978-5 10.1002/nme.1883 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma12203367 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6829238 10_3390_ma12203367 |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c383t-cc1343d8b152d2a26a4bc8a2d29c497ec4a1f05f2be2dae368d63a1ae452a8173 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:04:53 EDT 2025 Fri Jul 11 15:51:35 EDT 2025 Fri Jul 25 11:53:41 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 03:56:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-cc1343d8b152d2a26a4bc8a2d29c497ec4a1f05f2be2dae368d63a1ae452a8173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5333-1055 0000-0002-5939-1048 |
OpenAccessLink | https://www.proquest.com/docview/2333417127?pq-origsite=%requestingapplication% |
PMID | 31618933 |
PQID | 2333417127 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6829238 proquest_miscellaneous_2306494489 proquest_journals_2333417127 crossref_citationtrail_10_3390_ma12203367 crossref_primary_10_3390_ma12203367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191015 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191015 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fei (ref_8) 2014; 39 Kemp (ref_26) 1979; 41 Hamzaoui (ref_11) 2015; 75 Fei (ref_9) 2014; 228 Song (ref_16) 2019; 119 Li (ref_3) 2016; 162 Zhao (ref_31) 2016; 697 ref_33 Devloo (ref_34) 2009; 198 Gao (ref_14) 2018; 79 Ai (ref_15) 2019; 126 Fei (ref_22) 2013; 10 Fei (ref_2) 2016; 50 Chakraborty (ref_27) 2007; 70 ref_19 ref_18 Garcia (ref_12) 2015; 56 Wang (ref_13) 2019; 355 Zhang (ref_36) 2015; 2015 Mahler (ref_29) 2016; 9 Zhang (ref_24) 2016; 29 Zhu (ref_38) 2018; 142 Zhai (ref_30) 2017; 82 Wang (ref_39) 2015; 107 Cano (ref_17) 2019; 97 Gao (ref_21) 2016; 49 ref_23 Liao (ref_32) 2018; 202 Fei (ref_7) 2016; 23 Song (ref_10) 2017; 64 Hashiguchi (ref_35) 1993; 1993 Song (ref_5) 2019; 92 Zhang (ref_6) 2012; 19 Lu (ref_20) 2018; 76 Titli (ref_25) 1973; 4 Hwang (ref_28) 1986; 20 Zhang (ref_1) 2018; 25 ref_4 Asraff (ref_37) 2010; 63 |
References_xml | – volume: 142 start-page: 502 year: 2018 ident: ref_38 article-title: Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.04.050 – volume: 50 start-page: 62 year: 2016 ident: ref_2 article-title: Transient probabilistic analysis for turbine blade-tip radial clearance with multi-component and multi-physics fields based on DCERSM publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.11.025 – volume: 107 start-page: 54 year: 2015 ident: ref_39 article-title: Assessing operational ocean observing equipment (OOOE) based on the fuzzy comprehensive evaluation method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.07.032 – volume: 49 start-page: 289 year: 2016 ident: ref_21 article-title: Reliability-based low-cycle fatigue life analysis of turbine blade with thermo- structural interaction publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.12.017 – volume: 29 start-page: 962 year: 2016 ident: ref_24 article-title: Advanced multiple response surface method for reliability sensitivity analysis of turbine blisk with multi-physics coupling publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2016.06.017 – ident: ref_18 doi: 10.1016/j.ast.2019.105466 – volume: 1993 start-page: 39 year: 1993 ident: ref_35 article-title: A basic formulation of elastoplastic constitutive equations publication-title: Mod. Approaches Plast. doi: 10.1016/B978-0-444-89970-5.50007-8 – volume: 56 start-page: 80 year: 2015 ident: ref_12 article-title: Failure probability estimation of steam turbine blades by enhanced Monte Carlo Method publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2015.04.009 – volume: 10 start-page: 47 year: 2013 ident: ref_22 article-title: Extremum response surface method for casing radial deformation probabilistic analysis publication-title: J. Aerosp. Inf. Syst. – volume: 76 start-page: 164 year: 2018 ident: ref_20 article-title: Improved kriging with extremum response surface method for structural dynamic reliability and sensitivity analyses publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.02.012 – volume: 9 start-page: 535 year: 2016 ident: ref_29 article-title: ANSYS creep-fatigue assessment tool for EUROFER97 components publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2016.05.017 – volume: 25 start-page: 2688 year: 2018 ident: ref_1 article-title: Dynamic probabilistic design technique for multi-component system with multi-failure modes publication-title: J. Cent. South Univ. doi: 10.1007/s11771-018-3946-x – volume: 162 start-page: 102 year: 2016 ident: ref_3 article-title: A local Kriging approximation method using MPP for reliability-based design optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2015.09.004 – volume: 82 start-page: 323 year: 2017 ident: ref_30 article-title: A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.05.026 – volume: 20 start-page: 125 year: 1986 ident: ref_28 article-title: Cumulative damage models and multi-stress fatigue life prediction publication-title: J. Compos. Mater. doi: 10.1177/002199838602000202 – volume: 41 start-page: 232 year: 1979 ident: ref_26 article-title: Convolutions Involving binomial pseudo-variables publication-title: Sankhyā Indian J. Stat. Ser. A – ident: ref_33 doi: 10.3390/app9173578 – volume: 39 start-page: 588 year: 2014 ident: ref_8 article-title: Novel method and model for dynamic reliability optimal design of turbine blade deformation publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2014.07.003 – ident: ref_19 doi: 10.3390/ma12091545 – volume: 198 start-page: 1716 year: 2009 ident: ref_34 article-title: Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.12.022 – volume: 202 start-page: 423 year: 2018 ident: ref_32 article-title: Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effects publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.08.009 – volume: 63 start-page: 601 year: 2010 ident: ref_37 article-title: Stress analysis & life prediction of a cryogenic rocket engine thrust chamber considering low cycle fatigue, creep and thermal ratchetting publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-010-0089-7 – ident: ref_23 doi: 10.3390/en12091588 – volume: 697 start-page: 664 year: 2016 ident: ref_31 article-title: Research on transition from short to long fatigue crack propagation of GH4133B superalloy used in turbine disk of aeroengine publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.697.664 – volume: 79 start-page: 636 year: 2018 ident: ref_14 article-title: Substructure-based distributed collaborative probabilistic analysis method for low-cycle fatigue damage assessment of turbine blade–disk publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.06.023 – volume: 97 start-page: 579 year: 2019 ident: ref_17 article-title: Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.01.015 – volume: 2015 start-page: 519 year: 2015 ident: ref_36 article-title: Multiobject reliability analysis of turbine blisk with multidiscipline under multiphysical field interaction publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2015/649046 – volume: 23 start-page: 344 year: 2016 ident: ref_7 article-title: Transient reliability optimization for turbine disk radial deformation publication-title: J. Cent. South Univ. doi: 10.1007/s11771-016-3079-z – volume: 75 start-page: 648 year: 2015 ident: ref_11 article-title: Optimization of operating conditions for steam turbine using an artificial neural network inverse publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.065 – volume: 92 start-page: 464 year: 2019 ident: ref_5 article-title: Multi-failure probabilistic design for turbine bladed disks using neural network regression with distributed collaborative strategy publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.06.026 – volume: 228 start-page: 3019 year: 2014 ident: ref_9 article-title: Study on the theory, method and model for mechanical dynamic assembly reliability optimization publication-title: Proc. IME Part C J. Mech. Eng. Sci. doi: 10.1177/0954406214525137 – volume: 4 start-page: 865 year: 1973 ident: ref_25 article-title: Multilevel optimization methods for non-separable problems and application publication-title: Int. J. Syst. Sci. doi: 10.1080/00207727308920064 – volume: 119 start-page: 204 year: 2019 ident: ref_16 article-title: Probabilistic LCF life assessment of turbine discs using DC-based wavelet neural network regression publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.10.005 – volume: 64 start-page: 52 year: 2017 ident: ref_10 article-title: Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.01.018 – volume: 355 start-page: 438 year: 2019 ident: ref_13 article-title: Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.06.036 – volume: 126 start-page: 165 year: 2019 ident: ref_15 article-title: Probabilistic modeling of fatigue life distribution and size effect of components with random defects publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.05.005 – ident: ref_4 doi: 10.1007/978-81-322-0487-9_74 – volume: 19 start-page: 101 year: 2012 ident: ref_6 article-title: Extremum response surface method of reliability analysis on two-link flexible robot manipulator publication-title: J. Cent. South Univ. doi: 10.1007/s11771-012-0978-5 – volume: 70 start-page: 405 year: 2007 ident: ref_27 article-title: Probabilistic safety analysis of structures under hybrid uncertainty publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1883 |
SSID | ssj0000331829 |
Score | 2.3263054 |
Snippet | To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine bladed disk, this paper develops the fuzzy multi-extremum response... If we directly establish the reliability optimization design model of an overall structure involving multi-material, multi-disciplinary, and multi-physics... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3367 |
SubjectTerms | Accuracy Boundary conditions Collaboration Component reliability Computational efficiency Computer simulation Computing time Coupling Creep (materials) Damage Design optimization Design parameters Disks Efficiency Failure modes Fatigue failure Mathematical models Methods Model accuracy Neural networks Optimization Response surface methodology Turbines |
Title | Probabilistic Fatigue/Creep Optimization of Turbine Bladed Disk with Fuzzy Multi-Extremum Response Surface Method |
URI | https://www.proquest.com/docview/2333417127 https://www.proquest.com/docview/2306494489 https://pubmed.ncbi.nlm.nih.gov/PMC6829238 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9gIHRHmIhVIZwYWDtWs7zxOiZdMKqaUqrbS3yI8JVHSz2-xGgv56xlnvS6q4JbGlSOPxzPeNxzMAH2OhTWpNxZXUhke5jblxwvCBi9F5tlh1d6vOzpPT6-jbKB6FgNsspFUubWJnqN3E-hh5XypFBjcVMv08veO-a5Q_XQ0tNHZgj0xwRuRr72h4fnG5irIMFOmszBd1SRXx-_5YCynpc9dYfsMTreHldnLkhrcpnsHTABPZl8W67sMjrJ_Dk43igS_g7qKhvehzW32pZVaQiH-22D9uEKfsO1mCcbhiySYVu2obosDIjm61Q8e-3sx-Mx-CZUV7f_-Xdddw-fDPvMFxO2aXi8RZZD_aptIW2VnXZ_olXBfDq-NTHhoocEvEc86tFSpSLjPkpJ3UMtGRsZmm59xGeYo20qIaxJU0KJ1GlWQuUVpojGKpM5GqV7BbT2p8DaxKCXf4CJQhBqakzYUU1sYYJZ5eZ1UPPi2FWdpQXdw3ubgtiWV4wZdrwffgw2rudFFT48FZB8s1KcO-mpVrLejB-9Uw7Qh_zKFrnLR-DsGsnGhn3oN0ay1Xf_M1tbdH6ptfXW3thLSFUMyb___8LTwm4JR7HybiA9idNy2-I3AyN4ewkxUnh0EP6e1kJP4Bq6vqdg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcIFFgEHDhYye76eUAI2pqUNgVBKvXm7mMMFY2TOrGg_VH8RmYdOw8JcevN8q5saXZe3-w8AF4FXOnI6NyTQmnPT0zgacu117MBWocW87q2anAY9o_8T8fB8Qb8aWthXFplqxNrRW3HxsXIu0JKUrgRF9G7ybnnpka529V2hMacLfbx4hdBtunbvR0639dCpLvD7b7XTBXwDKGxmWcMl760sSbLZYUSofK1iRU9J8ZPIjS-4nkvyIVGYRXKMLahVFyhHwgV80jSd6_BdV_KxElUnH5cxHR6kiREJPMuqLTe644UF4Je12PsV-ze0pldT8VcsW3pHbjdOKXs_ZyL7sIGFvfg1kqrwvtw_qUkyXeZtK6xM0vpQL9X2N0uESfsM-mdUVPQycY5G1YlAW5kH86URct2Tqc_mQv4srS6vLxgddGvt_t7VuKoGrGv8zRdZN-qMlcG2aCeav0Ajq6EsA9hsxgX-AhYHpGX4-JdmvCeFCbhghsToB86MB_nHXjTEjMzTS9zN1LjLCNM4wifLQnfgZeLvZN5B49_7tpqzyRrpHiaLXmuAy8WyyR_7lJFFTiu3B5y6hICuUkHorWzXPzNdfBeXylOf9SdvEPiFvKZHv__58_hRn84OMgO9g73n8BNctkSZz15sAWbs7LCp-QWzfSzmhcZnFw18_8Fb2Uk3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoFFwIGDFe-unweEaBOrpTREpZV6c_dlqNo4qRML2p_Gr2PWjzwkxK03y155pZnZmflm5wHwzqdChkpmDmdCOl6sfEdqKh1X-0ZbtJhVtVWHw2DvxPty6p9uwJ-2FsamVbY6sVLUeqJsjLzHOEeFG1KE6lmTFjHqJ5-mV46dIGVvWttxGrWIHJjrXwjfZh_3-8jr94wlg-PdPaeZMOAoRGZzRynKPa4jiVZMM8EC4UkVCXyOlReHRnmCZq6fMWmYFoYHkQ64oMJ4PhMRDTn-9w5shoiK3A5s7gyGo6NFhMfleF5YXPdE5Tx2e2NBGcPX1VD7FSu4dG3XEzNXLF3yEB40Lir5XMvUI9gw-WO4v9K48AlcjQrUAzav1rZ5Jgmy90dperuFMVPyDbXQuCnvJJOMHJcFwm9Ddi6FNpr0z2cXxIZ_SVLe3FyTqgTYGfyeF2ZcjslRnbRryPeyyIQy5LCacf0UTm6FtM-gk09y8xxIFqLPY6NfEtEfZyqmjCrlGy-w0D7KuvChJWaqms7mdsDGZYoIxxI-XRK-C28Xa6d1P49_rtpueZI2Z3qWLiWwC28Wn_E02isWkZtJadegixcj5I27EK7xcrGb7ee9_iU__1n19Q5QWtCD2vr_5q_hLgp--nV_ePAC7qH_FltTSv1t6MyL0rxEH2kuXzXCSODstuX_L474Km4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Fatigue%2FCreep+Optimization+of+Turbine+Bladed+Disk+with+Fuzzy+Multi-Extremum+Response+Surface+Method&rft.jtitle=Materials&rft.au=Chun-Yi%2C+Zhang&rft.au=Zhe-Shan+Yuan&rft.au=Wang%2C+Ze&rft.au=Cheng-Wei%2C+Fei&rft.date=2019-10-15&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=12&rft.issue=20&rft_id=info:doi/10.3390%2Fma12203367&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |