Ultra-flat bands at large twist angles in group-V twisted bilayer materials

Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 160; no. 19
Main Authors Que, Zhi-Xiong, Li, Shu-Zong, Huang, Bo, Yang, Zhi-Xiong, Zhang, Wei-Bing
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 21.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.
AbstractList Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.
Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.
Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.
Author Li, Shu-Zong
Zhang, Wei-Bing
Huang, Bo
Que, Zhi-Xiong
Yang, Zhi-Xiong
Author_xml – sequence: 1
  givenname: Zhi-Xiong
  surname: Que
  fullname: Que, Zhi-Xiong
  organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
– sequence: 2
  givenname: Shu-Zong
  surname: Li
  fullname: Li, Shu-Zong
  organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
– sequence: 3
  givenname: Bo
  surname: Huang
  fullname: Huang, Bo
  organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
– sequence: 4
  givenname: Zhi-Xiong
  surname: Yang
  fullname: Yang, Zhi-Xiong
  organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
– sequence: 5
  givenname: Wei-Bing
  surname: Zhang
  fullname: Zhang, Wei-Bing
  organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38767261$$D View this record in MEDLINE/PubMed
BookMark eNp90UtLxDAQAOAgiq6Pg39ACl5U6Dpp0qQ9ivhCwYt6LdN2ukSy7ZqkiP_eLLvrQcRLJgzfDMnMPtvuh54YO-Yw5aDEZT4FXmqd6y024VCUqVYlbLMJQMbTUoHaY_vevwMA15ncZXui0Epnik_Y46sNDtPOYkhq7FufxItFN6MkfBofEuxnlnxi-mTmhnGRvq3y1Ca1sfhFLpljIGfQ-kO208VAR-t4wF5vb16u79On57uH66untBGFCPHsRKklz0DIoqYWOylRyUzEVMHzjHgBBEQclSpbLBqhurwWLbYNSMxqccDOVn0XbvgYyYdqbnxD1mJPw-grAbmG-D2pIj39Rd-H0fXxdUulCqk0LNXJWo31nNpq4cwc3Ve1GVME5yvQuMF7R90P4VAtV1Dl1XoF0V7-so0JGMzQx0Eb-2fFxarCb-Q_7b8B2uWSoA
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acsami_4c22462
Cites_doi 10.1103/physrevlett.122.016401
10.1103/physrevlett.99.256802
10.1038/s41586-020-2085-3
10.1103/physrevlett.127.247703
10.1103/physrevlett.122.086402
10.1103/physrevb.54.11169
10.1103/physrevb.96.195406
10.1038/s41467-021-27504-0
10.1103/physrevb.94.205409
10.1038/s41467-020-20667-2
10.1038/s41467-023-38468-8
10.1103/physrevb.59.1758
10.1016/j.cpc.2018.03.016
10.1103/physrevb.98.241412
10.1063/5.0045386
10.1038/nphys2272
10.1103/physrevb.47.6728
10.1103/physrevlett.121.266401
10.1063/1.5026120
10.1002/anie.201507568
10.1038/s41586-021-04121-x
10.1002/jcc.21759
10.1021/jacs.1c11953
10.1103/physrevlett.124.086401
10.1038/nnano.2014.35
10.1016/j.scib.2021.09.010
10.1103/physrevb.50.17953
10.1016/j.flatc.2019.100112
10.1063/5.0155600
10.1038/nphys2954
10.1039/c7cs00125h
10.1039/c6cp08807d
10.1103/physrevlett.77.3865
10.1038/nature26154
10.1073/pnas.1309394110
10.1038/s41586-021-03815-6
10.1103/physrevb.89.235319
10.1038/nature26160
10.1063/1.3382344
10.1038/ncomms5475
10.1039/d1nr02843j
10.1002/adma.201605299
10.1103/physrevb.67.155108
10.1039/d1ra05301a
10.1038/s43588-022-00265-6
10.1038/s41563-021-00923-6
10.1038/s41567-020-0958-x
10.1103/physrevlett.122.026801
10.1103/physrevlett.124.046403
10.1016/j.spmi.2016.07.027
10.1103/physrevb.91.115433
10.1103/physrevlett.122.106405
10.1016/j.jcp.2015.12.014
10.1088/2053-1583/ac3a98
10.1063/5.0106676
10.1073/pnas.1108174108
10.1103/physrevb.69.195113
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0197757
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 38767261
10_1063_5_0197757
jcp
Genre Journal Article
GrantInformation_xml – fundername: The Fok Ying-Tong Education Foundation, China
  grantid: 161005
– fundername: Science Fund for Distinguished Young Scholars of Hunan Province
  grantid: 2021JJ10039
– fundername: National Natural Science Foundation of China
  grantid: 11874092
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-c3f3974120348bedaf44a64234128152e180e0ee1a669da8c36f5b3dadc04a2b3
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 23:02:14 EDT 2025
Sun Jun 29 15:52:54 EDT 2025
Wed Feb 19 02:13:01 EST 2025
Tue Jul 01 01:12:44 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Fri Jun 21 00:17:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Published under an exclusive license by AIP Publishing.
2024 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-c3f3974120348bedaf44a64234128152e180e0ee1a669da8c36f5b3dadc04a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0440-6142
0000-0003-1306-4540
0009-0001-6627-6910
0000-0003-2066-1562
0000-0003-4955-5376
OpenAccessLink https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0197757/19959397/194710_1_5.0197757.pdf
PMID 38767261
PQID 3056846706
PQPubID 2050685
PageCount 7
ParticipantIDs pubmed_primary_38767261
scitation_primary_10_1063_5_0197757
crossref_primary_10_1063_5_0197757
crossref_citationtrail_10_1063_5_0197757
proquest_miscellaneous_3057072646
proquest_journals_3056846706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240521
2024-05-21
2024-May-21
PublicationDateYYYYMMDD 2024-05-21
PublicationDate_xml – month: 05
  year: 2024
  text: 20240521
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Kadioglu, Santana, Özaydin, Ersan, Aktürk, Aktürk, Reboredo (c51) 2018; 148
Woods, Ares, Nevison-Andrews, Holwill, Fabregas, Guinea, Geim, Novoselov, Walet, Fumagalli (c19) 2021; 12
Shavit, Berg, Stern, Oreg (c6) 2021; 127
Wang, Zhang, Han, E (c57) 2018; 228
Ozaki, Kino (c47) 2004; 69
Nahas, Bajaj, Bhowmick (c27) 2017; 19
Kresse, Furthmüller (c40) 1996; 54
Ghiotto, Shih, Pereira, Rhodes, Kim, Zang, Millis, Watanabe, Taniguchi, Hone, Wang, Dean, Pasupathy (c16) 2021; 597
Pumera, Sofer (c22) 2017; 29
Grimme, Ehrlich, Goerigk (c45) 2011; 32
Alden, Tsen, Huang, Hovden, Brown, Park, Muller, McEuen (c1) 2013; 110
Kresse, Joubert (c42) 1999; 59
Tarnopolsky, Kruchkov, Vishwanath (c29) 2019; 122
Ospina, Duque, Correa, Suárez Morell (c32) 2016; 97
Choi, Choi (c30) 2018; 98
Cao, Fatemi, Demir, Fang, Tomarken, Luo, Sanchez-Yamagishi, Watanabe, Taniguchi, Kaxiras, Ashoori, Jarillo-Herrero (c10) 2018; 556
Wu, Das Sarma (c4) 2020; 124
Oh, Nuckolls, Wong, Lee, Liu, Watanabe, Taniguchi, Yazdani (c5) 2021; 600
Tang, Li, Li, Xu, Liu, Barmak, Watanabe, Taniguchi, MacDonald, Shan, Mak (c15) 2020; 579
Zhang, Wang, Watanabe, Taniguchi, Ueno, Tutuc, LeRoy (c17) 2020; 16
Xu, Guo, Xian (c52) 2021; 9
Han, Nie, Gu, Liu, Chen, Ying, Wang, Cheng, Zhao, Chen (c7) 2021; 118
Tao, Zhang, Zhu, He, Yang, Lu, Wei (c53) 2022; 144
Qiao, Kong, Hu, Yang, Ji (c26) 2014; 5
Ren, Chen, Zhang (c8) 2022; 121
Woods, Britnell, Eckmann, Ma, Lu, Guo, Lin, Yu, Cao, Gorbachev, Kretinin, Park, Ponomarenko, Katsnelson, Gornostyrev, Watanabe, Taniguchi, Casiraghi, Gao, Geim, Novoselov (c2) 2014; 10
Li, Yu, Ye, Ge, Ou, Wu, Feng, Chen, Zhang (c25) 2014; 9
Agnihotri, Kumar, Chauhan, Agarwal, Bhowmick (c31) 2019; 16
Grimme, Antony, Ehrlich, Krieg (c44) 2010; 132
Blöchl (c41) 1994; 50
Bistritzer, MacDonald (c12) 2011; 108
Tran, Soklaski, Liang, Yang (c24) 2014; 89
Naik, Jain (c18) 2018; 121
Zhang, Xie, Li, Yan, Li, Kan, Liu, Chen, Zeng (c23) 2016; 55
Zeng, Zhang, Lu (c56) 2023; 159
Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero (c11) 2018; 556
Li, Li, Naik, Xie, Li, Wang, Regan, Wang, Zhao, Zhao, Kahn, Yumigeta, Blei, Taniguchi, Watanabe, Tongay, Zettl, Louie, Wang, Crommie (c9) 2021; 20
Wu, Lovorn, Tutuc, Martin, MacDonald (c14) 2019; 122
González, Stauber (c28) 2019; 122
Gu, Zhang, Feng (c36) 2022; 67
Lopes dos Santos, Peres, Castro Neto (c54) 2007; 99
Kecik, Durgun, Ciraci (c49) 2016; 94
Zhao, Yang, Zhang, Wei (c55) 2020; 124
Michaud-Rioux, Zhang, Guo (c39) 2016; 307
Yankowitz, Xue, Cormode, Sanchez-Yamagishi, Watanabe, Taniguchi, Jarillo-Herrero, Jacquod, LeRoy (c3) 2012; 8
Perdew, Burke, Ernzerhof (c43) 1996; 77
Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller (c35) 2021; 12
Ghosh, Nahas, Bhowmick, Agarwal (c50) 2015; 91
Zhang, Guo, Chen, Wang, Gao, Gómez-Herrero, Ares, Zamora, Zhu, Zeng (c21) 2018; 47
Kang, Zhang, Michaud-Rioux, Kong, Hu, Yu, Guo (c20) 2017; 96
Chittari, Chen, Zhang, Wang, Jung (c13) 2019; 122
Souza, Matos, Mazzoni (c33) 2021; 11
Gong, Li, Zou, Xu, Duan, Xu (c38) 2023; 14
Li, Wang, Zou, Ye, Xu, Gong, Duan, Xu (c37) 2022; 2
An, Moutanabbir, Guo (c34) 2021; 13
Ozaki (c46) 2003; 67
Morrison, Bylander, Kleinman (c48) 1993; 47
(2024052010580560800_c4) 2020; 124
(2024052010580560800_c2) 2014; 10
(2024052010580560800_c25) 2014; 9
(2024052010580560800_c8) 2022; 121
(2024052010580560800_c44) 2010; 132
(2024052010580560800_c23) 2016; 55
(2024052010580560800_c17) 2020; 16
(2024052010580560800_c35) 2021; 12
(2024052010580560800_c50) 2015; 91
(2024052010580560800_c55) 2020; 124
(2024052010580560800_c16) 2021; 597
(2024052010580560800_c30) 2018; 98
(2024052010580560800_c29) 2019; 122
(2024052010580560800_c49) 2016; 94
(2024052010580560800_c21) 2018; 47
(2024052010580560800_c36) 2022; 67
(2024052010580560800_c51) 2018; 148
(2024052010580560800_c10) 2018; 556
(2024052010580560800_c38) 2023; 14
(2024052010580560800_c15) 2020; 579
(2024052010580560800_c27) 2017; 19
(2024052010580560800_c43) 1996; 77
(2024052010580560800_c11) 2018; 556
(2024052010580560800_c14) 2019; 122
(2024052010580560800_c33) 2021; 11
(2024052010580560800_c20) 2017; 96
(2024052010580560800_c22) 2017; 29
(2024052010580560800_c52) 2021; 9
(2024052010580560800_c54) 2007; 99
(2024052010580560800_c13) 2019; 122
(2024052010580560800_c18) 2018; 121
(2024052010580560800_c3) 2012; 8
(2024052010580560800_c56) 2023; 159
(2024052010580560800_c12) 2011; 108
(2024052010580560800_c40) 1996; 54
(2024052010580560800_c1) 2013; 110
(2024052010580560800_c9) 2021; 20
(2024052010580560800_c32) 2016; 97
(2024052010580560800_c24) 2014; 89
(2024052010580560800_c34) 2021; 13
(2024052010580560800_c41) 1994; 50
(2024052010580560800_c37) 2022; 2
(2024052010580560800_c6) 2021; 127
(2024052010580560800_c7) 2021; 118
(2024052010580560800_c46) 2003; 67
(2024052010580560800_c31) 2019; 16
(2024052010580560800_c19) 2021; 12
(2024052010580560800_c28) 2019; 122
(2024052010580560800_c5) 2021; 600
(2024052010580560800_c42) 1999; 59
(2024052010580560800_c47) 2004; 69
(2024052010580560800_c53) 2022; 144
(2024052010580560800_c26) 2014; 5
(2024052010580560800_c48) 1993; 47
(2024052010580560800_c45) 2011; 32
(2024052010580560800_c39) 2016; 307
(2024052010580560800_c57) 2018; 228
References_xml – volume: 121
  start-page: 140501
  year: 2022
  ident: c8
  article-title: Phonon physics in twisted two-dimensional materials
  publication-title: Appl. Phys. Lett.
– volume: 97
  start-page: 562
  year: 2016
  ident: c32
  article-title: Twisted bilayer blue phosphorene: A direct band gap semiconductor
  publication-title: Superlattices Microstruct.
– volume: 122
  start-page: 026801
  year: 2019
  ident: c28
  article-title: Kohn–Luttinger superconductivity in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 115433
  year: 2015
  ident: c50
  article-title: Electric field induced gap modification in ultrathin blue phosphorus
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 4475
  year: 2014
  ident: c26
  article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
  publication-title: Nat. Commun.
– volume: 556
  start-page: 80
  year: 2018
  ident: c10
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
– volume: 556
  start-page: 43
  year: 2018
  ident: c11
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
– volume: 77
  start-page: 3865
  year: 1996
  ident: c43
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 17953
  year: 1994
  ident: c41
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 12233
  year: 2011
  ident: c12
  article-title: Moiré bands in twisted double-layer graphene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 47
  start-page: 6728
  year: 1993
  ident: c48
  article-title: Nonlocal Hermitian norm-conserving vanderbilt pseudopotential
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 205409
  year: 2016
  ident: c49
  article-title: Stability of single-layer and multilayer arsenene and their mechanical and electronic properties
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 256802
  year: 2007
  ident: c54
  article-title: Graphene bilayer with a twist: Electronic structure
  publication-title: Phys. Rev. Lett.
– volume: 118
  start-page: 193104
  year: 2021
  ident: c7
  article-title: Twist-angle-dependent thermal conduction in single-crystalline bilayer graphene
  publication-title: Appl. Phys. Lett.
– volume: 54
  start-page: 11169
  year: 1996
  ident: c40
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 945
  year: 2021
  ident: c9
  article-title: Imaging moiré flat bands in three-dimensional reconstructed WSe /WS superlattices
  publication-title: Nat. Mater.
– volume: 69
  start-page: 195113
  year: 2004
  ident: c47
  article-title: Numerical atomic basis orbitals from H to Kr
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 1605299
  year: 2017
  ident: c22
  article-title: 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus
  publication-title: Adv. Mater.
– volume: 2
  start-page: 367
  year: 2022
  ident: c37
  article-title: Deep-learning density functional theory Hamiltonian for efficient electronic-structure calculation
  publication-title: Nat. Comput. Sci.
– volume: 121
  start-page: 266401
  year: 2018
  ident: c18
  article-title: Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides
  publication-title: Phys. Rev. Lett.
– volume: 307
  start-page: 593
  year: 2016
  ident: c39
  article-title: RESCU: A real space electronic structure method
  publication-title: J. Comput. Phys.
– volume: 132
  start-page: 154104
  year: 2010
  ident: c44
  article-title: A consistent and accurate parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 214706
  year: 2018
  ident: c51
  article-title: Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 982
  year: 2018
  ident: c21
  article-title: Recent progress in 2D group-VA semiconductors: From theory to experiment
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 1456
  year: 2011
  ident: c45
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
– volume: 110
  start-page: 11256
  year: 2013
  ident: c1
  article-title: Strain solitons and topological defects in bilayer graphene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 55
  start-page: 1666
  year: 2016
  ident: c23
  article-title: Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities
  publication-title: Angew. Chem., Int. Ed.
– volume: 228
  start-page: 178
  year: 2018
  ident: c57
  article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
  publication-title: Comput. Phys. Commun.
– volume: 579
  start-page: 353
  year: 2020
  ident: c15
  article-title: Simulation of Hubbard model physics in WSe /WS moiré superlattices
  publication-title: Nature
– volume: 12
  start-page: 7273
  year: 2021
  ident: c35
  article-title: SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
  publication-title: Nat. Commun.
– volume: 12
  start-page: 347
  year: 2021
  ident: c19
  article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride
  publication-title: Nat. Commun.
– volume: 8
  start-page: 382
  year: 2012
  ident: c3
  article-title: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
– volume: 597
  start-page: 345
  year: 2021
  ident: c16
  article-title: Quantum criticality in twisted transition metal dichalcogenides
  publication-title: Nature
– volume: 67
  start-page: 155108
  year: 2003
  ident: c46
  article-title: Variationally optimized atomic orbitals for large-scale electronic structures
  publication-title: Phys. Rev. B
– volume: 122
  start-page: 106405
  year: 2019
  ident: c29
  article-title: Origin of magic angles in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 122
  start-page: 086402
  year: 2019
  ident: c14
  article-title: Topological insulators in twisted transition metal dichalcogenide homobilayers
  publication-title: Phys. Rev. Lett.
– volume: 127
  start-page: 247703
  year: 2021
  ident: c6
  article-title: Theory of correlated insulators and superconductivity in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 1093
  year: 2020
  ident: c17
  article-title: Flat bands in twisted bilayer transition metal dichalcogenides
  publication-title: Nat. Phys.
– volume: 124
  start-page: 086401
  year: 2020
  ident: c55
  article-title: Formation of Bloch flat bands in polar twisted bilayers without magic angles
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 27855
  year: 2021
  ident: c33
  article-title: Interplay between structural deformations and flat band phenomenology in twisted bilayer antimonene
  publication-title: RSC Adv.
– volume: 96
  start-page: 195406
  year: 2017
  ident: c20
  article-title: Moiré impurities in twisted bilayer black phosphorus: Effects on the carrier mobility
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 11282
  year: 2017
  ident: c27
  article-title: Polymorphs of two dimensional phosphorus and arsenic: Insight from an evolutionary search
  publication-title: Phys. Chem. Chem. Phys.
– volume: 144
  start-page: 3949
  year: 2022
  ident: c53
  article-title: Designing ultra-flat bands in twisted bilayer materials at large twist angles: Theory and application to two-dimensional indium selenide
  publication-title: J. Am. Chem. Soc.
– volume: 159
  start-page: 054801
  year: 2023
  ident: c56
  article-title: DeePMD-kit v2: A software package for deep potential models
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 451
  year: 2014
  ident: c2
  article-title: Commensurate–incommensurate transition in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
– volume: 59
  start-page: 1758
  year: 1999
  ident: c42
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 014005
  year: 2021
  ident: c52
  article-title: Moiré flat bands in twisted 2D hexagonal vdW materials
  publication-title: 2D Mater.
– volume: 98
  start-page: 241412
  year: 2018
  ident: c30
  article-title: Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 100112
  year: 2019
  ident: c31
  article-title: Interlayer decoupling in twisted bilayers of β-phosphorus and arsenic: A computational study
  publication-title: FlatChem
– volume: 67
  start-page: 29
  year: 2022
  ident: c36
  article-title: Neural network representation of electronic structure from molecular dynamics
  publication-title: Sci. Bull.
– volume: 122
  start-page: 016401
  year: 2019
  ident: c13
  article-title: Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices
  publication-title: Phys. Rev. Lett.
– volume: 600
  start-page: 240
  year: 2021
  ident: c5
  article-title: Evidence for unconventional superconductivity in twisted bilayer graphene
  publication-title: Nature
– volume: 13
  start-page: 13427
  year: 2021
  ident: c34
  article-title: Moiré patterns of twisted bilayer antimonene and their structural and electronic transition
  publication-title: Nanoscale
– volume: 14
  start-page: 2848
  year: 2023
  ident: c38
  article-title: General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian
  publication-title: Nat. Commun.
– volume: 9
  start-page: 372
  year: 2014
  ident: c25
  article-title: Black phosphorus field-effect transistors
  publication-title: Nat. Nanotechnol.
– volume: 124
  start-page: 046403
  year: 2020
  ident: c4
  article-title: Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 235319
  year: 2014
  ident: c24
  article-title: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus
  publication-title: Phys. Rev. B
– volume: 122
  start-page: 016401
  year: 2019
  ident: 2024052010580560800_c13
  article-title: Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.122.016401
– volume: 99
  start-page: 256802
  year: 2007
  ident: 2024052010580560800_c54
  article-title: Graphene bilayer with a twist: Electronic structure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.99.256802
– volume: 579
  start-page: 353
  year: 2020
  ident: 2024052010580560800_c15
  article-title: Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices
  publication-title: Nature
  doi: 10.1038/s41586-020-2085-3
– volume: 127
  start-page: 247703
  year: 2021
  ident: 2024052010580560800_c6
  article-title: Theory of correlated insulators and superconductivity in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.127.247703
– volume: 122
  start-page: 086402
  year: 2019
  ident: 2024052010580560800_c14
  article-title: Topological insulators in twisted transition metal dichalcogenide homobilayers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.122.086402
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2024052010580560800_c40
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.54.11169
– volume: 96
  start-page: 195406
  year: 2017
  ident: 2024052010580560800_c20
  article-title: Moiré impurities in twisted bilayer black phosphorus: Effects on the carrier mobility
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.96.195406
– volume: 12
  start-page: 7273
  year: 2021
  ident: 2024052010580560800_c35
  article-title: SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27504-0
– volume: 94
  start-page: 205409
  year: 2016
  ident: 2024052010580560800_c49
  article-title: Stability of single-layer and multilayer arsenene and their mechanical and electronic properties
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.94.205409
– volume: 12
  start-page: 347
  year: 2021
  ident: 2024052010580560800_c19
  article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume: 14
  start-page: 2848
  year: 2023
  ident: 2024052010580560800_c38
  article-title: General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38468-8
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2024052010580560800_c42
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.59.1758
– volume: 228
  start-page: 178
  year: 2018
  ident: 2024052010580560800_c57
  article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.03.016
– volume: 98
  start-page: 241412
  year: 2018
  ident: 2024052010580560800_c30
  article-title: Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.98.241412
– volume: 118
  start-page: 193104
  year: 2021
  ident: 2024052010580560800_c7
  article-title: Twist-angle-dependent thermal conduction in single-crystalline bilayer graphene
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0045386
– volume: 8
  start-page: 382
  year: 2012
  ident: 2024052010580560800_c3
  article-title: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2272
– volume: 47
  start-page: 6728
  year: 1993
  ident: 2024052010580560800_c48
  article-title: Nonlocal Hermitian norm-conserving vanderbilt pseudopotential
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.47.6728
– volume: 121
  start-page: 266401
  year: 2018
  ident: 2024052010580560800_c18
  article-title: Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.121.266401
– volume: 148
  start-page: 214706
  year: 2018
  ident: 2024052010580560800_c51
  article-title: Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5026120
– volume: 55
  start-page: 1666
  year: 2016
  ident: 2024052010580560800_c23
  article-title: Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507568
– volume: 600
  start-page: 240
  year: 2021
  ident: 2024052010580560800_c5
  article-title: Evidence for unconventional superconductivity in twisted bilayer graphene
  publication-title: Nature
  doi: 10.1038/s41586-021-04121-x
– volume: 32
  start-page: 1456
  year: 2011
  ident: 2024052010580560800_c45
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 144
  start-page: 3949
  year: 2022
  ident: 2024052010580560800_c53
  article-title: Designing ultra-flat bands in twisted bilayer materials at large twist angles: Theory and application to two-dimensional indium selenide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11953
– volume: 124
  start-page: 086401
  year: 2020
  ident: 2024052010580560800_c55
  article-title: Formation of Bloch flat bands in polar twisted bilayers without magic angles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.124.086401
– volume: 9
  start-page: 372
  year: 2014
  ident: 2024052010580560800_c25
  article-title: Black phosphorus field-effect transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.35
– volume: 67
  start-page: 29
  year: 2022
  ident: 2024052010580560800_c36
  article-title: Neural network representation of electronic structure from ab initio molecular dynamics
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.09.010
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2024052010580560800_c41
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.50.17953
– volume: 16
  start-page: 100112
  year: 2019
  ident: 2024052010580560800_c31
  article-title: Interlayer decoupling in twisted bilayers of β-phosphorus and arsenic: A computational study
  publication-title: FlatChem
  doi: 10.1016/j.flatc.2019.100112
– volume: 159
  start-page: 054801
  year: 2023
  ident: 2024052010580560800_c56
  article-title: DeePMD-kit v2: A software package for deep potential models
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0155600
– volume: 10
  start-page: 451
  year: 2014
  ident: 2024052010580560800_c2
  article-title: Commensurate–incommensurate transition in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2954
– volume: 47
  start-page: 982
  year: 2018
  ident: 2024052010580560800_c21
  article-title: Recent progress in 2D group-VA semiconductors: From theory to experiment
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c7cs00125h
– volume: 19
  start-page: 11282
  year: 2017
  ident: 2024052010580560800_c27
  article-title: Polymorphs of two dimensional phosphorus and arsenic: Insight from an evolutionary search
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c6cp08807d
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2024052010580560800_c43
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 556
  start-page: 80
  year: 2018
  ident: 2024052010580560800_c10
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 110
  start-page: 11256
  year: 2013
  ident: 2024052010580560800_c1
  article-title: Strain solitons and topological defects in bilayer graphene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1309394110
– volume: 597
  start-page: 345
  year: 2021
  ident: 2024052010580560800_c16
  article-title: Quantum criticality in twisted transition metal dichalcogenides
  publication-title: Nature
  doi: 10.1038/s41586-021-03815-6
– volume: 89
  start-page: 235319
  year: 2014
  ident: 2024052010580560800_c24
  article-title: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.89.235319
– volume: 556
  start-page: 43
  year: 2018
  ident: 2024052010580560800_c11
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 132
  start-page: 154104
  year: 2010
  ident: 2024052010580560800_c44
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 5
  start-page: 4475
  year: 2014
  ident: 2024052010580560800_c26
  article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5475
– volume: 13
  start-page: 13427
  year: 2021
  ident: 2024052010580560800_c34
  article-title: Moiré patterns of twisted bilayer antimonene and their structural and electronic transition
  publication-title: Nanoscale
  doi: 10.1039/d1nr02843j
– volume: 29
  start-page: 1605299
  year: 2017
  ident: 2024052010580560800_c22
  article-title: 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605299
– volume: 67
  start-page: 155108
  year: 2003
  ident: 2024052010580560800_c46
  article-title: Variationally optimized atomic orbitals for large-scale electronic structures
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.67.155108
– volume: 11
  start-page: 27855
  year: 2021
  ident: 2024052010580560800_c33
  article-title: Interplay between structural deformations and flat band phenomenology in twisted bilayer antimonene
  publication-title: RSC Adv.
  doi: 10.1039/d1ra05301a
– volume: 2
  start-page: 367
  year: 2022
  ident: 2024052010580560800_c37
  article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00265-6
– volume: 20
  start-page: 945
  year: 2021
  ident: 2024052010580560800_c9
  article-title: Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00923-6
– volume: 16
  start-page: 1093
  year: 2020
  ident: 2024052010580560800_c17
  article-title: Flat bands in twisted bilayer transition metal dichalcogenides
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0958-x
– volume: 122
  start-page: 026801
  year: 2019
  ident: 2024052010580560800_c28
  article-title: Kohn–Luttinger superconductivity in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.122.026801
– volume: 124
  start-page: 046403
  year: 2020
  ident: 2024052010580560800_c4
  article-title: Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.124.046403
– volume: 97
  start-page: 562
  year: 2016
  ident: 2024052010580560800_c32
  article-title: Twisted bilayer blue phosphorene: A direct band gap semiconductor
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2016.07.027
– volume: 91
  start-page: 115433
  year: 2015
  ident: 2024052010580560800_c50
  article-title: Electric field induced gap modification in ultrathin blue phosphorus
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.91.115433
– volume: 122
  start-page: 106405
  year: 2019
  ident: 2024052010580560800_c29
  article-title: Origin of magic angles in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.122.106405
– volume: 307
  start-page: 593
  year: 2016
  ident: 2024052010580560800_c39
  article-title: RESCU: A real space electronic structure method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.014
– volume: 9
  start-page: 014005
  year: 2021
  ident: 2024052010580560800_c52
  article-title: Moiré flat bands in twisted 2D hexagonal vdW materials
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac3a98
– volume: 121
  start-page: 140501
  year: 2022
  ident: 2024052010580560800_c8
  article-title: Phonon physics in twisted two-dimensional materials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0106676
– volume: 108
  start-page: 12233
  year: 2011
  ident: 2024052010580560800_c12
  article-title: Moiré bands in twisted double-layer graphene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1108174108
– volume: 69
  start-page: 195113
  year: 2004
  ident: 2024052010580560800_c47
  article-title: Numerical atomic basis orbitals from H to Kr
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.69.195113
SSID ssj0001724
Score 2.4559762
Snippet Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Bilayers
Computing time
Energy gap
Graphene
Interlayers
System effectiveness
Two dimensional materials
Title Ultra-flat bands at large twist angles in group-V twisted bilayer materials
URI http://dx.doi.org/10.1063/5.0197757
https://www.ncbi.nlm.nih.gov/pubmed/38767261
https://www.proquest.com/docview/3056846706
https://www.proquest.com/docview/3057072646
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJth4QDC-CgOZjwekKsOJXTd5YwxQBQyBtqKKl8hOnK1SSKeRCIm_nvNnM9FJwEsUOc5H73c9_86-OyP0HEYMkhWZiFgFJpBVrIqkZBIAqRQRjBfMVOc__MSnM_Z-Pp4PBq_62SWt3Ct-rc0r-R9UoQ1w1Vmy_4BseCg0wDngC0dAGI5_hfGsbs9FVNXg5EudsqszE2sd2j1qfwJ8I9Gc1CbgamSSN6Kvtl2TzkUtgGyPgK_aD-2T1FW6mCGqha8pYGdBAgn_0tmljdNFNIefeBJie0yAwNFpF33rtU47NzP9ehksjWu5-AQ3BZEwvXpu85r3lDWbJM2iCbcbfwa7ajcK8AqUrTXYwJBAyrp0KhBRW6q6B9zZd4McBZM9SXi8GrNCJKG_dAVtJuAogKXb3H9z-PEojMZA0JivKMXpy_CmbXTN33uRkvzhZ1xHW8BGbGBEj3sc30Q3HBZ432rALTRQzQ7aOvB79e2gq58tNLfRh5VOYKMTGE6MTmCDPbY6gRcNdjqBnU5gpxM46MQdNHv39vhgGrkNM6KCprSFYwX0ksUJoSyVqhQVYwIcTGAqSQpETcUpUUSpWHCelSItKK_GkpaiLAgTiaR30UazbNR9hJMylkQxLuV4wkpSCQF-PLjGRaaAVol0iF54meVeOHpTkzo3UQ2c5uPcSXqInoauZ7aEyrpOu17wufuH_ci1e6v5MeFD9CRcBtHqRS3RqGVn-kwIoMigzz0LWHiLB3iIngUEL_-EB5fe_xBtr9R-F2205516BFy0lY-duv0GIFuHBQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-flat+bands+at+large+twist+angles+in+group-V+twisted+bilayer+materials&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Que%2C+Zhi-Xiong&rft.au=Li%2C+Shu-Zong&rft.au=Huang%2C+Bo&rft.au=Yang%2C+Zhi-Xiong&rft.date=2024-05-21&rft.eissn=1089-7690&rft.volume=160&rft.issue=19&rft_id=info:doi/10.1063%2F5.0197757&rft_id=info%3Apmid%2F38767261&rft.externalDocID=38767261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon