Ultra-flat bands at large twist angles in group-V twisted bilayer materials
Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-...
Saved in:
Published in | The Journal of chemical physics Vol. 160; no. 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
21.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials. |
---|---|
AbstractList | Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials. Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials. Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials. |
Author | Li, Shu-Zong Zhang, Wei-Bing Huang, Bo Que, Zhi-Xiong Yang, Zhi-Xiong |
Author_xml | – sequence: 1 givenname: Zhi-Xiong surname: Que fullname: Que, Zhi-Xiong organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China – sequence: 2 givenname: Shu-Zong surname: Li fullname: Li, Shu-Zong organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China – sequence: 3 givenname: Bo surname: Huang fullname: Huang, Bo organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China – sequence: 4 givenname: Zhi-Xiong surname: Yang fullname: Yang, Zhi-Xiong organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China – sequence: 5 givenname: Wei-Bing surname: Zhang fullname: Zhang, Wei-Bing organization: Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38767261$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtLxDAQAOAgiq6Pg39ACl5U6Dpp0qQ9ivhCwYt6LdN2ukSy7ZqkiP_eLLvrQcRLJgzfDMnMPtvuh54YO-Yw5aDEZT4FXmqd6y024VCUqVYlbLMJQMbTUoHaY_vevwMA15ncZXui0Epnik_Y46sNDtPOYkhq7FufxItFN6MkfBofEuxnlnxi-mTmhnGRvq3y1Ca1sfhFLpljIGfQ-kO208VAR-t4wF5vb16u79On57uH66untBGFCPHsRKklz0DIoqYWOylRyUzEVMHzjHgBBEQclSpbLBqhurwWLbYNSMxqccDOVn0XbvgYyYdqbnxD1mJPw-grAbmG-D2pIj39Rd-H0fXxdUulCqk0LNXJWo31nNpq4cwc3Ve1GVME5yvQuMF7R90P4VAtV1Dl1XoF0V7-so0JGMzQx0Eb-2fFxarCb-Q_7b8B2uWSoA |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acsami_4c22462 |
Cites_doi | 10.1103/physrevlett.122.016401 10.1103/physrevlett.99.256802 10.1038/s41586-020-2085-3 10.1103/physrevlett.127.247703 10.1103/physrevlett.122.086402 10.1103/physrevb.54.11169 10.1103/physrevb.96.195406 10.1038/s41467-021-27504-0 10.1103/physrevb.94.205409 10.1038/s41467-020-20667-2 10.1038/s41467-023-38468-8 10.1103/physrevb.59.1758 10.1016/j.cpc.2018.03.016 10.1103/physrevb.98.241412 10.1063/5.0045386 10.1038/nphys2272 10.1103/physrevb.47.6728 10.1103/physrevlett.121.266401 10.1063/1.5026120 10.1002/anie.201507568 10.1038/s41586-021-04121-x 10.1002/jcc.21759 10.1021/jacs.1c11953 10.1103/physrevlett.124.086401 10.1038/nnano.2014.35 10.1016/j.scib.2021.09.010 10.1103/physrevb.50.17953 10.1016/j.flatc.2019.100112 10.1063/5.0155600 10.1038/nphys2954 10.1039/c7cs00125h 10.1039/c6cp08807d 10.1103/physrevlett.77.3865 10.1038/nature26154 10.1073/pnas.1309394110 10.1038/s41586-021-03815-6 10.1103/physrevb.89.235319 10.1038/nature26160 10.1063/1.3382344 10.1038/ncomms5475 10.1039/d1nr02843j 10.1002/adma.201605299 10.1103/physrevb.67.155108 10.1039/d1ra05301a 10.1038/s43588-022-00265-6 10.1038/s41563-021-00923-6 10.1038/s41567-020-0958-x 10.1103/physrevlett.122.026801 10.1103/physrevlett.124.046403 10.1016/j.spmi.2016.07.027 10.1103/physrevb.91.115433 10.1103/physrevlett.122.106405 10.1016/j.jcp.2015.12.014 10.1088/2053-1583/ac3a98 10.1063/5.0106676 10.1073/pnas.1108174108 10.1103/physrevb.69.195113 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0197757 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 38767261 10_1063_5_0197757 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: The Fok Ying-Tong Education Foundation, China grantid: 161005 – fundername: Science Fund for Distinguished Young Scholars of Hunan Province grantid: 2021JJ10039 – fundername: National Natural Science Foundation of China grantid: 11874092 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-c3f3974120348bedaf44a64234128152e180e0ee1a669da8c36f5b3dadc04a2b3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 23:02:14 EDT 2025 Sun Jun 29 15:52:54 EDT 2025 Wed Feb 19 02:13:01 EST 2025 Tue Jul 01 01:12:44 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Fri Jun 21 00:17:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Published under an exclusive license by AIP Publishing. 2024 Author(s). Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-c3f3974120348bedaf44a64234128152e180e0ee1a669da8c36f5b3dadc04a2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0440-6142 0000-0003-1306-4540 0009-0001-6627-6910 0000-0003-2066-1562 0000-0003-4955-5376 |
OpenAccessLink | https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0197757/19959397/194710_1_5.0197757.pdf |
PMID | 38767261 |
PQID | 3056846706 |
PQPubID | 2050685 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_38767261 scitation_primary_10_1063_5_0197757 crossref_primary_10_1063_5_0197757 crossref_citationtrail_10_1063_5_0197757 proquest_miscellaneous_3057072646 proquest_journals_3056846706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240521 2024-05-21 2024-May-21 |
PublicationDateYYYYMMDD | 2024-05-21 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240521 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Kadioglu, Santana, Özaydin, Ersan, Aktürk, Aktürk, Reboredo (c51) 2018; 148 Woods, Ares, Nevison-Andrews, Holwill, Fabregas, Guinea, Geim, Novoselov, Walet, Fumagalli (c19) 2021; 12 Shavit, Berg, Stern, Oreg (c6) 2021; 127 Wang, Zhang, Han, E (c57) 2018; 228 Ozaki, Kino (c47) 2004; 69 Nahas, Bajaj, Bhowmick (c27) 2017; 19 Kresse, Furthmüller (c40) 1996; 54 Ghiotto, Shih, Pereira, Rhodes, Kim, Zang, Millis, Watanabe, Taniguchi, Hone, Wang, Dean, Pasupathy (c16) 2021; 597 Pumera, Sofer (c22) 2017; 29 Grimme, Ehrlich, Goerigk (c45) 2011; 32 Alden, Tsen, Huang, Hovden, Brown, Park, Muller, McEuen (c1) 2013; 110 Kresse, Joubert (c42) 1999; 59 Tarnopolsky, Kruchkov, Vishwanath (c29) 2019; 122 Ospina, Duque, Correa, Suárez Morell (c32) 2016; 97 Choi, Choi (c30) 2018; 98 Cao, Fatemi, Demir, Fang, Tomarken, Luo, Sanchez-Yamagishi, Watanabe, Taniguchi, Kaxiras, Ashoori, Jarillo-Herrero (c10) 2018; 556 Wu, Das Sarma (c4) 2020; 124 Oh, Nuckolls, Wong, Lee, Liu, Watanabe, Taniguchi, Yazdani (c5) 2021; 600 Tang, Li, Li, Xu, Liu, Barmak, Watanabe, Taniguchi, MacDonald, Shan, Mak (c15) 2020; 579 Zhang, Wang, Watanabe, Taniguchi, Ueno, Tutuc, LeRoy (c17) 2020; 16 Xu, Guo, Xian (c52) 2021; 9 Han, Nie, Gu, Liu, Chen, Ying, Wang, Cheng, Zhao, Chen (c7) 2021; 118 Tao, Zhang, Zhu, He, Yang, Lu, Wei (c53) 2022; 144 Qiao, Kong, Hu, Yang, Ji (c26) 2014; 5 Ren, Chen, Zhang (c8) 2022; 121 Woods, Britnell, Eckmann, Ma, Lu, Guo, Lin, Yu, Cao, Gorbachev, Kretinin, Park, Ponomarenko, Katsnelson, Gornostyrev, Watanabe, Taniguchi, Casiraghi, Gao, Geim, Novoselov (c2) 2014; 10 Li, Yu, Ye, Ge, Ou, Wu, Feng, Chen, Zhang (c25) 2014; 9 Agnihotri, Kumar, Chauhan, Agarwal, Bhowmick (c31) 2019; 16 Grimme, Antony, Ehrlich, Krieg (c44) 2010; 132 Blöchl (c41) 1994; 50 Bistritzer, MacDonald (c12) 2011; 108 Tran, Soklaski, Liang, Yang (c24) 2014; 89 Naik, Jain (c18) 2018; 121 Zhang, Xie, Li, Yan, Li, Kan, Liu, Chen, Zeng (c23) 2016; 55 Zeng, Zhang, Lu (c56) 2023; 159 Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero (c11) 2018; 556 Li, Li, Naik, Xie, Li, Wang, Regan, Wang, Zhao, Zhao, Kahn, Yumigeta, Blei, Taniguchi, Watanabe, Tongay, Zettl, Louie, Wang, Crommie (c9) 2021; 20 Wu, Lovorn, Tutuc, Martin, MacDonald (c14) 2019; 122 González, Stauber (c28) 2019; 122 Gu, Zhang, Feng (c36) 2022; 67 Lopes dos Santos, Peres, Castro Neto (c54) 2007; 99 Kecik, Durgun, Ciraci (c49) 2016; 94 Zhao, Yang, Zhang, Wei (c55) 2020; 124 Michaud-Rioux, Zhang, Guo (c39) 2016; 307 Yankowitz, Xue, Cormode, Sanchez-Yamagishi, Watanabe, Taniguchi, Jarillo-Herrero, Jacquod, LeRoy (c3) 2012; 8 Perdew, Burke, Ernzerhof (c43) 1996; 77 Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller (c35) 2021; 12 Ghosh, Nahas, Bhowmick, Agarwal (c50) 2015; 91 Zhang, Guo, Chen, Wang, Gao, Gómez-Herrero, Ares, Zamora, Zhu, Zeng (c21) 2018; 47 Kang, Zhang, Michaud-Rioux, Kong, Hu, Yu, Guo (c20) 2017; 96 Chittari, Chen, Zhang, Wang, Jung (c13) 2019; 122 Souza, Matos, Mazzoni (c33) 2021; 11 Gong, Li, Zou, Xu, Duan, Xu (c38) 2023; 14 Li, Wang, Zou, Ye, Xu, Gong, Duan, Xu (c37) 2022; 2 An, Moutanabbir, Guo (c34) 2021; 13 Ozaki (c46) 2003; 67 Morrison, Bylander, Kleinman (c48) 1993; 47 (2024052010580560800_c4) 2020; 124 (2024052010580560800_c2) 2014; 10 (2024052010580560800_c25) 2014; 9 (2024052010580560800_c8) 2022; 121 (2024052010580560800_c44) 2010; 132 (2024052010580560800_c23) 2016; 55 (2024052010580560800_c17) 2020; 16 (2024052010580560800_c35) 2021; 12 (2024052010580560800_c50) 2015; 91 (2024052010580560800_c55) 2020; 124 (2024052010580560800_c16) 2021; 597 (2024052010580560800_c30) 2018; 98 (2024052010580560800_c29) 2019; 122 (2024052010580560800_c49) 2016; 94 (2024052010580560800_c21) 2018; 47 (2024052010580560800_c36) 2022; 67 (2024052010580560800_c51) 2018; 148 (2024052010580560800_c10) 2018; 556 (2024052010580560800_c38) 2023; 14 (2024052010580560800_c15) 2020; 579 (2024052010580560800_c27) 2017; 19 (2024052010580560800_c43) 1996; 77 (2024052010580560800_c11) 2018; 556 (2024052010580560800_c14) 2019; 122 (2024052010580560800_c33) 2021; 11 (2024052010580560800_c20) 2017; 96 (2024052010580560800_c22) 2017; 29 (2024052010580560800_c52) 2021; 9 (2024052010580560800_c54) 2007; 99 (2024052010580560800_c13) 2019; 122 (2024052010580560800_c18) 2018; 121 (2024052010580560800_c3) 2012; 8 (2024052010580560800_c56) 2023; 159 (2024052010580560800_c12) 2011; 108 (2024052010580560800_c40) 1996; 54 (2024052010580560800_c1) 2013; 110 (2024052010580560800_c9) 2021; 20 (2024052010580560800_c32) 2016; 97 (2024052010580560800_c24) 2014; 89 (2024052010580560800_c34) 2021; 13 (2024052010580560800_c41) 1994; 50 (2024052010580560800_c37) 2022; 2 (2024052010580560800_c6) 2021; 127 (2024052010580560800_c7) 2021; 118 (2024052010580560800_c46) 2003; 67 (2024052010580560800_c31) 2019; 16 (2024052010580560800_c19) 2021; 12 (2024052010580560800_c28) 2019; 122 (2024052010580560800_c5) 2021; 600 (2024052010580560800_c42) 1999; 59 (2024052010580560800_c47) 2004; 69 (2024052010580560800_c53) 2022; 144 (2024052010580560800_c26) 2014; 5 (2024052010580560800_c48) 1993; 47 (2024052010580560800_c45) 2011; 32 (2024052010580560800_c39) 2016; 307 (2024052010580560800_c57) 2018; 228 |
References_xml | – volume: 121 start-page: 140501 year: 2022 ident: c8 article-title: Phonon physics in twisted two-dimensional materials publication-title: Appl. Phys. Lett. – volume: 97 start-page: 562 year: 2016 ident: c32 article-title: Twisted bilayer blue phosphorene: A direct band gap semiconductor publication-title: Superlattices Microstruct. – volume: 122 start-page: 026801 year: 2019 ident: c28 article-title: Kohn–Luttinger superconductivity in twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 91 start-page: 115433 year: 2015 ident: c50 article-title: Electric field induced gap modification in ultrathin blue phosphorus publication-title: Phys. Rev. B – volume: 5 start-page: 4475 year: 2014 ident: c26 article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus publication-title: Nat. Commun. – volume: 556 start-page: 80 year: 2018 ident: c10 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature – volume: 556 start-page: 43 year: 2018 ident: c11 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature – volume: 77 start-page: 3865 year: 1996 ident: c43 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 50 start-page: 17953 year: 1994 ident: c41 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 108 start-page: 12233 year: 2011 ident: c12 article-title: Moiré bands in twisted double-layer graphene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 47 start-page: 6728 year: 1993 ident: c48 article-title: Nonlocal Hermitian norm-conserving vanderbilt pseudopotential publication-title: Phys. Rev. B – volume: 94 start-page: 205409 year: 2016 ident: c49 article-title: Stability of single-layer and multilayer arsenene and their mechanical and electronic properties publication-title: Phys. Rev. B – volume: 99 start-page: 256802 year: 2007 ident: c54 article-title: Graphene bilayer with a twist: Electronic structure publication-title: Phys. Rev. Lett. – volume: 118 start-page: 193104 year: 2021 ident: c7 article-title: Twist-angle-dependent thermal conduction in single-crystalline bilayer graphene publication-title: Appl. Phys. Lett. – volume: 54 start-page: 11169 year: 1996 ident: c40 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 20 start-page: 945 year: 2021 ident: c9 article-title: Imaging moiré flat bands in three-dimensional reconstructed WSe /WS superlattices publication-title: Nat. Mater. – volume: 69 start-page: 195113 year: 2004 ident: c47 article-title: Numerical atomic basis orbitals from H to Kr publication-title: Phys. Rev. B – volume: 29 start-page: 1605299 year: 2017 ident: c22 article-title: 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus publication-title: Adv. Mater. – volume: 2 start-page: 367 year: 2022 ident: c37 article-title: Deep-learning density functional theory Hamiltonian for efficient electronic-structure calculation publication-title: Nat. Comput. Sci. – volume: 121 start-page: 266401 year: 2018 ident: c18 article-title: Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides publication-title: Phys. Rev. Lett. – volume: 307 start-page: 593 year: 2016 ident: c39 article-title: RESCU: A real space electronic structure method publication-title: J. Comput. Phys. – volume: 132 start-page: 154104 year: 2010 ident: c44 article-title: A consistent and accurate parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. – volume: 148 start-page: 214706 year: 2018 ident: c51 article-title: Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene publication-title: J. Chem. Phys. – volume: 47 start-page: 982 year: 2018 ident: c21 article-title: Recent progress in 2D group-VA semiconductors: From theory to experiment publication-title: Chem. Soc. Rev. – volume: 32 start-page: 1456 year: 2011 ident: c45 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. – volume: 110 start-page: 11256 year: 2013 ident: c1 article-title: Strain solitons and topological defects in bilayer graphene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 55 start-page: 1666 year: 2016 ident: c23 article-title: Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities publication-title: Angew. Chem., Int. Ed. – volume: 228 start-page: 178 year: 2018 ident: c57 article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics publication-title: Comput. Phys. Commun. – volume: 579 start-page: 353 year: 2020 ident: c15 article-title: Simulation of Hubbard model physics in WSe /WS moiré superlattices publication-title: Nature – volume: 12 start-page: 7273 year: 2021 ident: c35 article-title: SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects publication-title: Nat. Commun. – volume: 12 start-page: 347 year: 2021 ident: c19 article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride publication-title: Nat. Commun. – volume: 8 start-page: 382 year: 2012 ident: c3 article-title: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride publication-title: Nat. Phys. – volume: 597 start-page: 345 year: 2021 ident: c16 article-title: Quantum criticality in twisted transition metal dichalcogenides publication-title: Nature – volume: 67 start-page: 155108 year: 2003 ident: c46 article-title: Variationally optimized atomic orbitals for large-scale electronic structures publication-title: Phys. Rev. B – volume: 122 start-page: 106405 year: 2019 ident: c29 article-title: Origin of magic angles in twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 122 start-page: 086402 year: 2019 ident: c14 article-title: Topological insulators in twisted transition metal dichalcogenide homobilayers publication-title: Phys. Rev. Lett. – volume: 127 start-page: 247703 year: 2021 ident: c6 article-title: Theory of correlated insulators and superconductivity in twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 16 start-page: 1093 year: 2020 ident: c17 article-title: Flat bands in twisted bilayer transition metal dichalcogenides publication-title: Nat. Phys. – volume: 124 start-page: 086401 year: 2020 ident: c55 article-title: Formation of Bloch flat bands in polar twisted bilayers without magic angles publication-title: Phys. Rev. Lett. – volume: 11 start-page: 27855 year: 2021 ident: c33 article-title: Interplay between structural deformations and flat band phenomenology in twisted bilayer antimonene publication-title: RSC Adv. – volume: 96 start-page: 195406 year: 2017 ident: c20 article-title: Moiré impurities in twisted bilayer black phosphorus: Effects on the carrier mobility publication-title: Phys. Rev. B – volume: 19 start-page: 11282 year: 2017 ident: c27 article-title: Polymorphs of two dimensional phosphorus and arsenic: Insight from an evolutionary search publication-title: Phys. Chem. Chem. Phys. – volume: 144 start-page: 3949 year: 2022 ident: c53 article-title: Designing ultra-flat bands in twisted bilayer materials at large twist angles: Theory and application to two-dimensional indium selenide publication-title: J. Am. Chem. Soc. – volume: 159 start-page: 054801 year: 2023 ident: c56 article-title: DeePMD-kit v2: A software package for deep potential models publication-title: J. Chem. Phys. – volume: 10 start-page: 451 year: 2014 ident: c2 article-title: Commensurate–incommensurate transition in graphene on hexagonal boron nitride publication-title: Nat. Phys. – volume: 59 start-page: 1758 year: 1999 ident: c42 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 9 start-page: 014005 year: 2021 ident: c52 article-title: Moiré flat bands in twisted 2D hexagonal vdW materials publication-title: 2D Mater. – volume: 98 start-page: 241412 year: 2018 ident: c30 article-title: Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene publication-title: Phys. Rev. B – volume: 16 start-page: 100112 year: 2019 ident: c31 article-title: Interlayer decoupling in twisted bilayers of β-phosphorus and arsenic: A computational study publication-title: FlatChem – volume: 67 start-page: 29 year: 2022 ident: c36 article-title: Neural network representation of electronic structure from molecular dynamics publication-title: Sci. Bull. – volume: 122 start-page: 016401 year: 2019 ident: c13 article-title: Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices publication-title: Phys. Rev. Lett. – volume: 600 start-page: 240 year: 2021 ident: c5 article-title: Evidence for unconventional superconductivity in twisted bilayer graphene publication-title: Nature – volume: 13 start-page: 13427 year: 2021 ident: c34 article-title: Moiré patterns of twisted bilayer antimonene and their structural and electronic transition publication-title: Nanoscale – volume: 14 start-page: 2848 year: 2023 ident: c38 article-title: General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian publication-title: Nat. Commun. – volume: 9 start-page: 372 year: 2014 ident: c25 article-title: Black phosphorus field-effect transistors publication-title: Nat. Nanotechnol. – volume: 124 start-page: 046403 year: 2020 ident: c4 article-title: Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 89 start-page: 235319 year: 2014 ident: c24 article-title: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus publication-title: Phys. Rev. B – volume: 122 start-page: 016401 year: 2019 ident: 2024052010580560800_c13 article-title: Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.122.016401 – volume: 99 start-page: 256802 year: 2007 ident: 2024052010580560800_c54 article-title: Graphene bilayer with a twist: Electronic structure publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.99.256802 – volume: 579 start-page: 353 year: 2020 ident: 2024052010580560800_c15 article-title: Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices publication-title: Nature doi: 10.1038/s41586-020-2085-3 – volume: 127 start-page: 247703 year: 2021 ident: 2024052010580560800_c6 article-title: Theory of correlated insulators and superconductivity in twisted bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.127.247703 – volume: 122 start-page: 086402 year: 2019 ident: 2024052010580560800_c14 article-title: Topological insulators in twisted transition metal dichalcogenide homobilayers publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.122.086402 – volume: 54 start-page: 11169 year: 1996 ident: 2024052010580560800_c40 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/physrevb.54.11169 – volume: 96 start-page: 195406 year: 2017 ident: 2024052010580560800_c20 article-title: Moiré impurities in twisted bilayer black phosphorus: Effects on the carrier mobility publication-title: Phys. Rev. B doi: 10.1103/physrevb.96.195406 – volume: 12 start-page: 7273 year: 2021 ident: 2024052010580560800_c35 article-title: SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects publication-title: Nat. Commun. doi: 10.1038/s41467-021-27504-0 – volume: 94 start-page: 205409 year: 2016 ident: 2024052010580560800_c49 article-title: Stability of single-layer and multilayer arsenene and their mechanical and electronic properties publication-title: Phys. Rev. B doi: 10.1103/physrevb.94.205409 – volume: 12 start-page: 347 year: 2021 ident: 2024052010580560800_c19 article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume: 14 start-page: 2848 year: 2023 ident: 2024052010580560800_c38 article-title: General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian publication-title: Nat. Commun. doi: 10.1038/s41467-023-38468-8 – volume: 59 start-page: 1758 year: 1999 ident: 2024052010580560800_c42 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/physrevb.59.1758 – volume: 228 start-page: 178 year: 2018 ident: 2024052010580560800_c57 article-title: DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.03.016 – volume: 98 start-page: 241412 year: 2018 ident: 2024052010580560800_c30 article-title: Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene publication-title: Phys. Rev. B doi: 10.1103/physrevb.98.241412 – volume: 118 start-page: 193104 year: 2021 ident: 2024052010580560800_c7 article-title: Twist-angle-dependent thermal conduction in single-crystalline bilayer graphene publication-title: Appl. Phys. Lett. doi: 10.1063/5.0045386 – volume: 8 start-page: 382 year: 2012 ident: 2024052010580560800_c3 article-title: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride publication-title: Nat. Phys. doi: 10.1038/nphys2272 – volume: 47 start-page: 6728 year: 1993 ident: 2024052010580560800_c48 article-title: Nonlocal Hermitian norm-conserving vanderbilt pseudopotential publication-title: Phys. Rev. B doi: 10.1103/physrevb.47.6728 – volume: 121 start-page: 266401 year: 2018 ident: 2024052010580560800_c18 article-title: Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.121.266401 – volume: 148 start-page: 214706 year: 2018 ident: 2024052010580560800_c51 article-title: Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene publication-title: J. Chem. Phys. doi: 10.1063/1.5026120 – volume: 55 start-page: 1666 year: 2016 ident: 2024052010580560800_c23 article-title: Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507568 – volume: 600 start-page: 240 year: 2021 ident: 2024052010580560800_c5 article-title: Evidence for unconventional superconductivity in twisted bilayer graphene publication-title: Nature doi: 10.1038/s41586-021-04121-x – volume: 32 start-page: 1456 year: 2011 ident: 2024052010580560800_c45 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 144 start-page: 3949 year: 2022 ident: 2024052010580560800_c53 article-title: Designing ultra-flat bands in twisted bilayer materials at large twist angles: Theory and application to two-dimensional indium selenide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11953 – volume: 124 start-page: 086401 year: 2020 ident: 2024052010580560800_c55 article-title: Formation of Bloch flat bands in polar twisted bilayers without magic angles publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.124.086401 – volume: 9 start-page: 372 year: 2014 ident: 2024052010580560800_c25 article-title: Black phosphorus field-effect transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 67 start-page: 29 year: 2022 ident: 2024052010580560800_c36 article-title: Neural network representation of electronic structure from ab initio molecular dynamics publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.09.010 – volume: 50 start-page: 17953 year: 1994 ident: 2024052010580560800_c41 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/physrevb.50.17953 – volume: 16 start-page: 100112 year: 2019 ident: 2024052010580560800_c31 article-title: Interlayer decoupling in twisted bilayers of β-phosphorus and arsenic: A computational study publication-title: FlatChem doi: 10.1016/j.flatc.2019.100112 – volume: 159 start-page: 054801 year: 2023 ident: 2024052010580560800_c56 article-title: DeePMD-kit v2: A software package for deep potential models publication-title: J. Chem. Phys. doi: 10.1063/5.0155600 – volume: 10 start-page: 451 year: 2014 ident: 2024052010580560800_c2 article-title: Commensurate–incommensurate transition in graphene on hexagonal boron nitride publication-title: Nat. Phys. doi: 10.1038/nphys2954 – volume: 47 start-page: 982 year: 2018 ident: 2024052010580560800_c21 article-title: Recent progress in 2D group-VA semiconductors: From theory to experiment publication-title: Chem. Soc. Rev. doi: 10.1039/c7cs00125h – volume: 19 start-page: 11282 year: 2017 ident: 2024052010580560800_c27 article-title: Polymorphs of two dimensional phosphorus and arsenic: Insight from an evolutionary search publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c6cp08807d – volume: 77 start-page: 3865 year: 1996 ident: 2024052010580560800_c43 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 556 start-page: 80 year: 2018 ident: 2024052010580560800_c10 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 110 start-page: 11256 year: 2013 ident: 2024052010580560800_c1 article-title: Strain solitons and topological defects in bilayer graphene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1309394110 – volume: 597 start-page: 345 year: 2021 ident: 2024052010580560800_c16 article-title: Quantum criticality in twisted transition metal dichalcogenides publication-title: Nature doi: 10.1038/s41586-021-03815-6 – volume: 89 start-page: 235319 year: 2014 ident: 2024052010580560800_c24 article-title: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus publication-title: Phys. Rev. B doi: 10.1103/physrevb.89.235319 – volume: 556 start-page: 43 year: 2018 ident: 2024052010580560800_c11 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 132 start-page: 154104 year: 2010 ident: 2024052010580560800_c44 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 5 start-page: 4475 year: 2014 ident: 2024052010580560800_c26 article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus publication-title: Nat. Commun. doi: 10.1038/ncomms5475 – volume: 13 start-page: 13427 year: 2021 ident: 2024052010580560800_c34 article-title: Moiré patterns of twisted bilayer antimonene and their structural and electronic transition publication-title: Nanoscale doi: 10.1039/d1nr02843j – volume: 29 start-page: 1605299 year: 2017 ident: 2024052010580560800_c22 article-title: 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus publication-title: Adv. Mater. doi: 10.1002/adma.201605299 – volume: 67 start-page: 155108 year: 2003 ident: 2024052010580560800_c46 article-title: Variationally optimized atomic orbitals for large-scale electronic structures publication-title: Phys. Rev. B doi: 10.1103/physrevb.67.155108 – volume: 11 start-page: 27855 year: 2021 ident: 2024052010580560800_c33 article-title: Interplay between structural deformations and flat band phenomenology in twisted bilayer antimonene publication-title: RSC Adv. doi: 10.1039/d1ra05301a – volume: 2 start-page: 367 year: 2022 ident: 2024052010580560800_c37 article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00265-6 – volume: 20 start-page: 945 year: 2021 ident: 2024052010580560800_c9 article-title: Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices publication-title: Nat. Mater. doi: 10.1038/s41563-021-00923-6 – volume: 16 start-page: 1093 year: 2020 ident: 2024052010580560800_c17 article-title: Flat bands in twisted bilayer transition metal dichalcogenides publication-title: Nat. Phys. doi: 10.1038/s41567-020-0958-x – volume: 122 start-page: 026801 year: 2019 ident: 2024052010580560800_c28 article-title: Kohn–Luttinger superconductivity in twisted bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.122.026801 – volume: 124 start-page: 046403 year: 2020 ident: 2024052010580560800_c4 article-title: Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.124.046403 – volume: 97 start-page: 562 year: 2016 ident: 2024052010580560800_c32 article-title: Twisted bilayer blue phosphorene: A direct band gap semiconductor publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2016.07.027 – volume: 91 start-page: 115433 year: 2015 ident: 2024052010580560800_c50 article-title: Electric field induced gap modification in ultrathin blue phosphorus publication-title: Phys. Rev. B doi: 10.1103/physrevb.91.115433 – volume: 122 start-page: 106405 year: 2019 ident: 2024052010580560800_c29 article-title: Origin of magic angles in twisted bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.122.106405 – volume: 307 start-page: 593 year: 2016 ident: 2024052010580560800_c39 article-title: RESCU: A real space electronic structure method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.014 – volume: 9 start-page: 014005 year: 2021 ident: 2024052010580560800_c52 article-title: Moiré flat bands in twisted 2D hexagonal vdW materials publication-title: 2D Mater. doi: 10.1088/2053-1583/ac3a98 – volume: 121 start-page: 140501 year: 2022 ident: 2024052010580560800_c8 article-title: Phonon physics in twisted two-dimensional materials publication-title: Appl. Phys. Lett. doi: 10.1063/5.0106676 – volume: 108 start-page: 12233 year: 2011 ident: 2024052010580560800_c12 article-title: Moiré bands in twisted double-layer graphene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1108174108 – volume: 69 start-page: 195113 year: 2004 ident: 2024052010580560800_c47 article-title: Numerical atomic basis orbitals from H to Kr publication-title: Phys. Rev. B doi: 10.1103/physrevb.69.195113 |
SSID | ssj0001724 |
Score | 2.4559762 |
Snippet | Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Bilayers Computing time Energy gap Graphene Interlayers System effectiveness Two dimensional materials |
Title | Ultra-flat bands at large twist angles in group-V twisted bilayer materials |
URI | http://dx.doi.org/10.1063/5.0197757 https://www.ncbi.nlm.nih.gov/pubmed/38767261 https://www.proquest.com/docview/3056846706 https://www.proquest.com/docview/3057072646 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJth4QDC-CgOZjwekKsOJXTd5YwxQBQyBtqKKl8hOnK1SSKeRCIm_nvNnM9FJwEsUOc5H73c9_86-OyP0HEYMkhWZiFgFJpBVrIqkZBIAqRQRjBfMVOc__MSnM_Z-Pp4PBq_62SWt3Ct-rc0r-R9UoQ1w1Vmy_4BseCg0wDngC0dAGI5_hfGsbs9FVNXg5EudsqszE2sd2j1qfwJ8I9Gc1CbgamSSN6Kvtl2TzkUtgGyPgK_aD-2T1FW6mCGqha8pYGdBAgn_0tmljdNFNIefeBJie0yAwNFpF33rtU47NzP9ehksjWu5-AQ3BZEwvXpu85r3lDWbJM2iCbcbfwa7ajcK8AqUrTXYwJBAyrp0KhBRW6q6B9zZd4McBZM9SXi8GrNCJKG_dAVtJuAogKXb3H9z-PEojMZA0JivKMXpy_CmbXTN33uRkvzhZ1xHW8BGbGBEj3sc30Q3HBZ432rALTRQzQ7aOvB79e2gq58tNLfRh5VOYKMTGE6MTmCDPbY6gRcNdjqBnU5gpxM46MQdNHv39vhgGrkNM6KCprSFYwX0ksUJoSyVqhQVYwIcTGAqSQpETcUpUUSpWHCelSItKK_GkpaiLAgTiaR30UazbNR9hJMylkQxLuV4wkpSCQF-PLjGRaaAVol0iF54meVeOHpTkzo3UQ2c5uPcSXqInoauZ7aEyrpOu17wufuH_ci1e6v5MeFD9CRcBtHqRS3RqGVn-kwIoMigzz0LWHiLB3iIngUEL_-EB5fe_xBtr9R-F2205516BFy0lY-duv0GIFuHBQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-flat+bands+at+large+twist+angles+in+group-V+twisted+bilayer+materials&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Que%2C+Zhi-Xiong&rft.au=Li%2C+Shu-Zong&rft.au=Huang%2C+Bo&rft.au=Yang%2C+Zhi-Xiong&rft.date=2024-05-21&rft.eissn=1089-7690&rft.volume=160&rft.issue=19&rft_id=info:doi/10.1063%2F5.0197757&rft_id=info%3Apmid%2F38767261&rft.externalDocID=38767261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |