Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials

The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete contain...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 19; p. 5762
Main Authors Ahmad, Waqas, Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Aslam, Fahid, Joyklad, Panuwat, Zajdel, Paulina
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 02.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures.
AbstractList The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures.
The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R 2 ), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R 2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures.
The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures.The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures.
Author Aslam, Fahid
Joyklad, Panuwat
Ostrowski, Krzysztof Adam
Zajdel, Paulina
Ahmad, Waqas
Ahmad, Ayaz
AuthorAffiliation 4 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Mou 6, Rangsit-Nakhonnayok Rd., Khong 16, Ongkharak District, Nakhon Nayok 26120, Thailand; panuwatj@g.swu.ac.th
3 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); paulina.zajdel@doktorant.pk.edu.pl (P.Z.)
1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan
AuthorAffiliation_xml – name: 2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); paulina.zajdel@doktorant.pk.edu.pl (P.Z.)
– name: 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan
– name: 3 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
– name: 4 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Mou 6, Rangsit-Nakhonnayok Rd., Khong 16, Ongkharak District, Nakhon Nayok 26120, Thailand; panuwatj@g.swu.ac.th
Author_xml – sequence: 1
  givenname: Waqas
  orcidid: 0000-0002-1668-7607
  surname: Ahmad
  fullname: Ahmad, Waqas
– sequence: 2
  givenname: Ayaz
  orcidid: 0000-0002-0312-2965
  surname: Ahmad
  fullname: Ahmad, Ayaz
– sequence: 3
  givenname: Krzysztof Adam
  orcidid: 0000-0001-5047-5862
  surname: Ostrowski
  fullname: Ostrowski, Krzysztof Adam
– sequence: 4
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
– sequence: 5
  givenname: Panuwat
  surname: Joyklad
  fullname: Joyklad, Panuwat
– sequence: 6
  givenname: Paulina
  orcidid: 0000-0002-1940-0106
  surname: Zajdel
  fullname: Zajdel, Paulina
BookMark eNptkd-L1DAQx4OceOd5L_4FAV9EWM00bbd5EZbiL1hROH0OaTrdzdEmNUkX7u_wH3Z270Q9DIQZJp_5zkzmKTvzwSNjz0G8llKJN5OBElS1rotH7AKUqlegyvLsL_-cXaV0I-hICU2hnrBzWdalgFpcsJ-beR6dNdkFz8PAN_3BeIs9_2zs3nnkWzTRO7_jBMZAQUw8B_41Yu9s5nmPvA3THDEld0B-nSP6Xd4ftdrgbcR8BHw27qRyvVA9nJAC8Za3J89R8SVRxYzRmTE9Y48HMnh1by_Z9_fvvrUfV9svHz61m-3KykbmVWfqwaK0pRyUkUoVa2kG1dme_oKusBViXcmql0ZAR8EGqwHNAKYE29VWXrK3d7rz0k3YW2olmlHP0U3UnA7G6X9fvNvrXTjopgJRgCKBl_cCMfxYMGU9uWRxHI1HmkgXVQMNAFSS0BcP0JuwRE_jnShRSqjXRIk7ysaQUsRBW5dPu6H6btQg9HHp-s_SKeXVg5Tf_f8H_gWAF7FN
CitedBy_id crossref_primary_10_1016_j_jobe_2023_106595
crossref_primary_10_3390_min12060731
crossref_primary_10_3390_polym14183906
crossref_primary_10_3390_ma16020583
crossref_primary_10_1016_j_mtcomm_2022_103964
crossref_primary_10_3390_ma15020647
crossref_primary_10_3390_ma15186261
crossref_primary_10_3390_su152115471
crossref_primary_10_3390_app12199766
crossref_primary_10_3390_ma15113762
crossref_primary_10_1007_s42107_022_00424_0
crossref_primary_10_1108_ACMM_04_2024_3007
crossref_primary_10_3390_ma15155207
crossref_primary_10_1016_j_jmrt_2023_04_223
crossref_primary_10_3390_ma15103478
crossref_primary_10_1016_j_clema_2024_100231
crossref_primary_10_3390_polym14153065
crossref_primary_10_3390_ma16031277
crossref_primary_10_3390_polym14122509
crossref_primary_10_3390_gels8050271
crossref_primary_10_1016_j_cscm_2022_e01753
crossref_primary_10_1016_j_cscm_2024_e02920
crossref_primary_10_3390_ma15103430
crossref_primary_10_1016_j_hybadv_2024_100290
crossref_primary_10_1007_s42107_023_00857_1
crossref_primary_10_1007_s42107_024_01198_3
crossref_primary_10_3390_ma15155194
crossref_primary_10_1007_s41939_024_00619_9
crossref_primary_10_1108_ACMM_01_2024_2950
crossref_primary_10_1016_j_heliyon_2024_e26927
crossref_primary_10_3390_infrastructures9120214
crossref_primary_10_1016_j_matpr_2022_04_327
crossref_primary_10_3390_ma15155232
crossref_primary_10_1016_j_smaim_2024_02_001
crossref_primary_10_3390_ma15134512
crossref_primary_10_1007_s12145_024_01595_x
crossref_primary_10_3390_ma15082823
crossref_primary_10_3390_buildings14123851
crossref_primary_10_1007_s42452_023_05447_z
crossref_primary_10_3390_ma15103523
crossref_primary_10_1016_j_jmrt_2023_02_024
crossref_primary_10_1016_j_cscm_2024_e03849
crossref_primary_10_3390_buildings12050690
crossref_primary_10_3390_ma15072664
crossref_primary_10_3390_nano12121989
crossref_primary_10_1371_journal_pone_0280761
crossref_primary_10_3390_cryst12050569
crossref_primary_10_7855_IJHE_2024_26_1_047
crossref_primary_10_1016_j_cscm_2021_e00830
crossref_primary_10_3390_ma15196928
crossref_primary_10_3390_buildings14030591
crossref_primary_10_1007_s41062_023_01150_5
crossref_primary_10_1007_s42107_024_01125_6
crossref_primary_10_1007_s42107_023_00614_4
crossref_primary_10_1007_s42107_023_00861_5
crossref_primary_10_1016_j_conbuildmat_2022_128076
crossref_primary_10_1007_s42107_024_01223_5
crossref_primary_10_1016_j_sciaf_2023_e01954
crossref_primary_10_1061_JMCEE7_MTENG_15589
crossref_primary_10_1007_s41939_023_00248_8
crossref_primary_10_3934_mbe_2024061
crossref_primary_10_1007_s10098_023_02610_3
crossref_primary_10_1007_s42107_023_00942_5
crossref_primary_10_1108_ACMM_09_2024_3094
crossref_primary_10_3390_ma15124194
crossref_primary_10_7717_peerj_cs_1853
crossref_primary_10_1155_2023_1177458
crossref_primary_10_1016_j_conbuildmat_2024_137276
crossref_primary_10_1108_WJE_05_2024_0299
crossref_primary_10_1371_journal_pone_0278161
crossref_primary_10_3390_ma15124311
crossref_primary_10_3390_ma15134450
crossref_primary_10_3390_ma14227034
crossref_primary_10_3390_ma17184533
crossref_primary_10_1016_j_asoc_2024_112026
crossref_primary_10_1007_s00170_022_10677_3
crossref_primary_10_1016_j_conbuildmat_2023_133540
crossref_primary_10_3390_ma15072400
crossref_primary_10_1016_j_cscm_2022_e01046
crossref_primary_10_1016_j_istruc_2023_06_089
crossref_primary_10_1016_j_cscm_2022_e01243
crossref_primary_10_3390_ma15124108
crossref_primary_10_1016_j_engappai_2024_109090
crossref_primary_10_1038_s41598_023_47330_2
crossref_primary_10_1186_s40069_024_00707_7
crossref_primary_10_1016_j_cscm_2024_e03744
Cites_doi 10.1016/j.conbuildmat.2020.118581
10.1007/s10853-016-9917-4
10.1016/j.conbuildmat.2020.121456
10.1002/fam.2968
10.1016/j.cemconres.2009.07.009
10.1016/j.conbuildmat.2019.116761
10.1016/j.jclepro.2021.126032
10.1002/suco.202000472
10.3390/ma12010039
10.1016/j.conbuildmat.2018.01.167
10.1016/j.jobe.2020.101272
10.3390/ma14040794
10.1061/(ASCE)0899-1561(2006)18:4(597)
10.3390/ma14154222
10.1111/ffe.13483
10.1155/2020/8850535
10.3390/ma14143829
10.1016/j.conbuildmat.2020.120102
10.3390/ma13051075
10.1016/j.jclepro.2014.03.005
10.3390/ma12203324
10.3390/ma14154264
10.1016/j.conbuildmat.2018.08.021
10.1016/S0008-8846(98)00165-3
10.3390/ma14092297
10.1016/j.conbuildmat.2018.06.150
10.1016/j.advengsoft.2015.05.007
10.1016/j.asoc.2019.105837
10.1007/s10346-019-01286-5
10.1016/j.jclepro.2019.118937
10.1016/j.conbuildmat.2016.08.111
10.3390/ma14081827
10.1680/jgrma.18.00010
10.1016/j.cemconres.2010.12.001
10.1016/j.jclepro.2015.05.145
10.3390/buildings11080324
10.1016/j.conbuildmat.2019.01.024
10.1016/j.cemconres.2019.05.008
10.1016/j.cemconcomp.2017.06.011
10.1016/j.cemconres.2006.01.005
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma14195762
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC8510219
10_3390_ma14195762
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c383t-ba6fce3c43f9a399273af9bcd762d760c5ee6535d3a01b7628e5feaf1a41cb6c3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 17:56:33 EDT 2025
Fri Jul 11 06:56:28 EDT 2025
Fri Jul 25 12:02:50 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 03:41:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-ba6fce3c43f9a399273af9bcd762d760c5ee6535d3a01b7628e5feaf1a41cb6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0312-2965
0000-0001-5047-5862
0000-0003-2863-3283
0000-0002-1668-7607
0000-0002-1940-0106
OpenAccessLink https://www.proquest.com/docview/2581043167?pq-origsite=%requestingapplication%
PMID 34640160
PQID 2581043167
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8510219
proquest_miscellaneous_2581811153
proquest_journals_2581043167
crossref_citationtrail_10_3390_ma14195762
crossref_primary_10_3390_ma14195762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211002
PublicationDateYYYYMMDD 2021-10-02
PublicationDate_xml – month: 10
  year: 2021
  text: 20211002
  day: 2
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Khan (ref_11) 2020; 30
Ying (ref_43) 2013; 39
Oliveira (ref_23) 2020; 262
Dou (ref_41) 2020; 17
Li (ref_20) 2019; 7
Ribeiro (ref_40) 2020; 86
Dananjayan (ref_25) 2016; 112
ref_14
Chu (ref_4) 2019; 228
ref_35
ref_34
Freund (ref_42) 1999; 14
Khan (ref_5) 2016; 125
ref_33
Afroughsabet (ref_8) 2016; 51
ref_32
Tosti (ref_21) 2020; 245
Khan (ref_13) 2021; 44
Khan (ref_12) 2018; 182
Lothenbach (ref_18) 2011; 41
ref_15
Yeh (ref_37) 2006; 18
Lee (ref_28) 2006; 36
Juenger (ref_22) 2019; 101
Su (ref_30) 2021; 270
Khan (ref_10) 2018; 166
Nguyen (ref_31) 2020; 247
Gandomi (ref_39) 2015; 88
ref_46
Juenger (ref_19) 2019; 122
Yeh (ref_38) 2003; 15
Shubbar (ref_24) 2018; 187
Aslam (ref_45) 2020; 2020
ref_1
Ahmad (ref_17) 2021; 15
Yeh (ref_36) 1998; 28
ref_3
ref_2
Ahmad (ref_16) 2021; 15
ref_29
Li (ref_27) 2009; 39
Shi (ref_9) 2019; 202
Farooq (ref_44) 2021; 292
Ukwattage (ref_26) 2015; 103
ref_7
ref_6
References_xml – volume: 247
  start-page: 118581
  year: 2020
  ident: ref_31
  article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118581
– volume: 51
  start-page: 6517
  year: 2016
  ident: ref_8
  article-title: High-performance fiber-reinforced concrete: A review
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-9917-4
– volume: 15
  start-page: e00683
  year: 2021
  ident: ref_16
  article-title: A scientometric review of waste material utilization in concrete for sustainable construction
  publication-title: Case Stud. Constr. Mater.
– volume: 270
  start-page: 121456
  year: 2021
  ident: ref_30
  article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121456
– ident: ref_14
  doi: 10.1002/fam.2968
– volume: 39
  start-page: 1033
  year: 2009
  ident: ref_27
  article-title: Durability properties of micro-cracked ECC containing high volumes fly ash
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.07.009
– volume: 228
  start-page: 116761
  year: 2019
  ident: ref_4
  article-title: Mixture design of self-levelling ultra-high performance FRC
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116761
– volume: 292
  start-page: 126032
  year: 2021
  ident: ref_44
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– ident: ref_6
  doi: 10.1002/suco.202000472
– volume: 14
  start-page: 1612
  year: 1999
  ident: ref_42
  article-title: A short introduction to boosting
  publication-title: J. Jpn. Soc. Artif. Intell.
– ident: ref_2
  doi: 10.3390/ma12010039
– volume: 166
  start-page: 581
  year: 2018
  ident: ref_10
  article-title: Effectiveness of hair and wave polypropylene fibers for concrete roads
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.01.167
– volume: 30
  start-page: 101272
  year: 2020
  ident: ref_11
  article-title: Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101272
– ident: ref_29
  doi: 10.3390/ma14040794
– volume: 18
  start-page: 597
  year: 2006
  ident: ref_37
  article-title: Analysis of strength of concrete using design of experiments and neural networks
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2006)18:4(597)
– ident: ref_35
– ident: ref_46
  doi: 10.3390/ma14154222
– volume: 44
  start-page: 2135
  year: 2021
  ident: ref_13
  article-title: Efficiency of basalt fiber length and content on mechanical and microstructural properties of hybrid fiber concrete
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13483
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_45
  article-title: Applications of gene expression programming for estimating compressive strength of high-strength concrete
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2020/8850535
– ident: ref_34
  doi: 10.3390/ma14143829
– volume: 262
  start-page: 120102
  year: 2020
  ident: ref_23
  article-title: Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120102
– ident: ref_7
  doi: 10.3390/ma13051075
– volume: 103
  start-page: 665
  year: 2015
  ident: ref_26
  article-title: A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.03.005
– ident: ref_3
  doi: 10.3390/ma12203324
– volume: 39
  start-page: 745
  year: 2013
  ident: ref_43
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Autom. Sin.
– volume: 15
  start-page: 659
  year: 2003
  ident: ref_38
  article-title: Prediction of strength of fly ash and slag concrete by the use of artificial neural networks
  publication-title: J. Chin. Inst. Civil Hydraul. Eng.
– ident: ref_1
  doi: 10.3390/ma14154264
– volume: 15
  start-page: e00698
  year: 2021
  ident: ref_17
  article-title: Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review
  publication-title: Case Stud. Constr. Mater.
– volume: 187
  start-page: 1051
  year: 2018
  ident: ref_24
  article-title: The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.08.021
– volume: 28
  start-page: 1797
  year: 1998
  ident: ref_36
  article-title: Modeling of strength of high-performance concrete using artificial neural networks
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00165-3
– ident: ref_32
  doi: 10.3390/ma14092297
– volume: 182
  start-page: 703
  year: 2018
  ident: ref_12
  article-title: Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.150
– volume: 88
  start-page: 63
  year: 2015
  ident: ref_39
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 86
  start-page: 105837
  year: 2020
  ident: ref_40
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105837
– volume: 17
  start-page: 641
  year: 2020
  ident: ref_41
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan
  publication-title: Landslides
  doi: 10.1007/s10346-019-01286-5
– volume: 245
  start-page: 118937
  year: 2020
  ident: ref_21
  article-title: Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118937
– volume: 125
  start-page: 800
  year: 2016
  ident: ref_5
  article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.111
– ident: ref_15
  doi: 10.3390/ma14081827
– volume: 7
  start-page: 40
  year: 2019
  ident: ref_20
  article-title: Durability properties of structural concretes containing secondary cementitious materials
  publication-title: Green Mater.
  doi: 10.1680/jgrma.18.00010
– volume: 41
  start-page: 1244
  year: 2011
  ident: ref_18
  article-title: Supplementary cementitious materials
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.12.001
– volume: 112
  start-page: 4173
  year: 2016
  ident: ref_25
  article-title: Direct mineral carbonation of coal fly ash for CO2 sequestration
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.05.145
– ident: ref_33
  doi: 10.3390/buildings11080324
– volume: 202
  start-page: 290
  year: 2019
  ident: ref_9
  article-title: Research progress on CNTs/CNFs-modified cement-based composites—A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.024
– volume: 122
  start-page: 257
  year: 2019
  ident: ref_19
  article-title: Supplementary cementitious materials: New sources, characterization, and performance insights
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2019.05.008
– volume: 101
  start-page: 44
  year: 2019
  ident: ref_22
  article-title: Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.06.011
– volume: 36
  start-page: 1279
  year: 2006
  ident: ref_28
  article-title: Autogenous shrinkage of concrete containing granulated blast-furnace slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2006.01.005
SSID ssj0000331829
Score 2.5910246
Snippet The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5762
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bagging
Blast furnace practice
Blast furnace slags
Cement hydration
Civil engineering
Compressive strength
Concrete
Decision trees
Errors
Fly ash
Gene expression
Laboratories
Machine learning
Mean square errors
Mechanical properties
Neural networks
Sensitivity analysis
Software
Title Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
URI https://www.proquest.com/docview/2581043167
https://www.proquest.com/docview/2581811153
https://pubmed.ncbi.nlm.nih.gov/PMC8510219
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La-MwEB76uOweSvfFpi-0dC97MLEsO7ZOJQ1NS6ElLBvIzciy1BZau03UQn9H_3BnbOUFSw8G2xok0IxGM5rRNwC_RWG1SNM0KFIKM2ZKBjK2cZBI3N4Vt7gF0X3nq-vexTi-nCQTf-A282mVc53YKOqy1nRG3o2SjIfNve2Tx6eAqkZRdNWX0NiEbVTBGTpf26dn16O_i1OWUKDMRrLFJRXo33cfFI-5RCs7Wt-JlublenLkym4z3IUdbyayfsvXL7Bhqq_weQU88Bu89ZexZ1Zb1vfRfHbV5Eca5qFTb1jf44abGXM1G00pNuMYWn6MtEGTCPtiGMWnqxt3S30N6gqtSUcElWtrSLCm_mebaz59ZYPmjfK9nmc4omsF-TuMh2f_BheBL7EQaHRNXVContVG6FhYqQijNhXKykKXOD_4hDoxppeIpBQq5AX-zExijbJcxVwXPS1-wFZVV-YnsFBkOkKRSLHHOFbYVxnh4k4LrsrIlrIDf-bTnWuPP05lMO5z9EOINfmSNR04XtA-tqgb_6U6mHMt9ytvli_lpAO_Fs24ZigQoiqDs9LQZKjkE9GBdI3bi9EIdXu9pbq7bdC3UYbRLpJ7Hw--D58iyn6hVIPoALbc9NkcovniiiPYzIbnR15S8et8wt8BTvD4hg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xpYARcOAQNbGdTXxAaLWwbGm34tBKvQXHsVskmpRdF9Tn4D14RmacZLcrIW49RIrikS15fp35PAPwWpTOiCzLojKjNGOuVaSkk1Gq0L3rxKELovvOs4Ph9Eh-Pk6PN-BPfxeGYJW9TQyGumoM_SPf4WmexOHe9vvzHxF1jaLsat9CoxWLPXv5C49si3e7H5C_bziffDwcT6Ouq0Bk8DTmo1IPnbHCSOGUprKsmdBOlaZCs4BPbFJrh6lIK6HjpMSPuU2d1S7RMjHl0Aic9wbclEIo0qh88mn5TycWqCFctVVQcTzeOdOJTBTG9Hzd762C2XUo5hXfNrkHd7uglI1aKboPG7Z-AHeulCp8CL9Hq0w3axwbddgBNgtoTMu6Qq0nbNRVKbcL5hv2ZU6ZIM8wzmRkewLs9qdllA2vT_wpzTVuaoxdPRHUvu1YwUK30RbZPr9k4_BG6LKLBa7oW7V5BEfXsvWPYbNuavsEWCxyw1EAM5xRSo1zVRxNSVYmuuKuUgN42293Ybpq59R043uBpx5iTbFizQBeLWnP2xof_6Ta7rlWdHq-KFZSOYCXy2HUUEq76NrirgSaHF1KKgaQrXF7uRrV-F4fqb-dhlrfqDEYhamt_y_-Am5ND2f7xf7uwd5TuM0Jd0MgB74Nm35-YZ9h4OTL50FaGXy9bvX4C-kvM-o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anYTgAvGrFQYYARdcRE3spI4vECrdqo2xqkJM2l1wHHtD2pLRZqA9B2_D03FO4rSrhLjbRaWosWzJ59c5n78D8EbkzggpZZBLKjOmWgUqdnGQKAzvOnIYgui-8-F0uHcUfzpOjjfgT3cXhmCVnU9sHHVRGfpGPuBJGoXNve2B87CI2c7kw8WPgDpIUaW1a6fRqsiBvfqFx7fF-_0dlPVbzie7X8d7ge8wEBg8mdVBrofOWGFi4ZQmilYptFO5KdBF4C80ibXDRCSF0GGU45-pTZzVLtJxZPKhETjvLdiUeCoKe7D5cXc6-7L8whMKtBeuWk5UIVQ4ONdRHCnM8Pl6FFyltuvAzGuRbnIf7vkUlY1anXoAG7Z8CHevERc-gt-jVd2bVY6NPJKAHTbYTMs8besJG3nOcrtgdcVmc6oL1QyzTkaeqAHh_rSMauPlSX1Kc42rEjPZmgaUddu_gjW9R1uc-_yKjZsnwppdLnDFujWix3B0I5v_BHplVdotYKFIDUd1lDhjHGucq-DoWGQe6YK7QvXhXbfdmfHc59SC4yzDMxCJJluJpg-vl2MvWsaPf47a7qSWeatfZCsd7cOr5Wu0VyrC6NLirjRjUgwwieiDXJP2cjVi_F5_U34_bZi_0X4wJ1NP_7_4S7iNppF93p8ePIM7nEA4hHjg29Cr55f2OWZRdf7CqyuDbzdtIX8BvS05fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Advanced+Machine+Learning+Approaches+to+Predict+the+Compressive+Strength+of+Concrete+Containing+Supplementary+Cementitious+Materials&rft.jtitle=Materials&rft.au=Ahmad%2C+Waqas&rft.au=Ahmad%2C+Ayaz&rft.au=Ostrowski%2C+Krzysztof+Adam&rft.au=Aslam%2C+Fahid&rft.date=2021-10-02&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=14&rft.issue=19&rft_id=info:doi/10.3390%2Fma14195762&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon