Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete contain...
Saved in:
Published in | Materials Vol. 14; no. 19; p. 5762 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
02.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures. |
---|---|
AbstractList | The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures. The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R 2 ), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R 2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures. The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures.The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete containing supplementary cementitious materials (fly ash and blast furnace slag). The performance of the models was compared and assessed using the coefficient of determination (R2), mean absolute error, mean square error, and root mean square error. The performance of the model was further validated using the k-fold cross-validation approach. Compared to the other employed approaches, the bagging model was more effective in predicting results, with an R2 value of 0.92. A sensitivity analysis was also prepared to determine the level of contribution of each parameter utilized to run the models. The use of machine learning (ML) techniques to predict the mechanical properties of concrete will be beneficial to the field of civil engineering because it will save time, effort, and resources. The proposed techniques are efficient to forecast the strength properties of concrete containing supplementary cementitious materials (SCM) and pave the way towards the intelligent design of concrete elements and structures. |
Author | Aslam, Fahid Joyklad, Panuwat Ostrowski, Krzysztof Adam Zajdel, Paulina Ahmad, Waqas Ahmad, Ayaz |
AuthorAffiliation | 4 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Mou 6, Rangsit-Nakhonnayok Rd., Khong 16, Ongkharak District, Nakhon Nayok 26120, Thailand; panuwatj@g.swu.ac.th 3 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa 2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); paulina.zajdel@doktorant.pk.edu.pl (P.Z.) 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan |
AuthorAffiliation_xml | – name: 2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); paulina.zajdel@doktorant.pk.edu.pl (P.Z.) – name: 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan – name: 3 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa – name: 4 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Mou 6, Rangsit-Nakhonnayok Rd., Khong 16, Ongkharak District, Nakhon Nayok 26120, Thailand; panuwatj@g.swu.ac.th |
Author_xml | – sequence: 1 givenname: Waqas orcidid: 0000-0002-1668-7607 surname: Ahmad fullname: Ahmad, Waqas – sequence: 2 givenname: Ayaz orcidid: 0000-0002-0312-2965 surname: Ahmad fullname: Ahmad, Ayaz – sequence: 3 givenname: Krzysztof Adam orcidid: 0000-0001-5047-5862 surname: Ostrowski fullname: Ostrowski, Krzysztof Adam – sequence: 4 givenname: Fahid orcidid: 0000-0003-2863-3283 surname: Aslam fullname: Aslam, Fahid – sequence: 5 givenname: Panuwat surname: Joyklad fullname: Joyklad, Panuwat – sequence: 6 givenname: Paulina orcidid: 0000-0002-1940-0106 surname: Zajdel fullname: Zajdel, Paulina |
BookMark | eNptkd-L1DAQx4OceOd5L_4FAV9EWM00bbd5EZbiL1hROH0OaTrdzdEmNUkX7u_wH3Z270Q9DIQZJp_5zkzmKTvzwSNjz0G8llKJN5OBElS1rotH7AKUqlegyvLsL_-cXaV0I-hICU2hnrBzWdalgFpcsJ-beR6dNdkFz8PAN_3BeIs9_2zs3nnkWzTRO7_jBMZAQUw8B_41Yu9s5nmPvA3THDEld0B-nSP6Xd4ftdrgbcR8BHw27qRyvVA9nJAC8Za3J89R8SVRxYzRmTE9Y48HMnh1by_Z9_fvvrUfV9svHz61m-3KykbmVWfqwaK0pRyUkUoVa2kG1dme_oKusBViXcmql0ZAR8EGqwHNAKYE29VWXrK3d7rz0k3YW2olmlHP0U3UnA7G6X9fvNvrXTjopgJRgCKBl_cCMfxYMGU9uWRxHI1HmkgXVQMNAFSS0BcP0JuwRE_jnShRSqjXRIk7ysaQUsRBW5dPu6H6btQg9HHp-s_SKeXVg5Tf_f8H_gWAF7FN |
CitedBy_id | crossref_primary_10_1016_j_jobe_2023_106595 crossref_primary_10_3390_min12060731 crossref_primary_10_3390_polym14183906 crossref_primary_10_3390_ma16020583 crossref_primary_10_1016_j_mtcomm_2022_103964 crossref_primary_10_3390_ma15020647 crossref_primary_10_3390_ma15186261 crossref_primary_10_3390_su152115471 crossref_primary_10_3390_app12199766 crossref_primary_10_3390_ma15113762 crossref_primary_10_1007_s42107_022_00424_0 crossref_primary_10_1108_ACMM_04_2024_3007 crossref_primary_10_3390_ma15155207 crossref_primary_10_1016_j_jmrt_2023_04_223 crossref_primary_10_3390_ma15103478 crossref_primary_10_1016_j_clema_2024_100231 crossref_primary_10_3390_polym14153065 crossref_primary_10_3390_ma16031277 crossref_primary_10_3390_polym14122509 crossref_primary_10_3390_gels8050271 crossref_primary_10_1016_j_cscm_2022_e01753 crossref_primary_10_1016_j_cscm_2024_e02920 crossref_primary_10_3390_ma15103430 crossref_primary_10_1016_j_hybadv_2024_100290 crossref_primary_10_1007_s42107_023_00857_1 crossref_primary_10_1007_s42107_024_01198_3 crossref_primary_10_3390_ma15155194 crossref_primary_10_1007_s41939_024_00619_9 crossref_primary_10_1108_ACMM_01_2024_2950 crossref_primary_10_1016_j_heliyon_2024_e26927 crossref_primary_10_3390_infrastructures9120214 crossref_primary_10_1016_j_matpr_2022_04_327 crossref_primary_10_3390_ma15155232 crossref_primary_10_1016_j_smaim_2024_02_001 crossref_primary_10_3390_ma15134512 crossref_primary_10_1007_s12145_024_01595_x crossref_primary_10_3390_ma15082823 crossref_primary_10_3390_buildings14123851 crossref_primary_10_1007_s42452_023_05447_z crossref_primary_10_3390_ma15103523 crossref_primary_10_1016_j_jmrt_2023_02_024 crossref_primary_10_1016_j_cscm_2024_e03849 crossref_primary_10_3390_buildings12050690 crossref_primary_10_3390_ma15072664 crossref_primary_10_3390_nano12121989 crossref_primary_10_1371_journal_pone_0280761 crossref_primary_10_3390_cryst12050569 crossref_primary_10_7855_IJHE_2024_26_1_047 crossref_primary_10_1016_j_cscm_2021_e00830 crossref_primary_10_3390_ma15196928 crossref_primary_10_3390_buildings14030591 crossref_primary_10_1007_s41062_023_01150_5 crossref_primary_10_1007_s42107_024_01125_6 crossref_primary_10_1007_s42107_023_00614_4 crossref_primary_10_1007_s42107_023_00861_5 crossref_primary_10_1016_j_conbuildmat_2022_128076 crossref_primary_10_1007_s42107_024_01223_5 crossref_primary_10_1016_j_sciaf_2023_e01954 crossref_primary_10_1061_JMCEE7_MTENG_15589 crossref_primary_10_1007_s41939_023_00248_8 crossref_primary_10_3934_mbe_2024061 crossref_primary_10_1007_s10098_023_02610_3 crossref_primary_10_1007_s42107_023_00942_5 crossref_primary_10_1108_ACMM_09_2024_3094 crossref_primary_10_3390_ma15124194 crossref_primary_10_7717_peerj_cs_1853 crossref_primary_10_1155_2023_1177458 crossref_primary_10_1016_j_conbuildmat_2024_137276 crossref_primary_10_1108_WJE_05_2024_0299 crossref_primary_10_1371_journal_pone_0278161 crossref_primary_10_3390_ma15124311 crossref_primary_10_3390_ma15134450 crossref_primary_10_3390_ma14227034 crossref_primary_10_3390_ma17184533 crossref_primary_10_1016_j_asoc_2024_112026 crossref_primary_10_1007_s00170_022_10677_3 crossref_primary_10_1016_j_conbuildmat_2023_133540 crossref_primary_10_3390_ma15072400 crossref_primary_10_1016_j_cscm_2022_e01046 crossref_primary_10_1016_j_istruc_2023_06_089 crossref_primary_10_1016_j_cscm_2022_e01243 crossref_primary_10_3390_ma15124108 crossref_primary_10_1016_j_engappai_2024_109090 crossref_primary_10_1038_s41598_023_47330_2 crossref_primary_10_1186_s40069_024_00707_7 crossref_primary_10_1016_j_cscm_2024_e03744 |
Cites_doi | 10.1016/j.conbuildmat.2020.118581 10.1007/s10853-016-9917-4 10.1016/j.conbuildmat.2020.121456 10.1002/fam.2968 10.1016/j.cemconres.2009.07.009 10.1016/j.conbuildmat.2019.116761 10.1016/j.jclepro.2021.126032 10.1002/suco.202000472 10.3390/ma12010039 10.1016/j.conbuildmat.2018.01.167 10.1016/j.jobe.2020.101272 10.3390/ma14040794 10.1061/(ASCE)0899-1561(2006)18:4(597) 10.3390/ma14154222 10.1111/ffe.13483 10.1155/2020/8850535 10.3390/ma14143829 10.1016/j.conbuildmat.2020.120102 10.3390/ma13051075 10.1016/j.jclepro.2014.03.005 10.3390/ma12203324 10.3390/ma14154264 10.1016/j.conbuildmat.2018.08.021 10.1016/S0008-8846(98)00165-3 10.3390/ma14092297 10.1016/j.conbuildmat.2018.06.150 10.1016/j.advengsoft.2015.05.007 10.1016/j.asoc.2019.105837 10.1007/s10346-019-01286-5 10.1016/j.jclepro.2019.118937 10.1016/j.conbuildmat.2016.08.111 10.3390/ma14081827 10.1680/jgrma.18.00010 10.1016/j.cemconres.2010.12.001 10.1016/j.jclepro.2015.05.145 10.3390/buildings11080324 10.1016/j.conbuildmat.2019.01.024 10.1016/j.cemconres.2019.05.008 10.1016/j.cemconcomp.2017.06.011 10.1016/j.cemconres.2006.01.005 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma14195762 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database ProQuest Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8510219 10_3390_ma14195762 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c383t-ba6fce3c43f9a399273af9bcd762d760c5ee6535d3a01b7628e5feaf1a41cb6c3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 17:56:33 EDT 2025 Fri Jul 11 06:56:28 EDT 2025 Fri Jul 25 12:02:50 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 03:41:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-ba6fce3c43f9a399273af9bcd762d760c5ee6535d3a01b7628e5feaf1a41cb6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0312-2965 0000-0001-5047-5862 0000-0003-2863-3283 0000-0002-1668-7607 0000-0002-1940-0106 |
OpenAccessLink | https://www.proquest.com/docview/2581043167?pq-origsite=%requestingapplication% |
PMID | 34640160 |
PQID | 2581043167 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8510219 proquest_miscellaneous_2581811153 proquest_journals_2581043167 crossref_citationtrail_10_3390_ma14195762 crossref_primary_10_3390_ma14195762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211002 |
PublicationDateYYYYMMDD | 2021-10-02 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211002 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Khan (ref_11) 2020; 30 Ying (ref_43) 2013; 39 Oliveira (ref_23) 2020; 262 Dou (ref_41) 2020; 17 Li (ref_20) 2019; 7 Ribeiro (ref_40) 2020; 86 Dananjayan (ref_25) 2016; 112 ref_14 Chu (ref_4) 2019; 228 ref_35 ref_34 Freund (ref_42) 1999; 14 Khan (ref_5) 2016; 125 ref_33 Afroughsabet (ref_8) 2016; 51 ref_32 Tosti (ref_21) 2020; 245 Khan (ref_13) 2021; 44 Khan (ref_12) 2018; 182 Lothenbach (ref_18) 2011; 41 ref_15 Yeh (ref_37) 2006; 18 Lee (ref_28) 2006; 36 Juenger (ref_22) 2019; 101 Su (ref_30) 2021; 270 Khan (ref_10) 2018; 166 Nguyen (ref_31) 2020; 247 Gandomi (ref_39) 2015; 88 ref_46 Juenger (ref_19) 2019; 122 Yeh (ref_38) 2003; 15 Shubbar (ref_24) 2018; 187 Aslam (ref_45) 2020; 2020 ref_1 Ahmad (ref_17) 2021; 15 Yeh (ref_36) 1998; 28 ref_3 ref_2 Ahmad (ref_16) 2021; 15 ref_29 Li (ref_27) 2009; 39 Shi (ref_9) 2019; 202 Farooq (ref_44) 2021; 292 Ukwattage (ref_26) 2015; 103 ref_7 ref_6 |
References_xml | – volume: 247 start-page: 118581 year: 2020 ident: ref_31 article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118581 – volume: 51 start-page: 6517 year: 2016 ident: ref_8 article-title: High-performance fiber-reinforced concrete: A review publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-9917-4 – volume: 15 start-page: e00683 year: 2021 ident: ref_16 article-title: A scientometric review of waste material utilization in concrete for sustainable construction publication-title: Case Stud. Constr. Mater. – volume: 270 start-page: 121456 year: 2021 ident: ref_30 article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121456 – ident: ref_14 doi: 10.1002/fam.2968 – volume: 39 start-page: 1033 year: 2009 ident: ref_27 article-title: Durability properties of micro-cracked ECC containing high volumes fly ash publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.07.009 – volume: 228 start-page: 116761 year: 2019 ident: ref_4 article-title: Mixture design of self-levelling ultra-high performance FRC publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116761 – volume: 292 start-page: 126032 year: 2021 ident: ref_44 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – ident: ref_6 doi: 10.1002/suco.202000472 – volume: 14 start-page: 1612 year: 1999 ident: ref_42 article-title: A short introduction to boosting publication-title: J. Jpn. Soc. Artif. Intell. – ident: ref_2 doi: 10.3390/ma12010039 – volume: 166 start-page: 581 year: 2018 ident: ref_10 article-title: Effectiveness of hair and wave polypropylene fibers for concrete roads publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.01.167 – volume: 30 start-page: 101272 year: 2020 ident: ref_11 article-title: Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101272 – ident: ref_29 doi: 10.3390/ma14040794 – volume: 18 start-page: 597 year: 2006 ident: ref_37 article-title: Analysis of strength of concrete using design of experiments and neural networks publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2006)18:4(597) – ident: ref_35 – ident: ref_46 doi: 10.3390/ma14154222 – volume: 44 start-page: 2135 year: 2021 ident: ref_13 article-title: Efficiency of basalt fiber length and content on mechanical and microstructural properties of hybrid fiber concrete publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13483 – volume: 2020 start-page: 1 year: 2020 ident: ref_45 article-title: Applications of gene expression programming for estimating compressive strength of high-strength concrete publication-title: Adv. Civ. Eng. doi: 10.1155/2020/8850535 – ident: ref_34 doi: 10.3390/ma14143829 – volume: 262 start-page: 120102 year: 2020 ident: ref_23 article-title: Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120102 – ident: ref_7 doi: 10.3390/ma13051075 – volume: 103 start-page: 665 year: 2015 ident: ref_26 article-title: A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.03.005 – ident: ref_3 doi: 10.3390/ma12203324 – volume: 39 start-page: 745 year: 2013 ident: ref_43 article-title: Advance and prospects of AdaBoost algorithm publication-title: Acta Autom. Sin. – volume: 15 start-page: 659 year: 2003 ident: ref_38 article-title: Prediction of strength of fly ash and slag concrete by the use of artificial neural networks publication-title: J. Chin. Inst. Civil Hydraul. Eng. – ident: ref_1 doi: 10.3390/ma14154264 – volume: 15 start-page: e00698 year: 2021 ident: ref_17 article-title: Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review publication-title: Case Stud. Constr. Mater. – volume: 187 start-page: 1051 year: 2018 ident: ref_24 article-title: The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.08.021 – volume: 28 start-page: 1797 year: 1998 ident: ref_36 article-title: Modeling of strength of high-performance concrete using artificial neural networks publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00165-3 – ident: ref_32 doi: 10.3390/ma14092297 – volume: 182 start-page: 703 year: 2018 ident: ref_12 article-title: Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.150 – volume: 88 start-page: 63 year: 2015 ident: ref_39 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – volume: 86 start-page: 105837 year: 2020 ident: ref_40 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105837 – volume: 17 start-page: 641 year: 2020 ident: ref_41 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan publication-title: Landslides doi: 10.1007/s10346-019-01286-5 – volume: 245 start-page: 118937 year: 2020 ident: ref_21 article-title: Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118937 – volume: 125 start-page: 800 year: 2016 ident: ref_5 article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.08.111 – ident: ref_15 doi: 10.3390/ma14081827 – volume: 7 start-page: 40 year: 2019 ident: ref_20 article-title: Durability properties of structural concretes containing secondary cementitious materials publication-title: Green Mater. doi: 10.1680/jgrma.18.00010 – volume: 41 start-page: 1244 year: 2011 ident: ref_18 article-title: Supplementary cementitious materials publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.12.001 – volume: 112 start-page: 4173 year: 2016 ident: ref_25 article-title: Direct mineral carbonation of coal fly ash for CO2 sequestration publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.05.145 – ident: ref_33 doi: 10.3390/buildings11080324 – volume: 202 start-page: 290 year: 2019 ident: ref_9 article-title: Research progress on CNTs/CNFs-modified cement-based composites—A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.024 – volume: 122 start-page: 257 year: 2019 ident: ref_19 article-title: Supplementary cementitious materials: New sources, characterization, and performance insights publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2019.05.008 – volume: 101 start-page: 44 year: 2019 ident: ref_22 article-title: Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.06.011 – volume: 36 start-page: 1279 year: 2006 ident: ref_28 article-title: Autogenous shrinkage of concrete containing granulated blast-furnace slag publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2006.01.005 |
SSID | ssj0000331829 |
Score | 2.5910246 |
Snippet | The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5762 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Bagging Blast furnace practice Blast furnace slags Cement hydration Civil engineering Compressive strength Concrete Decision trees Errors Fly ash Gene expression Laboratories Machine learning Mean square errors Mechanical properties Neural networks Sensitivity analysis Software |
Title | Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials |
URI | https://www.proquest.com/docview/2581043167 https://www.proquest.com/docview/2581811153 https://pubmed.ncbi.nlm.nih.gov/PMC8510219 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La-MwEB76uOweSvfFpi-0dC97MLEsO7ZOJQ1NS6ElLBvIzciy1BZau03UQn9H_3BnbOUFSw8G2xok0IxGM5rRNwC_RWG1SNM0KFIKM2ZKBjK2cZBI3N4Vt7gF0X3nq-vexTi-nCQTf-A282mVc53YKOqy1nRG3o2SjIfNve2Tx6eAqkZRdNWX0NiEbVTBGTpf26dn16O_i1OWUKDMRrLFJRXo33cfFI-5RCs7Wt-JlublenLkym4z3IUdbyayfsvXL7Bhqq_weQU88Bu89ZexZ1Zb1vfRfHbV5Eca5qFTb1jf44abGXM1G00pNuMYWn6MtEGTCPtiGMWnqxt3S30N6gqtSUcElWtrSLCm_mebaz59ZYPmjfK9nmc4omsF-TuMh2f_BheBL7EQaHRNXVContVG6FhYqQijNhXKykKXOD_4hDoxppeIpBQq5AX-zExijbJcxVwXPS1-wFZVV-YnsFBkOkKRSLHHOFbYVxnh4k4LrsrIlrIDf-bTnWuPP05lMO5z9EOINfmSNR04XtA-tqgb_6U6mHMt9ytvli_lpAO_Fs24ZigQoiqDs9LQZKjkE9GBdI3bi9EIdXu9pbq7bdC3UYbRLpJ7Hw--D58iyn6hVIPoALbc9NkcovniiiPYzIbnR15S8et8wt8BTvD4hg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xpYARcOAQNbGdTXxAaLWwbGm34tBKvQXHsVskmpRdF9Tn4D14RmacZLcrIW49RIrikS15fp35PAPwWpTOiCzLojKjNGOuVaSkk1Gq0L3rxKELovvOs4Ph9Eh-Pk6PN-BPfxeGYJW9TQyGumoM_SPf4WmexOHe9vvzHxF1jaLsat9CoxWLPXv5C49si3e7H5C_bziffDwcT6Ouq0Bk8DTmo1IPnbHCSOGUprKsmdBOlaZCs4BPbFJrh6lIK6HjpMSPuU2d1S7RMjHl0Aic9wbclEIo0qh88mn5TycWqCFctVVQcTzeOdOJTBTG9Hzd762C2XUo5hXfNrkHd7uglI1aKboPG7Z-AHeulCp8CL9Hq0w3axwbddgBNgtoTMu6Qq0nbNRVKbcL5hv2ZU6ZIM8wzmRkewLs9qdllA2vT_wpzTVuaoxdPRHUvu1YwUK30RbZPr9k4_BG6LKLBa7oW7V5BEfXsvWPYbNuavsEWCxyw1EAM5xRSo1zVRxNSVYmuuKuUgN42293Ybpq59R043uBpx5iTbFizQBeLWnP2xof_6Ta7rlWdHq-KFZSOYCXy2HUUEq76NrirgSaHF1KKgaQrXF7uRrV-F4fqb-dhlrfqDEYhamt_y_-Am5ND2f7xf7uwd5TuM0Jd0MgB74Nm35-YZ9h4OTL50FaGXy9bvX4C-kvM-o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anYTgAvGrFQYYARdcRE3spI4vECrdqo2xqkJM2l1wHHtD2pLRZqA9B2_D03FO4rSrhLjbRaWosWzJ59c5n78D8EbkzggpZZBLKjOmWgUqdnGQKAzvOnIYgui-8-F0uHcUfzpOjjfgT3cXhmCVnU9sHHVRGfpGPuBJGoXNve2B87CI2c7kw8WPgDpIUaW1a6fRqsiBvfqFx7fF-_0dlPVbzie7X8d7ge8wEBg8mdVBrofOWGFi4ZQmilYptFO5KdBF4C80ibXDRCSF0GGU45-pTZzVLtJxZPKhETjvLdiUeCoKe7D5cXc6-7L8whMKtBeuWk5UIVQ4ONdRHCnM8Pl6FFyltuvAzGuRbnIf7vkUlY1anXoAG7Z8CHevERc-gt-jVd2bVY6NPJKAHTbYTMs8besJG3nOcrtgdcVmc6oL1QyzTkaeqAHh_rSMauPlSX1Kc42rEjPZmgaUddu_gjW9R1uc-_yKjZsnwppdLnDFujWix3B0I5v_BHplVdotYKFIDUd1lDhjHGucq-DoWGQe6YK7QvXhXbfdmfHc59SC4yzDMxCJJluJpg-vl2MvWsaPf47a7qSWeatfZCsd7cOr5Wu0VyrC6NLirjRjUgwwieiDXJP2cjVi_F5_U34_bZi_0X4wJ1NP_7_4S7iNppF93p8ePIM7nEA4hHjg29Cr55f2OWZRdf7CqyuDbzdtIX8BvS05fA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Advanced+Machine+Learning+Approaches+to+Predict+the+Compressive+Strength+of+Concrete+Containing+Supplementary+Cementitious+Materials&rft.jtitle=Materials&rft.au=Ahmad%2C+Waqas&rft.au=Ahmad%2C+Ayaz&rft.au=Ostrowski%2C+Krzysztof+Adam&rft.au=Aslam%2C+Fahid&rft.date=2021-10-02&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=14&rft.issue=19&rft_id=info:doi/10.3390%2Fma14195762&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |