Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine
In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equi...
Saved in:
Published in | International journal of hydrogen energy Vol. 31; no. 7; pp. 847 - 860 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict
H
2
and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hp
h) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20%
H
2
yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. |
---|---|
AbstractList | In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict
H
2
and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hp
h) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20%
H
2
yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. |
Author | McMillian, Michael H. Lawson, Seth A. |
Author_xml | – sequence: 1 givenname: Michael H. surname: McMillian fullname: McMillian, Michael H. email: mmcmil@netl.doe.gov – sequence: 2 givenname: Seth A. surname: Lawson fullname: Lawson, Seth A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17723260$$DView record in Pascal Francis |
BookMark | eNqFkMtKAzEUhoNUsK2-gmTjcqbJXDIzO6XUCxTc6DpkkpOaMk2GZEbsK_jUphdxKRwInPzfH_LN0MQ6CwjdUpJSQtlim5rtx16BhTQjpExJnRKaX6AprasmyYu6mqApyRlJcto0V2gWwpYQWpGimaLv1VcP3uzADqLDwiq8cwo6Yzc4DKPaY6dxLPduA3YR9nYjAu69U6McjLNHoBd-MHLsxAAYdiaEeBGw9m6HBbZiGH1sjlyiR-jgnI8r92WUOLaA3RgL1-hSiy7Azfmco_fH1dvyOVm_Pr0sH9aJzOt8SNqmoFJWVMVRghWNUlVZFqwtmSigJnHHWgWlzEjVallmOg5rKdSlFsAgnyN26pXeheBB8z4KEH7PKeEHo3zLf43yg1FOah6NRvDuBPYiSNFpL6w04Y-uqizPGIm5-1MO4i8-DXgepAErQRkPcuDKmf-e-gG16JbS |
CODEN | IJHEDX |
CitedBy_id | crossref_primary_10_1016_j_cep_2024_109840 crossref_primary_10_1515_revce_2020_0116 crossref_primary_10_1007_s12239_019_0087_7 crossref_primary_10_1016_j_jaecs_2023_100117 crossref_primary_10_1016_j_ijhydene_2016_09_050 crossref_primary_10_1016_j_proci_2020_05_046 crossref_primary_10_3390_en5124952 crossref_primary_10_1016_j_applthermaleng_2019_114125 crossref_primary_10_1016_j_biortech_2010_01_049 crossref_primary_10_1080_00102200801963417 crossref_primary_10_1016_j_ijhydene_2011_07_140 crossref_primary_10_1016_j_ijhydene_2013_10_160 crossref_primary_10_1016_j_proci_2022_08_132 crossref_primary_10_1016_j_combustflame_2019_05_031 crossref_primary_10_1016_j_fuel_2019_01_076 crossref_primary_10_1016_j_rser_2020_110264 crossref_primary_10_1016_j_fuel_2017_04_125 crossref_primary_10_1016_j_combustflame_2022_112063 crossref_primary_10_1016_j_fuel_2017_11_002 crossref_primary_10_1021_acs_energyfuels_7b02150 crossref_primary_10_1016_j_ijhydene_2015_06_125 crossref_primary_10_1002_cjce_22443 |
ContentType | Journal Article |
Copyright | 2005 International Association for Hydrogen Energy 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 International Association for Hydrogen Energy – notice: 2006 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2005.08.013 |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3487 |
EndPage | 860 |
ExternalDocumentID | 10_1016_j_ijhydene_2005_08_013 17723260 S036031990500282X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K T9H TN5 WUQ XPP ZMT ~G- ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c383t-b941cc71d71dda649dd75546b56a4e80da66bde5c207bfc52f52f6b1e85fae6e3 |
IEDL.DBID | AIKHN |
ISSN | 0360-3199 |
IngestDate | Thu Sep 26 18:56:34 EDT 2024 Sun Oct 22 16:07:50 EDT 2023 Fri Feb 23 02:27:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Particulate Hydrogen Partial oxidation PM Engine Measurement Spark ignition Combustion Spark ignition engine Experimental study Synthesis gas Modeling Particle emission Gas engine Natural gas Hydrogen production |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-b941cc71d71dda649dd75546b56a4e80da66bde5c207bfc52f52f6b1e85fae6e3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2005_08_013 pascalfrancis_primary_17723260 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2005_08_013 |
PublicationCentury | 2000 |
PublicationDate | 2006-06-01 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2006 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Doong S, Kweon CB, Pratapas J, Lau F, Khinkis M. Poly-generation of power, heat, syngas, liquids and hydrogen from natural gas in reciprocating engine. Proceedings of the natural gas technologies II conference. Phoenix, AZ, February 8–11, 2004. Fiveland SB, Agama R, Christensen M, Johansson B, Hiltner J, Mauss F, Assanis DN. Experimental and simulated results detailing the sensitivity of natural gas HCCI engines to fuel composition. SAE Paper 2001-01-3609; 2001. User Interface 4.0, Reaction Design, 2004. Goodwin D. Cantera object-oriented software for reacting flows, California Institute of Technology, 2004 Enick RM, et al. Evaluation and modeling of a Hi-T, Hi-P H2 separation membrane for enhanced H2 production from the water-gas shift reaction [PDF-224 KB]. Advances in hydrogen energy. Dordrecht, New York: Kluwer Academic Publisher, Plenum; 2000. Heintzenberg (bib16) 1994; 21 CHEMKIN . Grunvald, et al. Method for producing synthesis gas. US Patent 6174460; 2001. McMillian, Gautam (bib10) 2001; 110 McMillian MH, Cui M, Gautam M, Keane M, Ong T, Wallace W, et al. Mutagenic potential of particulate matter from diesel engine operation on Fischer–Tropsch fuel as a function of engine operating conditions and particle size. SAE Paper 2002-01-1699; 2002. Operating characteristics of natural gas fueled homogeneous charge compression ignition. Annual Technical Report Digest, Energy Technology Research Institute, vol. 8, 1998 Yamamoto T, Kaneko K, Kuwae K, Hiratsuke K. Production of synthesis gas by an internal combustion engine. Proceedings of sixth world petroleum congress, June 1963. p. 429. Smith GP, Golden DM, et al. GRI-Mech 3.0 methane air mechanism, 2002 Code of Federal Regulations (CFR) 40, Part 86, Subpart N, 2001. Homogeneous Charge Compression Ignition (HCCI) Technology: a report to the US Congress. US Department of Energy, Energy Efficiency and Renewable Energy, Office of Transportation Technologies, April 2001. Karim GA, Moore NPW. The production of hydrogen by the partial oxidation of methane in a duel fuel engine. SAE Paper 901501; 1990. Karim GA, Moore NPW. The production of synthesis gas and power in a compression ignition engine. J Inst Fuel 1963. |
References_xml | – volume: 21 start-page: 46 year: 1994 end-page: 48 ident: bib16 article-title: Properties of the log-normal particle size distribution publication-title: Environ Sci Technol contributor: fullname: Heintzenberg – volume: 110 start-page: 1659 year: 2001 end-page: 1674 ident: bib10 article-title: Combustion and emissions characteristics of Fischer–Tropsch and standard diesel fuel in a single cylinder diesel engine publication-title: J Fuels Lubricants contributor: fullname: Gautam |
SSID | ssj0017049 |
Score | 2.0047202 |
Snippet | In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust... |
SourceID | crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 847 |
SubjectTerms | Alternative fuels. Production and utilization Applied sciences Energy Energy. Thermal use of fuels Engine Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuels Hydrogen Partial oxidation Particulate |
Title | Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine |
URI | https://dx.doi.org/10.1016/j.ijhydene.2005.08.013 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VsoAQ4inKo_LA6ubtJGNVgQoIFkDqFtmxA-2QRm2RYOEH8Ks5Ow6EATEgeXJ8jnXn3Cv2fQDnwg_RCcgV1UkKGrJIUp76kiaBEBguoMo0qYvbOzZ-DK8n0aQDo-YujD5WaXV_rdONtrY9juWmU02nzj3qXn0FJ3UjEzhM1mAdzZGfdGF9eHUzvvv6mRBbLxjHU03Quig8G0xnz2_4hSubXkkGrhf8ZqO2Kr5EzhU15EXLDl3uwLZ1IMmwXuMudFS5B5utsoL78HHRKttPeCmJwbvBZ8RUkyXzguByFnPcPM7yrXziS1LVlV9RSoagMjzQ0F6KaEQ4nVNbEn0XhXBiioHizEhHixe0W3Y8ds1fpzVIE1FmRQfweHnxMBpTi7lAc4xVV1SkoZfnsSexSc7CVMpYH2QTEeOhSlzsY0KqKPfdWBR55BfYmPBUEhVcMRUcQrecl-oIiPAKV7JE5EyqEOO-hOVJ4QWKB6EUqIN74DRczqq6tEbWnDmbZY1cNE5mlGmoTC_oQdoII_uxSTLU_3_S9n9I7_uVGF-gD-se_2PyE9ioUzM6O3MK3dXiRZ2hs7ISfVgbvHt9uyU_AbnW7mk |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKOwBCiKcoj-KB1U3SJG4yVhVVSx8LrdQtsmMH2iGN-pDoX-BXc3YcaAfEgJTJ8TnWnX2-u_juQ-iJNzwwAmJJVJCCeNQXhIUNQQKXc3AXQGXq0MVwRLsT72XqT0uoXeTCqGuVRvfnOl1ra9NiGW5a2WxmvYLuVSk4oe1rx2F6gCpgDYSwOyutXr87-v6Z0DRWMPQnimAnUXhen83ft7DDpQmvBHXbcX87o04ytgLOJTnkxc451DlDp8aAxK18jueoJNMLdLxTVvASfT7vlO3HLBVY493AO6yryeJFgmE6ywUsHmu1Td_YCmd55VeQkibINA8UtJfEChFOxdRWWOWiYIZ1MVAYGehIsoFzy_SHpsXHLAdpwlLP6ApNOs_jdpcYzAUSg6-6Jjz0nDhuOgIewagXCtFUF9m4T5knAxvaKBfSjxt2kyex30jgodyRgZ8wSaV7jcrpIpU3CHMnsQUNeEyF9MDvC2gcJI4rmesJDjq4iqyCy1GWl9aIijtn86iQi8LJ9CMFlem4VRQWwoj2FkkE-v9P2tqe9H4-Cf4F2LD27T8Gf0SH3fFwEA16o_4dOsrDNCpSc4_K6-VGPoDhsuY1szC_AH6x8F0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+modeling+study+of+hydrogen%2Fsyngas+production+and+particulate+emissions+from+a+natural+gas-fueled+partial+oxidation+engine&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=MCMILLIAN%2C+M&rft.au=LAWSON%2C+S&rft.date=2006-06-01&rft.issn=0360-3199&rft.volume=31&rft.issue=7&rft.spage=847&rft.epage=860&rft_id=info:doi/10.1016%2Fj.ijhydene.2005.08.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2005_08_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |