Cross-type biomedical named entity recognition with deep multi-task learning
Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual featur...
Saved in:
Published in | Bioinformatics Vol. 35; no. 10; pp. 1745 - 1752 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
DOI | 10.1093/bioinformatics/bty869 |
Cover
Loading…
Abstract | Abstract
Motivation
State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type.
Results
We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.
Availability and implementation
Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type.MOTIVATIONState-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type.We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.RESULTSWe propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf.AVAILABILITY AND IMPLEMENTATIONOur source code is available at https://github.com/yuzhimanhua/lm-lstm-crf.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. Availability and implementation Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf. Supplementary information Supplementary data are available at Bioinformatics online. Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf. Supplementary data are available at Bioinformatics online. |
Author | Zhang, Yuhao Langlotz, Curtis Zhang, Yu Ren, Xiang Han, Jiawei Wang, Xuan Shang, Jingbo Zitnik, Marinka |
Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0002-1381-8958 surname: Wang fullname: Wang, Xuan email: xwang174@illinois.edu organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Xiang surname: Ren fullname: Ren, Xiang email: xiangren@usc.edu organization: Department of Computer Science, University of Southern California, Los Angeles, CA, USA – sequence: 4 givenname: Yuhao surname: Zhang fullname: Zhang, Yuhao organization: Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA – sequence: 5 givenname: Marinka surname: Zitnik fullname: Zitnik, Marinka organization: Department of Computer Science, Stanford University, Stanford, CA, USA – sequence: 6 givenname: Jingbo surname: Shang fullname: Shang, Jingbo organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 7 givenname: Curtis surname: Langlotz fullname: Langlotz, Curtis organization: Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA – sequence: 8 givenname: Jiawei surname: Han fullname: Han, Jiawei organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30307536$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLxDAUhYMojqP-BKVLN9Wkt48UVzL4ggE3ug63aarRNqlJivTfm2F0oRtd5ULOdx_nLMmusUYRcsLoOaM1XDTaatNZN2DQ0l80YeZlvUMOWF7SNKNFvRtrKKs05xQWZOn9K6UFy_N8nyyAAq0KKA_IeuWs92mYR5XEloNqtcQ-MRirRJmgw5w4Je2z0UFbk3zo8JK0So3JMPVBpwH9W9IrdEab5yOy12Hv1fHXe0iebq4fV3fp-uH2fnW1TiVwCGlTxiXbXGELCMgRm4xlNOvqjkkKDe8airIElrUl5R2LvxUi8KbMAFRdSTgkZ9u-o7Pvk_JBDNpL1fdolJ28yDiv6jpjRf63lDEOrMprFqWnX9KpideL0ekB3Sy-zYqCy61AbjxzqhNSB9zYEhzqXjAqNtGIn9GIbTSRLn7R3wP-4uiWs9P4T-QTq8usSQ |
CitedBy_id | crossref_primary_10_1007_s10044_019_00833_z crossref_primary_10_1093_bioinformatics_btaa515 crossref_primary_10_1145_3388640 crossref_primary_10_1016_j_eswa_2021_114856 crossref_primary_10_1049_cit2_12107 crossref_primary_10_1109_ACCESS_2020_2990725 crossref_primary_10_1109_TKDE_2020_2981314 crossref_primary_10_3390_app12125775 crossref_primary_10_1093_bioinformatics_btaa111 crossref_primary_10_1109_ACCESS_2020_2987399 crossref_primary_10_3389_fnagi_2022_798132 crossref_primary_10_3390_electronics11193048 crossref_primary_10_1109_JBHI_2023_3244044 crossref_primary_10_1108_DTA_04_2022_0151 crossref_primary_10_1186_s12911_021_01717_1 crossref_primary_10_1093_bioinformatics_btae163 crossref_primary_10_1055_s_0040_1702001 crossref_primary_10_3390_ijms26010136 crossref_primary_10_1186_s44247_023_00035_y crossref_primary_10_1186_s12859_019_3321_4 crossref_primary_10_1016_j_cie_2023_109556 crossref_primary_10_1016_j_drudis_2021_06_009 crossref_primary_10_1016_j_jbi_2021_103799 crossref_primary_10_1016_j_csbj_2024_03_021 crossref_primary_10_1186_s12859_020_3393_1 crossref_primary_10_1016_j_procs_2022_07_107 crossref_primary_10_1016_j_jbi_2022_104062 crossref_primary_10_1016_j_ins_2022_04_037 crossref_primary_10_1093_bioinformatics_btac422 crossref_primary_10_1007_s00799_023_00352_7 crossref_primary_10_1109_ACCESS_2024_3414184 crossref_primary_10_3390_ddc3010009 crossref_primary_10_1007_s00521_020_05335_2 crossref_primary_10_1186_s12859_022_05051_9 crossref_primary_10_1016_j_jbi_2023_104418 crossref_primary_10_1016_j_jbi_2019_103309 crossref_primary_10_1016_j_jbi_2024_104731 crossref_primary_10_1016_j_procs_2024_04_228 crossref_primary_10_2174_1381612829666230428110542 crossref_primary_10_3390_computers12010017 crossref_primary_10_5715_jnlp_29_294 crossref_primary_10_1007_s42979_023_02068_6 crossref_primary_10_1016_j_ymeth_2019_06_024 crossref_primary_10_15302_J_QB_022_0302 crossref_primary_10_1007_s00521_021_05744_x crossref_primary_10_1007_s10579_024_09738_8 crossref_primary_10_3233_JCM_204543 crossref_primary_10_1038_s41598_023_48564_w crossref_primary_10_3390_fi15020079 crossref_primary_10_1109_TCBB_2022_3233856 crossref_primary_10_3389_fmolb_2022_928530 crossref_primary_10_1093_jamia_ocac225 crossref_primary_10_1007_s10115_020_01532_6 crossref_primary_10_1186_s12859_021_04200_w crossref_primary_10_1016_j_artmed_2022_102260 crossref_primary_10_1186_s12859_019_3000_5 crossref_primary_10_1016_j_artmed_2021_102083 crossref_primary_10_1016_j_simpa_2021_100058 crossref_primary_10_1007_s12539_024_00605_2 crossref_primary_10_3233_THC_236011 crossref_primary_10_1093_jamia_ocab090 crossref_primary_10_1016_j_cmpb_2021_106364 crossref_primary_10_3390_electronics11152287 crossref_primary_10_1186_s12859_021_04551_4 crossref_primary_10_1016_j_procs_2020_09_080 crossref_primary_10_1109_ACCESS_2022_3157854 crossref_primary_10_1038_s41598_025_93334_5 crossref_primary_10_3390_make4010012 crossref_primary_10_1093_jamia_ocab126 crossref_primary_10_2196_28229 crossref_primary_10_3390_v14122761 crossref_primary_10_1109_ACCESS_2022_3192866 crossref_primary_10_1155_2022_2687615 crossref_primary_10_3390_app122211709 crossref_primary_10_1016_j_molmed_2021_01_007 crossref_primary_10_1109_ACCESS_2020_3015056 crossref_primary_10_1016_j_jbi_2024_104674 crossref_primary_10_3390_app13085163 crossref_primary_10_1186_s12859_020_03834_6 crossref_primary_10_1016_j_neucom_2024_127255 crossref_primary_10_2478_jdis_2021_0013 crossref_primary_10_1109_TKDE_2021_3118469 crossref_primary_10_1177_15485129221094842 crossref_primary_10_1109_TCBB_2022_3157630 crossref_primary_10_1186_s12859_023_05172_9 crossref_primary_10_3390_app13158913 crossref_primary_10_1093_bioinformatics_btae648 crossref_primary_10_1016_j_procs_2023_01_244 crossref_primary_10_3390_info14050255 crossref_primary_10_1093_bib_bbaa110 crossref_primary_10_1093_bioinformatics_btad310 crossref_primary_10_1093_nar_gkz428 crossref_primary_10_1145_3465221 crossref_primary_10_1016_j_ymeth_2024_04_013 crossref_primary_10_1093_bib_bbab282 crossref_primary_10_1186_s12911_023_02117_3 crossref_primary_10_1016_j_simpa_2022_100373 crossref_primary_10_1109_ACCESS_2019_2920708 crossref_primary_10_1186_s12859_019_2813_6 crossref_primary_10_1155_2022_3524090 crossref_primary_10_1109_TKDE_2020_3038670 crossref_primary_10_2196_44876 crossref_primary_10_1186_s12859_022_04994_3 crossref_primary_10_3233_THC crossref_primary_10_1016_j_jbi_2020_103609 crossref_primary_10_1016_j_neucom_2024_129171 crossref_primary_10_1016_j_jbi_2023_104456 crossref_primary_10_1186_s12859_021_04236_y crossref_primary_10_1016_j_colsurfb_2024_114041 crossref_primary_10_1016_j_eswa_2025_126707 crossref_primary_10_1093_bioinformatics_btac598 crossref_primary_10_1186_s12911_022_01924_4 crossref_primary_10_1016_j_procs_2021_05_078 crossref_primary_10_1093_bioinformatics_btac085 crossref_primary_10_18255_1818_1015_2023_1_64_85 crossref_primary_10_1016_j_ipm_2022_102943 crossref_primary_10_1016_j_jbi_2021_103956 crossref_primary_10_1007_s11227_022_04527_y crossref_primary_10_5715_jnlp_30_507 crossref_primary_10_1109_TASLP_2021_3069295 crossref_primary_10_1038_s41597_020_0543_2 crossref_primary_10_1016_j_ins_2021_08_015 crossref_primary_10_1109_TSE_2024_3421591 crossref_primary_10_1016_j_knosys_2020_106486 crossref_primary_10_3233_JCM_225952 crossref_primary_10_3389_fcell_2020_00673 |
Cites_doi | 10.1162/tacl_a_00104 10.1186/gb-2008-9-s2-s2 10.1186/s12859-017-1776-8 10.1093/bioinformatics/btw343 10.1093/bib/6.4.357 10.1093/nar/gkv1277 10.1186/1471-2105-7-92 10.1093/nar/gkt441 10.1093/bioinformatics/btx228 10.1093/nar/gkw838 10.1093/bioinformatics/btt014 10.1016/j.cell.2018.05.015 10.1038/nbt1005-1243 10.1093/nar/gkw937 10.1093/bib/bbv024 10.1186/1758-2946-7-S1-S4 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018 The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018 – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1093/bioinformatics/bty869 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 1752 |
ExternalDocumentID | 30307536 10_1093_bioinformatics_bty869 10.1093/bioinformatics/bty869 |
Genre | Journal Article |
GroupedDBID | -~X .2P 5GY AAMVS ABJNI ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS F5P HW0 Q5Y RD5 TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c383t-b6146d4ead3a3a8aab21202f9f1c03b8fb0ac6312d608f1b217aa38b6233e97c3 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 04:33:02 EDT 2025 Fri Jul 11 04:02:30 EDT 2025 Mon Jul 21 05:24:17 EDT 2025 Tue Jul 01 02:33:47 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Wed Apr 02 07:04:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-b6146d4ead3a3a8aab21202f9f1c03b8fb0ac6312d608f1b217aa38b6233e97c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1381-8958 |
PMID | 30307536 |
PQID | 2118317491 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2887992154 proquest_miscellaneous_2118317491 pubmed_primary_30307536 crossref_citationtrail_10_1093_bioinformatics_bty869 crossref_primary_10_1093_bioinformatics_bty869 oup_primary_10_1093_bioinformatics_bty869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190515 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 20190515 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Davis (2023013107485892200_bty869-B7) 2017; 45 Collobert (2023013107485892200_bty869-B5) 2008 Smith (2023013107485892200_bty869-B22) 2008; 9 Szklarczyk (2023013107485892200_bty869-B25) 2017; 45 Xie (2023013107485892200_bty869-B28) 2013; 29 Szklarczyk (2023013107485892200_bty869-B24) 2016; 44 Liu (2023013107485892200_bty869-B16) 2018 Huang (2023013107485892200_bty869-B11) 2016; 17 Mikolov (2023013107485892200_bty869-B19) 2013 Leser (2023013107485892200_bty869-B15) 2005; 6 Leaman (2023013107485892200_bty869-B14) 2016; 32 Habibi (2023013107485892200_bty869-B10) 2017; 33 Tsai (2023013107485892200_bty869-B26) 2006; 7 Lafferty (2023013107485892200_bty869-B12) 2001 Pyysalo (2023013107485892200_bty869-B20) 2013 Chiu (2023013107485892200_bty869-B3) 2016; 4 Ma (2023013107485892200_bty869-B18) 2016 Wei (2023013107485892200_bty869-B27) 2013; 41 Lu (2023013107485892200_bty869-B17) 2015; 7 Lample (2023013107485892200_bty869-B13) 2016 Camacho (2023013107485892200_bty869-B2) 2018; 173 Girshick (2023013107485892200_bty869-B9) 2015 Deng (2023013107485892200_bty869-B8) 2013 Cokol (2023013107485892200_bty869-B4) 2005; 23 Zhou (2023013107485892200_bty869-B29) 2004 Crichton (2023013107485892200_bty869-B6) 2017; 18 Ramsundar (2023013107485892200_bty869-B21) 2015 Ando (2023013107485892200_bty869-B1) 2007 Søgaard (2023013107485892200_bty869-B23) 2016 |
References_xml | – volume: 4 start-page: 357 year: 2016 ident: 2023013107485892200_bty869-B3 article-title: Named entity recognition with bidirectional LSTM-CNNs publication-title: Trans. Assoc. Comput. Linguist doi: 10.1162/tacl_a_00104 – volume: 9 start-page: S2 year: 2008 ident: 2023013107485892200_bty869-B22 article-title: Overview of BioCreative II gene mention recognition publication-title: Genome Biol doi: 10.1186/gb-2008-9-s2-s2 – start-page: 260 year: 2016 ident: 2023013107485892200_bty869-B13 – start-page: 96 year: 2004 ident: 2023013107485892200_bty869-B29 – start-page: 160 year: 2008 ident: 2023013107485892200_bty869-B5 – volume: 18 start-page: 368. year: 2017 ident: 2023013107485892200_bty869-B6 article-title: A neural network multi-task learning approach to biomedical named entity recognition publication-title: BMC Bioinf doi: 10.1186/s12859-017-1776-8 – volume: 32 start-page: 2839 year: 2016 ident: 2023013107485892200_bty869-B14 article-title: TaggerOne: joint named entity recognition and normalization with semi-Markov Models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw343 – volume: 6 start-page: 357 year: 2005 ident: 2023013107485892200_bty869-B15 article-title: What makes a gene name? Named entity recognition in the biomedical literature publication-title: Brief. Bioinf doi: 10.1093/bib/6.4.357 – volume: 44 start-page: D380 year: 2016 ident: 2023013107485892200_bty869-B24 article-title: Stitch 5: augmenting protein–chemical interaction networks with tissue and affinity data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1277 – year: 2015 ident: 2023013107485892200_bty869-B21 article-title: Massively multitask networks for drug discovery – volume: 7 start-page: 92. year: 2006 ident: 2023013107485892200_bty869-B26 article-title: Various criteria in the evaluation of biomedical named entity recognition publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-92 – volume: 41 start-page: W518 year: 2013 ident: 2023013107485892200_bty869-B27 article-title: PubTator: a web-based text mining tool for assisting biocuration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt441 – volume: 33 start-page: i37 year: 2017 ident: 2023013107485892200_bty869-B10 article-title: Deep learning with word embeddings improves biomedical named entity recognition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx228 – volume: 45 start-page: D972 year: 2017 ident: 2023013107485892200_bty869-B7 article-title: The comparative toxicogenomics database: update 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw838 – volume: 29 start-page: 638 year: 2013 ident: 2023013107485892200_bty869-B28 article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt014 – start-page: 1440 year: 2015 ident: 2023013107485892200_bty869-B9 – start-page: 8599 year: 2013 ident: 2023013107485892200_bty869-B8 – start-page: 231 year: 2016 ident: 2023013107485892200_bty869-B23 – start-page: 3111 year: 2013 ident: 2023013107485892200_bty869-B19 – volume: 173 start-page: 1581 year: 2018 ident: 2023013107485892200_bty869-B2 article-title: Next-generation machine learning for biological networks publication-title: Cell doi: 10.1016/j.cell.2018.05.015 – start-page: 101 year: 2007 ident: 2023013107485892200_bty869-B1 – start-page: 5245 year: 2018 ident: 2023013107485892200_bty869-B16 – volume: 23 start-page: 1243 year: 2005 ident: 2023013107485892200_bty869-B4 article-title: Emergent behavior of growing knowledge about molecular interactions publication-title: Nat. Biotechnol doi: 10.1038/nbt1005-1243 – volume: 45 start-page: D362 year: 2017 ident: 2023013107485892200_bty869-B25 article-title: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw937 – start-page: 39 year: 2013 ident: 2023013107485892200_bty869-B20 – start-page: 282 year: 2001 ident: 2023013107485892200_bty869-B12 – start-page: 1064 year: 2016 ident: 2023013107485892200_bty869-B18 – volume: 17 start-page: 132 year: 2016 ident: 2023013107485892200_bty869-B11 article-title: Community challenges in biomedical text mining over 10 years: success, failure and the future publication-title: Brief. Bioinf doi: 10.1093/bib/bbv024 – volume: 7 start-page: S4. year: 2015 ident: 2023013107485892200_bty869-B17 article-title: CHEMDNER system with mixed conditional random fields and multi-scale word clustering publication-title: J. Cheminf doi: 10.1186/1758-2946-7-S1-S4 |
SSID | ssj0051444 ssj0005056 |
Score | 2.6524045 |
Snippet | Abstract
Motivation
State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such... State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals... Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1745 |
SubjectTerms | Benchmarking bioinformatics data collection Deep Learning Neural Networks, Computer Software |
Title | Cross-type biomedical named entity recognition with deep multi-task learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30307536 https://www.proquest.com/docview/2118317491 https://www.proquest.com/docview/2887992154 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LIHgR364vInjxUDdp-kiOsrgs4uOyC3sreVVEaRe3e9h_76RpV1bxdWtpkpaZNPNNMvMNQheWGVCs0QEx1IKDIkUgwiR2XIR5rrThtC7ad_-QDMfR7SSedBBpc2E-H-EL1lPPZUMi6oiLe6pa8MRl7IEhdmT5o8fJR0wHccww_gaQQORL2jpmb05Ym7_z3ZArlmkl2-0L6KyNz2ALbTaoEV97NW-jji120LqvI7nYRXd9N2LgtlOxz6d3oseFhCtcJ-Iu8DJSqCyw23zFxtopruMJg0rOXnBTP-JpD40HN6P-MGjKJAQa3MsqUGBhExPBlGCSSS6lAnNEwlzkVBOmeK6I1AmjoUkIzyk8TaVkXAHwYVakmu2jtaIs7CHCcaS4yA2RaSgjSbnKAdGlqUwBBjGqdRdFrYgy3XCIu1IWr5k_y2bZqmQzL9kuulp2m3oSjd86XIL8_9r2vNVSBr-GO--QhS3nswx8Ww7wKBL0hzawyAoBuCfqogOv4uVrmVsAY5Yc_eNrjtEGQCrh4gtofILWqre5PQXYUqmzeqq-Aw0B7-E |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-type+biomedical+named+entity+recognition+with+deep+multi-task+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wang%2C+Xuan&rft.au=Zhang%2C+Yu&rft.au=Ren%2C+Xiang&rft.au=Zhang%2C+Yuhao&rft.date=2019-05-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=35&rft.issue=10&rft.spage=1745&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |