Cross-type biomedical named entity recognition with deep multi-task learning

Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual featur...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 35; no. 10; pp. 1745 - 1752
Main Authors Wang, Xuan, Zhang, Yu, Ren, Xiang, Zhang, Yuhao, Zitnik, Marinka, Shang, Jingbo, Langlotz, Curtis, Han, Jiawei
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.05.2019
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/bty869

Cover

Loading…
Abstract Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. Availability and implementation Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type.MOTIVATIONState-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type.We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.RESULTSWe propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf.AVAILABILITY AND IMPLEMENTATIONOur source code is available at https://github.com/yuzhimanhua/lm-lstm-crf.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. Availability and implementation Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.
State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf. Supplementary data are available at Bioinformatics online.
Author Zhang, Yuhao
Langlotz, Curtis
Zhang, Yu
Ren, Xiang
Han, Jiawei
Wang, Xuan
Shang, Jingbo
Zitnik, Marinka
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0002-1381-8958
  surname: Wang
  fullname: Wang, Xuan
  email: xwang174@illinois.edu
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 3
  givenname: Xiang
  surname: Ren
  fullname: Ren, Xiang
  email: xiangren@usc.edu
  organization: Department of Computer Science, University of Southern California, Los Angeles, CA, USA
– sequence: 4
  givenname: Yuhao
  surname: Zhang
  fullname: Zhang, Yuhao
  organization: Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
– sequence: 5
  givenname: Marinka
  surname: Zitnik
  fullname: Zitnik, Marinka
  organization: Department of Computer Science, Stanford University, Stanford, CA, USA
– sequence: 6
  givenname: Jingbo
  surname: Shang
  fullname: Shang, Jingbo
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 7
  givenname: Curtis
  surname: Langlotz
  fullname: Langlotz, Curtis
  organization: Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
– sequence: 8
  givenname: Jiawei
  surname: Han
  fullname: Han, Jiawei
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30307536$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLxDAUhYMojqP-BKVLN9Wkt48UVzL4ggE3ug63aarRNqlJivTfm2F0oRtd5ULOdx_nLMmusUYRcsLoOaM1XDTaatNZN2DQ0l80YeZlvUMOWF7SNKNFvRtrKKs05xQWZOn9K6UFy_N8nyyAAq0KKA_IeuWs92mYR5XEloNqtcQ-MRirRJmgw5w4Je2z0UFbk3zo8JK0So3JMPVBpwH9W9IrdEab5yOy12Hv1fHXe0iebq4fV3fp-uH2fnW1TiVwCGlTxiXbXGELCMgRm4xlNOvqjkkKDe8airIElrUl5R2LvxUi8KbMAFRdSTgkZ9u-o7Pvk_JBDNpL1fdolJ28yDiv6jpjRf63lDEOrMprFqWnX9KpideL0ekB3Sy-zYqCy61AbjxzqhNSB9zYEhzqXjAqNtGIn9GIbTSRLn7R3wP-4uiWs9P4T-QTq8usSQ
CitedBy_id crossref_primary_10_1007_s10044_019_00833_z
crossref_primary_10_1093_bioinformatics_btaa515
crossref_primary_10_1145_3388640
crossref_primary_10_1016_j_eswa_2021_114856
crossref_primary_10_1049_cit2_12107
crossref_primary_10_1109_ACCESS_2020_2990725
crossref_primary_10_1109_TKDE_2020_2981314
crossref_primary_10_3390_app12125775
crossref_primary_10_1093_bioinformatics_btaa111
crossref_primary_10_1109_ACCESS_2020_2987399
crossref_primary_10_3389_fnagi_2022_798132
crossref_primary_10_3390_electronics11193048
crossref_primary_10_1109_JBHI_2023_3244044
crossref_primary_10_1108_DTA_04_2022_0151
crossref_primary_10_1186_s12911_021_01717_1
crossref_primary_10_1093_bioinformatics_btae163
crossref_primary_10_1055_s_0040_1702001
crossref_primary_10_3390_ijms26010136
crossref_primary_10_1186_s44247_023_00035_y
crossref_primary_10_1186_s12859_019_3321_4
crossref_primary_10_1016_j_cie_2023_109556
crossref_primary_10_1016_j_drudis_2021_06_009
crossref_primary_10_1016_j_jbi_2021_103799
crossref_primary_10_1016_j_csbj_2024_03_021
crossref_primary_10_1186_s12859_020_3393_1
crossref_primary_10_1016_j_procs_2022_07_107
crossref_primary_10_1016_j_jbi_2022_104062
crossref_primary_10_1016_j_ins_2022_04_037
crossref_primary_10_1093_bioinformatics_btac422
crossref_primary_10_1007_s00799_023_00352_7
crossref_primary_10_1109_ACCESS_2024_3414184
crossref_primary_10_3390_ddc3010009
crossref_primary_10_1007_s00521_020_05335_2
crossref_primary_10_1186_s12859_022_05051_9
crossref_primary_10_1016_j_jbi_2023_104418
crossref_primary_10_1016_j_jbi_2019_103309
crossref_primary_10_1016_j_jbi_2024_104731
crossref_primary_10_1016_j_procs_2024_04_228
crossref_primary_10_2174_1381612829666230428110542
crossref_primary_10_3390_computers12010017
crossref_primary_10_5715_jnlp_29_294
crossref_primary_10_1007_s42979_023_02068_6
crossref_primary_10_1016_j_ymeth_2019_06_024
crossref_primary_10_15302_J_QB_022_0302
crossref_primary_10_1007_s00521_021_05744_x
crossref_primary_10_1007_s10579_024_09738_8
crossref_primary_10_3233_JCM_204543
crossref_primary_10_1038_s41598_023_48564_w
crossref_primary_10_3390_fi15020079
crossref_primary_10_1109_TCBB_2022_3233856
crossref_primary_10_3389_fmolb_2022_928530
crossref_primary_10_1093_jamia_ocac225
crossref_primary_10_1007_s10115_020_01532_6
crossref_primary_10_1186_s12859_021_04200_w
crossref_primary_10_1016_j_artmed_2022_102260
crossref_primary_10_1186_s12859_019_3000_5
crossref_primary_10_1016_j_artmed_2021_102083
crossref_primary_10_1016_j_simpa_2021_100058
crossref_primary_10_1007_s12539_024_00605_2
crossref_primary_10_3233_THC_236011
crossref_primary_10_1093_jamia_ocab090
crossref_primary_10_1016_j_cmpb_2021_106364
crossref_primary_10_3390_electronics11152287
crossref_primary_10_1186_s12859_021_04551_4
crossref_primary_10_1016_j_procs_2020_09_080
crossref_primary_10_1109_ACCESS_2022_3157854
crossref_primary_10_1038_s41598_025_93334_5
crossref_primary_10_3390_make4010012
crossref_primary_10_1093_jamia_ocab126
crossref_primary_10_2196_28229
crossref_primary_10_3390_v14122761
crossref_primary_10_1109_ACCESS_2022_3192866
crossref_primary_10_1155_2022_2687615
crossref_primary_10_3390_app122211709
crossref_primary_10_1016_j_molmed_2021_01_007
crossref_primary_10_1109_ACCESS_2020_3015056
crossref_primary_10_1016_j_jbi_2024_104674
crossref_primary_10_3390_app13085163
crossref_primary_10_1186_s12859_020_03834_6
crossref_primary_10_1016_j_neucom_2024_127255
crossref_primary_10_2478_jdis_2021_0013
crossref_primary_10_1109_TKDE_2021_3118469
crossref_primary_10_1177_15485129221094842
crossref_primary_10_1109_TCBB_2022_3157630
crossref_primary_10_1186_s12859_023_05172_9
crossref_primary_10_3390_app13158913
crossref_primary_10_1093_bioinformatics_btae648
crossref_primary_10_1016_j_procs_2023_01_244
crossref_primary_10_3390_info14050255
crossref_primary_10_1093_bib_bbaa110
crossref_primary_10_1093_bioinformatics_btad310
crossref_primary_10_1093_nar_gkz428
crossref_primary_10_1145_3465221
crossref_primary_10_1016_j_ymeth_2024_04_013
crossref_primary_10_1093_bib_bbab282
crossref_primary_10_1186_s12911_023_02117_3
crossref_primary_10_1016_j_simpa_2022_100373
crossref_primary_10_1109_ACCESS_2019_2920708
crossref_primary_10_1186_s12859_019_2813_6
crossref_primary_10_1155_2022_3524090
crossref_primary_10_1109_TKDE_2020_3038670
crossref_primary_10_2196_44876
crossref_primary_10_1186_s12859_022_04994_3
crossref_primary_10_3233_THC
crossref_primary_10_1016_j_jbi_2020_103609
crossref_primary_10_1016_j_neucom_2024_129171
crossref_primary_10_1016_j_jbi_2023_104456
crossref_primary_10_1186_s12859_021_04236_y
crossref_primary_10_1016_j_colsurfb_2024_114041
crossref_primary_10_1016_j_eswa_2025_126707
crossref_primary_10_1093_bioinformatics_btac598
crossref_primary_10_1186_s12911_022_01924_4
crossref_primary_10_1016_j_procs_2021_05_078
crossref_primary_10_1093_bioinformatics_btac085
crossref_primary_10_18255_1818_1015_2023_1_64_85
crossref_primary_10_1016_j_ipm_2022_102943
crossref_primary_10_1016_j_jbi_2021_103956
crossref_primary_10_1007_s11227_022_04527_y
crossref_primary_10_5715_jnlp_30_507
crossref_primary_10_1109_TASLP_2021_3069295
crossref_primary_10_1038_s41597_020_0543_2
crossref_primary_10_1016_j_ins_2021_08_015
crossref_primary_10_1109_TSE_2024_3421591
crossref_primary_10_1016_j_knosys_2020_106486
crossref_primary_10_3233_JCM_225952
crossref_primary_10_3389_fcell_2020_00673
Cites_doi 10.1162/tacl_a_00104
10.1186/gb-2008-9-s2-s2
10.1186/s12859-017-1776-8
10.1093/bioinformatics/btw343
10.1093/bib/6.4.357
10.1093/nar/gkv1277
10.1186/1471-2105-7-92
10.1093/nar/gkt441
10.1093/bioinformatics/btx228
10.1093/nar/gkw838
10.1093/bioinformatics/btt014
10.1016/j.cell.2018.05.015
10.1038/nbt1005-1243
10.1093/nar/gkw937
10.1093/bib/bbv024
10.1186/1758-2946-7-S1-S4
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018
– notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1093/bioinformatics/bty869
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1752
ExternalDocumentID 30307536
10_1093_bioinformatics_bty869
10.1093/bioinformatics/bty869
Genre Journal Article
GroupedDBID -~X
.2P
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
F5P
HW0
Q5Y
RD5
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c383t-b6146d4ead3a3a8aab21202f9f1c03b8fb0ac6312d608f1b217aa38b6233e97c3
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 04:33:02 EDT 2025
Fri Jul 11 04:02:30 EDT 2025
Mon Jul 21 05:24:17 EDT 2025
Tue Jul 01 02:33:47 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
Wed Apr 02 07:04:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-b6146d4ead3a3a8aab21202f9f1c03b8fb0ac6312d608f1b217aa38b6233e97c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1381-8958
PMID 30307536
PQID 2118317491
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2887992154
proquest_miscellaneous_2118317491
pubmed_primary_30307536
crossref_citationtrail_10_1093_bioinformatics_bty869
crossref_primary_10_1093_bioinformatics_bty869
oup_primary_10_1093_bioinformatics_bty869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190515
2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 20190515
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Davis (2023013107485892200_bty869-B7) 2017; 45
Collobert (2023013107485892200_bty869-B5) 2008
Smith (2023013107485892200_bty869-B22) 2008; 9
Szklarczyk (2023013107485892200_bty869-B25) 2017; 45
Xie (2023013107485892200_bty869-B28) 2013; 29
Szklarczyk (2023013107485892200_bty869-B24) 2016; 44
Liu (2023013107485892200_bty869-B16) 2018
Huang (2023013107485892200_bty869-B11) 2016; 17
Mikolov (2023013107485892200_bty869-B19) 2013
Leser (2023013107485892200_bty869-B15) 2005; 6
Leaman (2023013107485892200_bty869-B14) 2016; 32
Habibi (2023013107485892200_bty869-B10) 2017; 33
Tsai (2023013107485892200_bty869-B26) 2006; 7
Lafferty (2023013107485892200_bty869-B12) 2001
Pyysalo (2023013107485892200_bty869-B20) 2013
Chiu (2023013107485892200_bty869-B3) 2016; 4
Ma (2023013107485892200_bty869-B18) 2016
Wei (2023013107485892200_bty869-B27) 2013; 41
Lu (2023013107485892200_bty869-B17) 2015; 7
Lample (2023013107485892200_bty869-B13) 2016
Camacho (2023013107485892200_bty869-B2) 2018; 173
Girshick (2023013107485892200_bty869-B9) 2015
Deng (2023013107485892200_bty869-B8) 2013
Cokol (2023013107485892200_bty869-B4) 2005; 23
Zhou (2023013107485892200_bty869-B29) 2004
Crichton (2023013107485892200_bty869-B6) 2017; 18
Ramsundar (2023013107485892200_bty869-B21) 2015
Ando (2023013107485892200_bty869-B1) 2007
Søgaard (2023013107485892200_bty869-B23) 2016
References_xml – volume: 4
  start-page: 357
  year: 2016
  ident: 2023013107485892200_bty869-B3
  article-title: Named entity recognition with bidirectional LSTM-CNNs
  publication-title: Trans. Assoc. Comput. Linguist
  doi: 10.1162/tacl_a_00104
– volume: 9
  start-page: S2
  year: 2008
  ident: 2023013107485892200_bty869-B22
  article-title: Overview of BioCreative II gene mention recognition
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s2
– start-page: 260
  year: 2016
  ident: 2023013107485892200_bty869-B13
– start-page: 96
  year: 2004
  ident: 2023013107485892200_bty869-B29
– start-page: 160
  year: 2008
  ident: 2023013107485892200_bty869-B5
– volume: 18
  start-page: 368.
  year: 2017
  ident: 2023013107485892200_bty869-B6
  article-title: A neural network multi-task learning approach to biomedical named entity recognition
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-017-1776-8
– volume: 32
  start-page: 2839
  year: 2016
  ident: 2023013107485892200_bty869-B14
  article-title: TaggerOne: joint named entity recognition and normalization with semi-Markov Models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw343
– volume: 6
  start-page: 357
  year: 2005
  ident: 2023013107485892200_bty869-B15
  article-title: What makes a gene name? Named entity recognition in the biomedical literature
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/6.4.357
– volume: 44
  start-page: D380
  year: 2016
  ident: 2023013107485892200_bty869-B24
  article-title: Stitch 5: augmenting protein–chemical interaction networks with tissue and affinity data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1277
– year: 2015
  ident: 2023013107485892200_bty869-B21
  article-title: Massively multitask networks for drug discovery
– volume: 7
  start-page: 92.
  year: 2006
  ident: 2023013107485892200_bty869-B26
  article-title: Various criteria in the evaluation of biomedical named entity recognition
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-92
– volume: 41
  start-page: W518
  year: 2013
  ident: 2023013107485892200_bty869-B27
  article-title: PubTator: a web-based text mining tool for assisting biocuration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt441
– volume: 33
  start-page: i37
  year: 2017
  ident: 2023013107485892200_bty869-B10
  article-title: Deep learning with word embeddings improves biomedical named entity recognition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx228
– volume: 45
  start-page: D972
  year: 2017
  ident: 2023013107485892200_bty869-B7
  article-title: The comparative toxicogenomics database: update 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw838
– volume: 29
  start-page: 638
  year: 2013
  ident: 2023013107485892200_bty869-B28
  article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt014
– start-page: 1440
  year: 2015
  ident: 2023013107485892200_bty869-B9
– start-page: 8599
  year: 2013
  ident: 2023013107485892200_bty869-B8
– start-page: 231
  year: 2016
  ident: 2023013107485892200_bty869-B23
– start-page: 3111
  year: 2013
  ident: 2023013107485892200_bty869-B19
– volume: 173
  start-page: 1581
  year: 2018
  ident: 2023013107485892200_bty869-B2
  article-title: Next-generation machine learning for biological networks
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.015
– start-page: 101
  year: 2007
  ident: 2023013107485892200_bty869-B1
– start-page: 5245
  year: 2018
  ident: 2023013107485892200_bty869-B16
– volume: 23
  start-page: 1243
  year: 2005
  ident: 2023013107485892200_bty869-B4
  article-title: Emergent behavior of growing knowledge about molecular interactions
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt1005-1243
– volume: 45
  start-page: D362
  year: 2017
  ident: 2023013107485892200_bty869-B25
  article-title: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw937
– start-page: 39
  year: 2013
  ident: 2023013107485892200_bty869-B20
– start-page: 282
  year: 2001
  ident: 2023013107485892200_bty869-B12
– start-page: 1064
  year: 2016
  ident: 2023013107485892200_bty869-B18
– volume: 17
  start-page: 132
  year: 2016
  ident: 2023013107485892200_bty869-B11
  article-title: Community challenges in biomedical text mining over 10 years: success, failure and the future
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/bbv024
– volume: 7
  start-page: S4.
  year: 2015
  ident: 2023013107485892200_bty869-B17
  article-title: CHEMDNER system with mixed conditional random fields and multi-scale word clustering
  publication-title: J. Cheminf
  doi: 10.1186/1758-2946-7-S1-S4
SSID ssj0051444
ssj0005056
Score 2.6524045
Snippet Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such...
State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals...
Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1745
SubjectTerms Benchmarking
bioinformatics
data collection
Deep Learning
Neural Networks, Computer
Software
Title Cross-type biomedical named entity recognition with deep multi-task learning
URI https://www.ncbi.nlm.nih.gov/pubmed/30307536
https://www.proquest.com/docview/2118317491
https://www.proquest.com/docview/2887992154
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LIHgR364vInjxUDdp-kiOsrgs4uOyC3sreVVEaRe3e9h_76RpV1bxdWtpkpaZNPNNMvMNQheWGVCs0QEx1IKDIkUgwiR2XIR5rrThtC7ad_-QDMfR7SSedBBpc2E-H-EL1lPPZUMi6oiLe6pa8MRl7IEhdmT5o8fJR0wHccww_gaQQORL2jpmb05Ym7_z3ZArlmkl2-0L6KyNz2ALbTaoEV97NW-jji120LqvI7nYRXd9N2LgtlOxz6d3oseFhCtcJ-Iu8DJSqCyw23zFxtopruMJg0rOXnBTP-JpD40HN6P-MGjKJAQa3MsqUGBhExPBlGCSSS6lAnNEwlzkVBOmeK6I1AmjoUkIzyk8TaVkXAHwYVakmu2jtaIs7CHCcaS4yA2RaSgjSbnKAdGlqUwBBjGqdRdFrYgy3XCIu1IWr5k_y2bZqmQzL9kuulp2m3oSjd86XIL8_9r2vNVSBr-GO--QhS3nswx8Ww7wKBL0hzawyAoBuCfqogOv4uVrmVsAY5Yc_eNrjtEGQCrh4gtofILWqre5PQXYUqmzeqq-Aw0B7-E
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-type+biomedical+named+entity+recognition+with+deep+multi-task+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wang%2C+Xuan&rft.au=Zhang%2C+Yu&rft.au=Ren%2C+Xiang&rft.au=Zhang%2C+Yuhao&rft.date=2019-05-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=35&rft.issue=10&rft.spage=1745&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon