Production of low-silicon molten iron from high-silica hematite using biochar
A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experi...
Saved in:
Published in | Journal of iron and steel research, international Vol. 24; no. 1; pp. 27 - 33 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
2017
Springer Singapore |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experimentally investigated and the results show that the method is feasible.In the direct reduction stage,ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89mass% at temperature of 1373 K,biochar mixing ratio of 0.8-0.9,and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage,molten iron with a carbon content of 0.02-0.03mass% and silicon content of 0.02-0.18mass%could be obtained from the metallic briquettes under the above-mentioned conditions;the iron recovery rate was83%-91% and impurities in the obtained metal were negligible. |
---|---|
AbstractList | A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed. In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage. The proposed method was experimentally investigated and the results show that the method is feasible. In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%–88% and residual carbon of 0.27–0.89 mass% at temperature of 1373 K, biochar mixing ratio of 0.8–0.9, and reduction time of 15 min. Some silica particles remained embedded in the iron phase after the reduction. In the melting separation stage, molten iron with a carbon content of 0.02–0.03 mass% and silicon content of 0.02–0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%–91% and impurities in the obtained metal were negligible. A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experimentally investigated and the results show that the method is feasible.In the direct reduction stage,ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89mass% at temperature of 1373 K,biochar mixing ratio of 0.8-0.9,and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage,molten iron with a carbon content of 0.02-0.03mass% and silicon content of 0.02-0.18mass%could be obtained from the metallic briquettes under the above-mentioned conditions;the iron recovery rate was83%-91% and impurities in the obtained metal were negligible. |
Author | Fu, Xiu-feng Zhao, Shi-yu Qin, Yan-qi Tang, Hui-qing Xue, Qing-guo |
AuthorAffiliation | State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China |
Author_xml | – sequence: 1 givenname: Hui-qing surname: Tang fullname: Tang, Hui-qing email: hqtang@ustb.edu.cn – sequence: 2 givenname: Xiu-feng surname: Fu fullname: Fu, Xiu-feng – sequence: 3 givenname: Yan-qi surname: Qin fullname: Qin, Yan-qi – sequence: 4 givenname: Shi-yu surname: Zhao fullname: Zhao, Shi-yu – sequence: 5 givenname: Qing-guo surname: Xue fullname: Xue, Qing-guo |
BookMark | eNqFkE1LxDAQhoOs4LruTxCKJz1Uk6ZpUzyILH6BoqCCt5CmSZulTTTpKv570-2yBy-by2Qy80zmfQ_BxFgjAThG8BxBlF28IgizOIfZxynKzzCEkMRkD0yTBMEYF5ROwHTbcgDm3i_hcIoMJ3QKnl6crVai19ZEVkWt_Ym9brUIaWfbXppIu3BXznZRo-tmrPKokR3vdS-jldemjkptRcPdEdhXvPVyvokz8H5787a4jx-f7x4W14-xwBT3cQnLLC2VIqniVNG8gJIgmeQqrWQeHgtZQgFTyglNRSWoQrwoRJKIROYJrxSegctxrnDWeycVE7rng4jecd0yBNlgDlubwwblDOVsbQ4jgSb_6E-nO-5-d3LZyPnQb2rp2NKunAlCd4JXIyiDJ986gF5oaYSstJOiZ5XVOyecbFZurKm_wu_bnbMcpRgTRPAf-0OcCQ |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2017_12_165 crossref_primary_10_1016_j_energy_2019_05_149 crossref_primary_10_3390_met8040205 crossref_primary_10_1016_j_energy_2019_115903 |
Cites_doi | 10.1007/s11837-001-0054-3 10.1007/BF02652699 10.1179/030192399677121 10.1007/s12613-012-0541-2 10.2355/isijinternational.31.487 10.1016/S1006-706X(07)60085-5 10.1016/j.rser.2014.02.031 10.1016/j.mineng.2004.08.023 10.1007/s11837-003-0101-3 10.1016/S1006-706X(16)30021-8 10.2355/isijinternational1966.23.256 |
ContentType | Journal Article |
Copyright | 2017 Central Iron and Steel Research Institute China Iron and Steel Research Institute Group 2017 |
Copyright_xml | – notice: 2017 Central Iron and Steel Research Institute – notice: China Iron and Steel Research Institute Group 2017 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1016/S1006-706X(17)30005-5 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
DocumentTitleAlternate | Production of low-silicon molten iron from high-silica hematite using biochar |
EISSN | 2210-3988 |
EndPage | 33 |
ExternalDocumentID | 10_1016_S1006_706X_17_30005_5 S1006706X17300055 671433515 |
GroupedDBID | --K --M -02 -0B -EM -SB -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92H 92I 92L 92M 92R 93N 9D9 9DB AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFNM ABFTV ABJNI ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABXPI ABXRA ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFO ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AEZYN AFKWA AFNRJ AFQWF AFRZQ AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CHBEP CQIGP CS3 CW9 DPUIP EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IKXTQ IWAJR J-C J1W JUIAU JZLTJ KOV LLZTM M41 M4Y MAGPM MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 PC. PT4 Q-- Q38 R-B RIG RLLFE ROL RSV RT2 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SPD SRMVM SSLCW SSM SSZ STPWE T5K T8R TCJ TGT TSG U1F U1G U5B U5L UOJIU UTJUX VEKWB VFIZW W92 Z7S Z7Y Z7Z Z85 ZMTXR ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABWVN ACDTI ACPIV ACRPL ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH |
ID | FETCH-LOGICAL-c383t-b0b64bff54fa8f8790e51e27f4de754f9eb0c048a584cdc8f1a99c22c2e72adf3 |
IEDL.DBID | .~1 |
ISSN | 1006-706X |
IngestDate | Thu Apr 24 22:55:18 EDT 2025 Tue Jul 01 03:19:46 EDT 2025 Fri Feb 21 02:31:58 EST 2025 Fri Feb 23 02:34:09 EST 2024 Wed Feb 14 10:05:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Low-silicon molten iron Direct reduction Melt separation High-silica hematite Biochar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-b0b64bff54fa8f8790e51e27f4de754f9eb0c048a584cdc8f1a99c22c2e72adf3 |
Notes | A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experimentally investigated and the results show that the method is feasible.In the direct reduction stage,ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89mass% at temperature of 1373 K,biochar mixing ratio of 0.8-0.9,and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage,molten iron with a carbon content of 0.02-0.03mass% and silicon content of 0.02-0.18mass%could be obtained from the metallic briquettes under the above-mentioned conditions;the iron recovery rate was83%-91% and impurities in the obtained metal were negligible. 11-3678/TF High-silica hematite; Low-silicon molten iron; Biochar; Direct reduction; Melt separation |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_S1006_706X_17_30005_5 crossref_primary_10_1016_S1006_706X_17_30005_5 springer_journals_10_1016_S1006_706X_17_30005_5 elsevier_sciencedirect_doi_10_1016_S1006_706X_17_30005_5 chongqing_primary_671433515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 January 2017 20170100 2017-1-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of iron and steel research, international |
PublicationTitleAbbrev | J. Iron Steel Res. Int |
PublicationTitleAlternate | Journal of Iron and Steel Research |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | Hasanbeigi, Arens, Price (bib17) 2014; 33 Gao, Liu, Li, Tang (bib2) 2013; 447 Guo, Xu (bib3) 2013; 531 Su, Zhang, Hang, Wang, Wang, Che (bib11) 2011; 46 Zhou, Xue, Li, Zhang (bib22) 2007; 30 Jiang, Wang, Yang, Gan, Wang, Yu (bib7) 2007; 14 Zhao, Fan (bib14) 2012; 32 Tang, Tang, Liang (bib12) 2015; 35 Tang, Qin, Qi, Dong, Xue (bib21) 2016; 23 Niwa, Sumigama, Maki, Ito, Inoue, Tamura (bib5) 1991; 31 Wang, Ren (bib15) 2005; 77 Dong, Lin, Fu, Mo, Wang (bib13) 2011; 31 McClell, Metius (bib19) 2003; 65 Manning, Fruehan (bib18) 2001; 63 Mao, Han, Yang, Jiang, Li (bib4) 2015; 40 Wu, Oliveira, Dai, Xu (bib9) 2012; 19 Araujo, Viana, Peres (bib16) 2005; 18 Liu, Zhao, Wang, Wen (bib1) 2014; 31 Wang, Fu (bib10) 2007; 42 Yu, Feng, Su (bib6) 2008; 43 Tsuchiya, Tokuda, Ohtani (bib20) 1976; 7 Mills, Sridhar (bib23) 1999; 26 Itoh, Satoh, Kawauchi (bib8) 1983; 23 LiuS.ZhaoY.WangW.WenS.Miner. Metall. Process.2014312136142 TangL.TangY.LiangJ.Min. Metall. Eng.20153521171233365044 TangH.QinY.QiT.DongZ.XueQ.J. Iron Steel Res. Int.201623210911510.1016/S1006-706X(16)30021-8 ItohY.SatohS.KawauchiY.Trans. ISIJ198323125626410.2355/isijinternational1966.23.256 GuoJ.XuW.Modern Mining201353172528 AraujoA. C.VianaP. R. M.PeresA. E. C.Miner. Eng.200518221922410.1016/j.mineng.2004.08.023 ZhouJ.XueZ.LiZ.ZhangH.J. Wuhan Univ. Sci. Technol.2007305458460 WuS.OliveiraD.DaiY.XuJ.Int. J. Miner. Metall. Mater.201219321722410.1007/s12613-012-0541-2 ZhaoR.FanN.Min. Metall. Eng.20123246266 SuB.ZhangJ.HangJ. C.WangG.WangC.CheX.Iron and Steel20114692228 WangR.FuJ.Iron and Steel20074261720 HasanbeigiA.ArensM.PriceL.Renewable and Sustainable Energy Review201433364565810.1016/j.rser.2014.02.031 DongY.LinH.FuK.MoX.WangH.Miner. Metall. Eng.20113163639 WangY.RenJ.Int. J. Miner. Process.2005771116122 GaoY. W.LiuC. S.LiJ. S.TangH. Y.Metal Mine201344797175 McClellJ. M.MetiusG. E.JOM2003658303410.1007/s11837-003-0101-3 YuY. H.FengG. S.SuD. X.Iron and Steel2008431299102 JiangX.WangM.YangW.GanY.WangY.YuZ.J. Iron Steel Res. Int.2007146273110.1016/S1006-706X(07)60085-5 ManningC. P.FruehanR. J.JOM20016310364310.1007/s11837-001-0054-3 MillsK. C.SridharS.Ironmak. Steelmak.199926426226710.1179/030192399677121 MaoC.HanK.YangC.JiangY.LiW.Sintering and Pelletizing2015401510 TsuchiyaN.TokudaM.OhtaniM.Metall. Trans. B19767231532110.1007/BF02652699 NiwaY.SumigamaT.MakiA.ItoH.InoueH.TamuraT.ISIJ Int.199131548749310.2355/isijinternational.31.487 L. Tang (2401027_CR12) 2015; 35 H. Tang (2401027_CR21) 2016; 23 X. Jiang (2401027_CR7) 2007; 14 R. Wang (2401027_CR10) 2007; 42 Y. Itoh (2401027_CR8) 1983; 23 A. Hasanbeigi (2401027_CR17) 2014; 33 N. Tsuchiya (2401027_CR20) 1976; 7 Y. Dong (2401027_CR13) 2011; 31 K. C. Mills (2401027_CR23) 1999; 26 A. C. Araujo (2401027_CR16) 2005; 18 J. M. McClell (2401027_CR19) 2003; 65 R. Zhao (2401027_CR14) 2012; 32 Y. Wang (2401027_CR15) 2005; 77 S. Liu (2401027_CR1) 2014; 31 B. Su (2401027_CR11) 2011; 46 C. Mao (2401027_CR4) 2015; 40 Y. Niwa (2401027_CR5) 1991; 31 J. Guo (2401027_CR3) 2013; 531 S. Wu (2401027_CR9) 2012; 19 J. Zhou (2401027_CR22) 2007; 30 Y. W. Gao (2401027_CR2) 2013; 447 Y. H. Yu (2401027_CR6) 2008; 43 C. P. Manning (2401027_CR18) 2001; 63 |
References_xml | – volume: 46 start-page: 22 year: 2011 end-page: 28 ident: bib11 publication-title: Iron and Steel – volume: 26 start-page: 262 year: 1999 end-page: 267 ident: bib23 publication-title: Ironmak. Steelmak. – volume: 18 start-page: 219 year: 2005 end-page: 224 ident: bib16 publication-title: Miner. Eng. – volume: 23 start-page: 109 year: 2016 end-page: 115 ident: bib21 publication-title: J. Iron Steel Res. Int. – volume: 31 start-page: 487 year: 1991 end-page: 493 ident: bib5 publication-title: ISIJ Int. – volume: 19 start-page: 217 year: 2012 end-page: 224 ident: bib9 publication-title: Int. J. Miner. Metall. Mater. – volume: 32 start-page: 62 year: 2012 end-page: 66 ident: bib14 publication-title: Min. Metall. Eng. – volume: 447 start-page: 71 year: 2013 end-page: 75 ident: bib2 publication-title: Metal Mine – volume: 63 start-page: 36 year: 2001 end-page: 43 ident: bib18 publication-title: JOM – volume: 531 start-page: 25 year: 2013 end-page: 28 ident: bib3 publication-title: Modern Mining – volume: 23 start-page: 256 year: 1983 end-page: 264 ident: bib8 publication-title: Trans. ISJJ – volume: 31 start-page: 136 year: 2014 end-page: 142 ident: bib1 publication-title: Miner. Metall. Process. – volume: 77 start-page: 116 year: 2005 end-page: 122 ident: bib15 publication-title: Int. J. Miner. Process. – volume: 40 start-page: 5 year: 2015 end-page: 10 ident: bib4 publication-title: Sintering and Pelletizing – volume: 42 start-page: 17 year: 2007 end-page: 20 ident: bib10 publication-title: Iron and Steel – volume: 7 start-page: 315 year: 1976 end-page: 321 ident: bib20 publication-title: Metall. Trans. B – volume: 65 start-page: 30 year: 2003 end-page: 34 ident: bib19 publication-title: JOM – volume: 43 start-page: 99 year: 2008 end-page: 102 ident: bib6 publication-title: Iron and Steel – volume: 14 start-page: 27 year: 2007 end-page: 31 ident: bib7 publication-title: J. Iron Steel Res. Int. – volume: 31 start-page: 36 year: 2011 end-page: 39 ident: bib13 publication-title: Miner. Metall. Eng. – volume: 35 start-page: 117 year: 2015 end-page: 123 ident: bib12 publication-title: Min. Metall. Eng. – volume: 33 start-page: 645 year: 2014 end-page: 658 ident: bib17 publication-title: Renewable and Sustain-able Energy Review – volume: 30 start-page: 458 year: 2007 end-page: 460 ident: bib22 publication-title: J. Wuhan Univ. Sci. Technol. – reference: ItohY.SatohS.KawauchiY.Trans. ISIJ198323125626410.2355/isijinternational1966.23.256 – reference: JiangX.WangM.YangW.GanY.WangY.YuZ.J. Iron Steel Res. Int.2007146273110.1016/S1006-706X(07)60085-5 – reference: ZhaoR.FanN.Min. Metall. Eng.20123246266 – reference: MaoC.HanK.YangC.JiangY.LiW.Sintering and Pelletizing2015401510 – reference: ZhouJ.XueZ.LiZ.ZhangH.J. Wuhan Univ. Sci. Technol.2007305458460 – reference: TangL.TangY.LiangJ.Min. Metall. Eng.20153521171233365044 – reference: NiwaY.SumigamaT.MakiA.ItoH.InoueH.TamuraT.ISIJ Int.199131548749310.2355/isijinternational.31.487 – reference: YuY. H.FengG. S.SuD. X.Iron and Steel2008431299102 – reference: SuB.ZhangJ.HangJ. C.WangG.WangC.CheX.Iron and Steel20114692228 – reference: DongY.LinH.FuK.MoX.WangH.Miner. Metall. Eng.20113163639 – reference: McClellJ. M.MetiusG. E.JOM2003658303410.1007/s11837-003-0101-3 – reference: ManningC. P.FruehanR. J.JOM20016310364310.1007/s11837-001-0054-3 – reference: TangH.QinY.QiT.DongZ.XueQ.J. Iron Steel Res. Int.201623210911510.1016/S1006-706X(16)30021-8 – reference: WuS.OliveiraD.DaiY.XuJ.Int. J. Miner. Metall. Mater.201219321722410.1007/s12613-012-0541-2 – reference: GaoY. W.LiuC. S.LiJ. S.TangH. Y.Metal Mine201344797175 – reference: HasanbeigiA.ArensM.PriceL.Renewable and Sustainable Energy Review201433364565810.1016/j.rser.2014.02.031 – reference: WangY.RenJ.Int. J. Miner. Process.2005771116122 – reference: GuoJ.XuW.Modern Mining201353172528 – reference: WangR.FuJ.Iron and Steel20074261720 – reference: MillsK. C.SridharS.Ironmak. Steelmak.199926426226710.1179/030192399677121 – reference: LiuS.ZhaoY.WangW.WenS.Miner. Metall. Process.2014312136142 – reference: TsuchiyaN.TokudaM.OhtaniM.Metall. Trans. B19767231532110.1007/BF02652699 – reference: AraujoA. C.VianaP. R. M.PeresA. E. C.Miner. Eng.200518221922410.1016/j.mineng.2004.08.023 – volume: 63 start-page: 36 issue: 10 year: 2001 ident: 2401027_CR18 publication-title: JOM doi: 10.1007/s11837-001-0054-3 – volume: 7 start-page: 315 issue: 2 year: 1976 ident: 2401027_CR20 publication-title: Metall. Trans. B doi: 10.1007/BF02652699 – volume: 40 start-page: 5 issue: 1 year: 2015 ident: 2401027_CR4 publication-title: Sintering and Pelletizing – volume: 447 start-page: 71 issue: 9 year: 2013 ident: 2401027_CR2 publication-title: Metal Mine – volume: 26 start-page: 262 issue: 4 year: 1999 ident: 2401027_CR23 publication-title: Ironmak. Steelmak. doi: 10.1179/030192399677121 – volume: 19 start-page: 217 issue: 3 year: 2012 ident: 2401027_CR9 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-012-0541-2 – volume: 31 start-page: 36 issue: 6 year: 2011 ident: 2401027_CR13 publication-title: Miner. Metall. Eng. – volume: 30 start-page: 458 issue: 5 year: 2007 ident: 2401027_CR22 publication-title: J. Wuhan Univ. Sci. Technol. – volume: 31 start-page: 487 issue: 5 year: 1991 ident: 2401027_CR5 publication-title: ISIJ Int. doi: 10.2355/isijinternational.31.487 – volume: 46 start-page: 22 issue: 9 year: 2011 ident: 2401027_CR11 publication-title: Iron and Steel – volume: 14 start-page: 27 issue: 6 year: 2007 ident: 2401027_CR7 publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(07)60085-5 – volume: 33 start-page: 645 issue: 3 year: 2014 ident: 2401027_CR17 publication-title: Renewable and Sustainable Energy Review doi: 10.1016/j.rser.2014.02.031 – volume: 43 start-page: 99 issue: 12 year: 2008 ident: 2401027_CR6 publication-title: Iron and Steel – volume: 77 start-page: 116 issue: 1 year: 2005 ident: 2401027_CR15 publication-title: Int. J. Miner. Process. – volume: 42 start-page: 17 issue: 6 year: 2007 ident: 2401027_CR10 publication-title: Iron and Steel – volume: 18 start-page: 219 issue: 2 year: 2005 ident: 2401027_CR16 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2004.08.023 – volume: 65 start-page: 30 issue: 8 year: 2003 ident: 2401027_CR19 publication-title: JOM doi: 10.1007/s11837-003-0101-3 – volume: 23 start-page: 109 issue: 2 year: 2016 ident: 2401027_CR21 publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(16)30021-8 – volume: 31 start-page: 136 issue: 2 year: 2014 ident: 2401027_CR1 publication-title: Miner. Metall. Process. – volume: 531 start-page: 25 issue: 7 year: 2013 ident: 2401027_CR3 publication-title: Modern Mining – volume: 23 start-page: 256 issue: 1 year: 1983 ident: 2401027_CR8 publication-title: Trans. ISIJ doi: 10.2355/isijinternational1966.23.256 – volume: 32 start-page: 62 issue: 4 year: 2012 ident: 2401027_CR14 publication-title: Min. Metall. Eng. – volume: 35 start-page: 117 issue: 2 year: 2015 ident: 2401027_CR12 publication-title: Min. Metall. Eng. |
SSID | ssj0000096328 |
Score | 2.0736618 |
Snippet | A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and... A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed. In this method, FASTMELT, which comprised direct reduction and... |
SourceID | crossref springer elsevier chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 27 |
SubjectTerms | Applied and Technical Physics Biochar Direct reduction Engineering High-silica hematite Low-silicon molten iron Machines Manufacturing Materials Engineering Materials Science Melt separation Metallic Materials Physical Chemistry Processes 二氧化硅颗粒 低硅铁水 分离过程 生产 生物炭 直接还原 硅铁矿 金属化率 |
Title | Production of low-silicon molten iron from high-silica hematite using biochar |
URI | http://lib.cqvip.com/qk/86787X/201701/671433515.html https://dx.doi.org/10.1016/S1006-706X(17)30005-5 https://link.springer.com/article/10.1016/S1006-706X(17)30005-5 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pBdCrqVHLwoIe6Jk3T9jhEmY4N8QN3C0ma6GC26ibe_NvN68f8ABU8FVJeWvJe834vze8XhPaJDtKIy9RTPHAFivRTTyqVepZKX1IeGGqBjdwf8O4NOx-GwwY6rrkwsK2ymvvLOb2YrauWdjWa7cfRqH1FCo4JHxKQXPdDIJozFkGUH72R2ToLYPSAlow4VzyDwQeRp-ykaDwg0WHRjxeCzMJ9nt09ueTxU7r69tu0yEanK2i5gpG4U77pKmqYrIkWapbxpImWPgkNrqH-RSns6pyAc4vH-as3GY1dEGT4IR872IyB7YaBa4JBwLi8K3Gp6Do1GLbH32E1yoGltY5uTk-uj7tedZCCp10BOvWUrzhT1obMytjGUeKbkBgaWZaayDUmRvnafcrSoRGd6tgSmSSaUk1NRGVqgw00l-WZ2USYJnHALY8J08qVnlxyFioTB8AzCbX1t1BrNnbisRTMEBwOWQ8cctpCrB5NoSsNcjgKYyxmm83AIQIcIkgkCocIZ3Y0M6v7_MMgrl0lvkSTcIniL9N27VpRfc6T3y22__-wFlqkABOKJZ0dNDd9fjG7DuRM1V4RxXtovnPW6w7g2ru87b0DF4X1Xg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_Cgh7pt2qTtUURZH7sIKuwtJGmiC2ur7op_30wf6wNU8Joy05JJMt-k-b4A7Ac6zGIuM0_x0BUo0s88qVTmWSp9SXloqEU2crfHO3fRRZ_1p-Ck4cLgscp67a_W9HK1rlvadW-2nwaD9k1Qckx4P0DJdZ-xaZhBdSrWgpnj88tOb7LVgjA9pBUpztXPaPPB5an8lI0HQXxYuvIYKi08FPn9s8sfP2Wsb39Oy4R0tggLNZIkx9XHLsGUyZdhtiEaj5Zh_pPW4Ap0ryttVxcHUlgyLN680WDoxkFOHouhQ84ECW8E6SYENYyrp5JUoq5jQ_CE_D1RgwKJWqtwd3Z6e9Lx6rsUPO1q0LGnfMUjZS2LrExsEqe-YYGhsY0yE7vG1Chfu9ksHSDRmU5sINNUU6qpianMbLgGrbzIzToQmiYhtzwJIq1c9cklj5gySYhUE6atvwFbk74TT5VmhuB4z3rowNMGRE1vCl3LkONtGEMxOW-GAREYEBHEogyIcGZHE7PG5x8GSRMq8WVACZcr_jJtN6EV9Ywe_W6x-f-X7cFs57Z7Ja7Oe5dbMEcRNZQ7PNvQGr-8mh2HecZqtx7T7-Pi9mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+low-silicon+molten+iron+from+high-silica+hematite+using+biochar&rft.jtitle=%E9%92%A2%E9%93%81%E7%A0%94%E7%A9%B6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Hui-qing+Tang+Xiu-feng+Fu+Yan-qi+Qin+Shi-yu+Zhao+Qing-guo+Xue&rft.date=2017&rft.issn=1006-706X&rft.eissn=2210-3988&rft.volume=24&rft.issue=1&rft.spage=27&rft.epage=33&rft_id=info:doi/10.1016%2FS1006-706X%2817%2930005-5&rft.externalDocID=671433515 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86787X%2F86787X.jpg |