Production of low-silicon molten iron from high-silica hematite using biochar

A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experi...

Full description

Saved in:
Bibliographic Details
Published inJournal of iron and steel research, international Vol. 24; no. 1; pp. 27 - 33
Main Authors Tang, Hui-qing, Fu, Xiu-feng, Qin, Yan-qi, Zhao, Shi-yu, Xue, Qing-guo
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 2017
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experimentally investigated and the results show that the method is feasible.In the direct reduction stage,ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89mass% at temperature of 1373 K,biochar mixing ratio of 0.8-0.9,and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage,molten iron with a carbon content of 0.02-0.03mass% and silicon content of 0.02-0.18mass%could be obtained from the metallic briquettes under the above-mentioned conditions;the iron recovery rate was83%-91% and impurities in the obtained metal were negligible.
AbstractList A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed. In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage. The proposed method was experimentally investigated and the results show that the method is feasible. In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%–88% and residual carbon of 0.27–0.89 mass% at temperature of 1373 K, biochar mixing ratio of 0.8–0.9, and reduction time of 15 min. Some silica particles remained embedded in the iron phase after the reduction. In the melting separation stage, molten iron with a carbon content of 0.02–0.03 mass% and silicon content of 0.02–0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%–91% and impurities in the obtained metal were negligible.
A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experimentally investigated and the results show that the method is feasible.In the direct reduction stage,ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89mass% at temperature of 1373 K,biochar mixing ratio of 0.8-0.9,and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage,molten iron with a carbon content of 0.02-0.03mass% and silicon content of 0.02-0.18mass%could be obtained from the metallic briquettes under the above-mentioned conditions;the iron recovery rate was83%-91% and impurities in the obtained metal were negligible.
Author Fu, Xiu-feng
Zhao, Shi-yu
Qin, Yan-qi
Tang, Hui-qing
Xue, Qing-guo
AuthorAffiliation State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Author_xml – sequence: 1
  givenname: Hui-qing
  surname: Tang
  fullname: Tang, Hui-qing
  email: hqtang@ustb.edu.cn
– sequence: 2
  givenname: Xiu-feng
  surname: Fu
  fullname: Fu, Xiu-feng
– sequence: 3
  givenname: Yan-qi
  surname: Qin
  fullname: Qin, Yan-qi
– sequence: 4
  givenname: Shi-yu
  surname: Zhao
  fullname: Zhao, Shi-yu
– sequence: 5
  givenname: Qing-guo
  surname: Xue
  fullname: Xue, Qing-guo
BookMark eNqFkE1LxDAQhoOs4LruTxCKJz1Uk6ZpUzyILH6BoqCCt5CmSZulTTTpKv570-2yBy-by2Qy80zmfQ_BxFgjAThG8BxBlF28IgizOIfZxynKzzCEkMRkD0yTBMEYF5ROwHTbcgDm3i_hcIoMJ3QKnl6crVai19ZEVkWt_Ym9brUIaWfbXppIu3BXznZRo-tmrPKokR3vdS-jldemjkptRcPdEdhXvPVyvokz8H5787a4jx-f7x4W14-xwBT3cQnLLC2VIqniVNG8gJIgmeQqrWQeHgtZQgFTyglNRSWoQrwoRJKIROYJrxSegctxrnDWeycVE7rng4jecd0yBNlgDlubwwblDOVsbQ4jgSb_6E-nO-5-d3LZyPnQb2rp2NKunAlCd4JXIyiDJ986gF5oaYSstJOiZ5XVOyecbFZurKm_wu_bnbMcpRgTRPAf-0OcCQ
CitedBy_id crossref_primary_10_1016_j_jclepro_2017_12_165
crossref_primary_10_1016_j_energy_2019_05_149
crossref_primary_10_3390_met8040205
crossref_primary_10_1016_j_energy_2019_115903
Cites_doi 10.1007/s11837-001-0054-3
10.1007/BF02652699
10.1179/030192399677121
10.1007/s12613-012-0541-2
10.2355/isijinternational.31.487
10.1016/S1006-706X(07)60085-5
10.1016/j.rser.2014.02.031
10.1016/j.mineng.2004.08.023
10.1007/s11837-003-0101-3
10.1016/S1006-706X(16)30021-8
10.2355/isijinternational1966.23.256
ContentType Journal Article
Copyright 2017 Central Iron and Steel Research Institute
China Iron and Steel Research Institute Group 2017
Copyright_xml – notice: 2017 Central Iron and Steel Research Institute
– notice: China Iron and Steel Research Institute Group 2017
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1016/S1006-706X(17)30005-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
DocumentTitleAlternate Production of low-silicon molten iron from high-silica hematite using biochar
EISSN 2210-3988
EndPage 33
ExternalDocumentID 10_1016_S1006_706X_17_30005_5
S1006706X17300055
671433515
GroupedDBID --K
--M
-02
-0B
-EM
-SB
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92H
92I
92L
92M
92R
93N
9D9
9DB
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFNM
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABXRA
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFO
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AEZYN
AFKWA
AFNRJ
AFQWF
AFRZQ
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J-C
J1W
JUIAU
JZLTJ
KOV
LLZTM
M41
M4Y
MAGPM
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q38
R-B
RIG
RLLFE
ROL
RSV
RT2
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SPD
SRMVM
SSLCW
SSM
SSZ
STPWE
T5K
T8R
TCJ
TGT
TSG
U1F
U1G
U5B
U5L
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z7S
Z7Y
Z7Z
Z85
ZMTXR
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c383t-b0b64bff54fa8f8790e51e27f4de754f9eb0c048a584cdc8f1a99c22c2e72adf3
IEDL.DBID .~1
ISSN 1006-706X
IngestDate Thu Apr 24 22:55:18 EDT 2025
Tue Jul 01 03:19:46 EDT 2025
Fri Feb 21 02:31:58 EST 2025
Fri Feb 23 02:34:09 EST 2024
Wed Feb 14 10:05:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Low-silicon molten iron
Direct reduction
Melt separation
High-silica hematite
Biochar
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-b0b64bff54fa8f8790e51e27f4de754f9eb0c048a584cdc8f1a99c22c2e72adf3
Notes A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and melt separation processes,was applied,with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was experimentally investigated and the results show that the method is feasible.In the direct reduction stage,ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89mass% at temperature of 1373 K,biochar mixing ratio of 0.8-0.9,and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage,molten iron with a carbon content of 0.02-0.03mass% and silicon content of 0.02-0.18mass%could be obtained from the metallic briquettes under the above-mentioned conditions;the iron recovery rate was83%-91% and impurities in the obtained metal were negligible.
11-3678/TF
High-silica hematite; Low-silicon molten iron; Biochar; Direct reduction; Melt separation
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_S1006_706X_17_30005_5
crossref_primary_10_1016_S1006_706X_17_30005_5
springer_journals_10_1016_S1006_706X_17_30005_5
elsevier_sciencedirect_doi_10_1016_S1006_706X_17_30005_5
chongqing_primary_671433515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
January 2017
20170100
2017-1-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of iron and steel research, international
PublicationTitleAbbrev J. Iron Steel Res. Int
PublicationTitleAlternate Journal of Iron and Steel Research
PublicationYear 2017
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Hasanbeigi, Arens, Price (bib17) 2014; 33
Gao, Liu, Li, Tang (bib2) 2013; 447
Guo, Xu (bib3) 2013; 531
Su, Zhang, Hang, Wang, Wang, Che (bib11) 2011; 46
Zhou, Xue, Li, Zhang (bib22) 2007; 30
Jiang, Wang, Yang, Gan, Wang, Yu (bib7) 2007; 14
Zhao, Fan (bib14) 2012; 32
Tang, Tang, Liang (bib12) 2015; 35
Tang, Qin, Qi, Dong, Xue (bib21) 2016; 23
Niwa, Sumigama, Maki, Ito, Inoue, Tamura (bib5) 1991; 31
Wang, Ren (bib15) 2005; 77
Dong, Lin, Fu, Mo, Wang (bib13) 2011; 31
McClell, Metius (bib19) 2003; 65
Manning, Fruehan (bib18) 2001; 63
Mao, Han, Yang, Jiang, Li (bib4) 2015; 40
Wu, Oliveira, Dai, Xu (bib9) 2012; 19
Araujo, Viana, Peres (bib16) 2005; 18
Liu, Zhao, Wang, Wen (bib1) 2014; 31
Wang, Fu (bib10) 2007; 42
Yu, Feng, Su (bib6) 2008; 43
Tsuchiya, Tokuda, Ohtani (bib20) 1976; 7
Mills, Sridhar (bib23) 1999; 26
Itoh, Satoh, Kawauchi (bib8) 1983; 23
LiuS.ZhaoY.WangW.WenS.Miner. Metall. Process.2014312136142
TangL.TangY.LiangJ.Min. Metall. Eng.20153521171233365044
TangH.QinY.QiT.DongZ.XueQ.J. Iron Steel Res. Int.201623210911510.1016/S1006-706X(16)30021-8
ItohY.SatohS.KawauchiY.Trans. ISIJ198323125626410.2355/isijinternational1966.23.256
GuoJ.XuW.Modern Mining201353172528
AraujoA. C.VianaP. R. M.PeresA. E. C.Miner. Eng.200518221922410.1016/j.mineng.2004.08.023
ZhouJ.XueZ.LiZ.ZhangH.J. Wuhan Univ. Sci. Technol.2007305458460
WuS.OliveiraD.DaiY.XuJ.Int. J. Miner. Metall. Mater.201219321722410.1007/s12613-012-0541-2
ZhaoR.FanN.Min. Metall. Eng.20123246266
SuB.ZhangJ.HangJ. C.WangG.WangC.CheX.Iron and Steel20114692228
WangR.FuJ.Iron and Steel20074261720
HasanbeigiA.ArensM.PriceL.Renewable and Sustainable Energy Review201433364565810.1016/j.rser.2014.02.031
DongY.LinH.FuK.MoX.WangH.Miner. Metall. Eng.20113163639
WangY.RenJ.Int. J. Miner. Process.2005771116122
GaoY. W.LiuC. S.LiJ. S.TangH. Y.Metal Mine201344797175
McClellJ. M.MetiusG. E.JOM2003658303410.1007/s11837-003-0101-3
YuY. H.FengG. S.SuD. X.Iron and Steel2008431299102
JiangX.WangM.YangW.GanY.WangY.YuZ.J. Iron Steel Res. Int.2007146273110.1016/S1006-706X(07)60085-5
ManningC. P.FruehanR. J.JOM20016310364310.1007/s11837-001-0054-3
MillsK. C.SridharS.Ironmak. Steelmak.199926426226710.1179/030192399677121
MaoC.HanK.YangC.JiangY.LiW.Sintering and Pelletizing2015401510
TsuchiyaN.TokudaM.OhtaniM.Metall. Trans. B19767231532110.1007/BF02652699
NiwaY.SumigamaT.MakiA.ItoH.InoueH.TamuraT.ISIJ Int.199131548749310.2355/isijinternational.31.487
L. Tang (2401027_CR12) 2015; 35
H. Tang (2401027_CR21) 2016; 23
X. Jiang (2401027_CR7) 2007; 14
R. Wang (2401027_CR10) 2007; 42
Y. Itoh (2401027_CR8) 1983; 23
A. Hasanbeigi (2401027_CR17) 2014; 33
N. Tsuchiya (2401027_CR20) 1976; 7
Y. Dong (2401027_CR13) 2011; 31
K. C. Mills (2401027_CR23) 1999; 26
A. C. Araujo (2401027_CR16) 2005; 18
J. M. McClell (2401027_CR19) 2003; 65
R. Zhao (2401027_CR14) 2012; 32
Y. Wang (2401027_CR15) 2005; 77
S. Liu (2401027_CR1) 2014; 31
B. Su (2401027_CR11) 2011; 46
C. Mao (2401027_CR4) 2015; 40
Y. Niwa (2401027_CR5) 1991; 31
J. Guo (2401027_CR3) 2013; 531
S. Wu (2401027_CR9) 2012; 19
J. Zhou (2401027_CR22) 2007; 30
Y. W. Gao (2401027_CR2) 2013; 447
Y. H. Yu (2401027_CR6) 2008; 43
C. P. Manning (2401027_CR18) 2001; 63
References_xml – volume: 46
  start-page: 22
  year: 2011
  end-page: 28
  ident: bib11
  publication-title: Iron and Steel
– volume: 26
  start-page: 262
  year: 1999
  end-page: 267
  ident: bib23
  publication-title: Ironmak. Steelmak.
– volume: 18
  start-page: 219
  year: 2005
  end-page: 224
  ident: bib16
  publication-title: Miner. Eng.
– volume: 23
  start-page: 109
  year: 2016
  end-page: 115
  ident: bib21
  publication-title: J. Iron Steel Res. Int.
– volume: 31
  start-page: 487
  year: 1991
  end-page: 493
  ident: bib5
  publication-title: ISIJ Int.
– volume: 19
  start-page: 217
  year: 2012
  end-page: 224
  ident: bib9
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 32
  start-page: 62
  year: 2012
  end-page: 66
  ident: bib14
  publication-title: Min. Metall. Eng.
– volume: 447
  start-page: 71
  year: 2013
  end-page: 75
  ident: bib2
  publication-title: Metal Mine
– volume: 63
  start-page: 36
  year: 2001
  end-page: 43
  ident: bib18
  publication-title: JOM
– volume: 531
  start-page: 25
  year: 2013
  end-page: 28
  ident: bib3
  publication-title: Modern Mining
– volume: 23
  start-page: 256
  year: 1983
  end-page: 264
  ident: bib8
  publication-title: Trans. ISJJ
– volume: 31
  start-page: 136
  year: 2014
  end-page: 142
  ident: bib1
  publication-title: Miner. Metall. Process.
– volume: 77
  start-page: 116
  year: 2005
  end-page: 122
  ident: bib15
  publication-title: Int. J. Miner. Process.
– volume: 40
  start-page: 5
  year: 2015
  end-page: 10
  ident: bib4
  publication-title: Sintering and Pelletizing
– volume: 42
  start-page: 17
  year: 2007
  end-page: 20
  ident: bib10
  publication-title: Iron and Steel
– volume: 7
  start-page: 315
  year: 1976
  end-page: 321
  ident: bib20
  publication-title: Metall. Trans. B
– volume: 65
  start-page: 30
  year: 2003
  end-page: 34
  ident: bib19
  publication-title: JOM
– volume: 43
  start-page: 99
  year: 2008
  end-page: 102
  ident: bib6
  publication-title: Iron and Steel
– volume: 14
  start-page: 27
  year: 2007
  end-page: 31
  ident: bib7
  publication-title: J. Iron Steel Res. Int.
– volume: 31
  start-page: 36
  year: 2011
  end-page: 39
  ident: bib13
  publication-title: Miner. Metall. Eng.
– volume: 35
  start-page: 117
  year: 2015
  end-page: 123
  ident: bib12
  publication-title: Min. Metall. Eng.
– volume: 33
  start-page: 645
  year: 2014
  end-page: 658
  ident: bib17
  publication-title: Renewable and Sustain-able Energy Review
– volume: 30
  start-page: 458
  year: 2007
  end-page: 460
  ident: bib22
  publication-title: J. Wuhan Univ. Sci. Technol.
– reference: ItohY.SatohS.KawauchiY.Trans. ISIJ198323125626410.2355/isijinternational1966.23.256
– reference: JiangX.WangM.YangW.GanY.WangY.YuZ.J. Iron Steel Res. Int.2007146273110.1016/S1006-706X(07)60085-5
– reference: ZhaoR.FanN.Min. Metall. Eng.20123246266
– reference: MaoC.HanK.YangC.JiangY.LiW.Sintering and Pelletizing2015401510
– reference: ZhouJ.XueZ.LiZ.ZhangH.J. Wuhan Univ. Sci. Technol.2007305458460
– reference: TangL.TangY.LiangJ.Min. Metall. Eng.20153521171233365044
– reference: NiwaY.SumigamaT.MakiA.ItoH.InoueH.TamuraT.ISIJ Int.199131548749310.2355/isijinternational.31.487
– reference: YuY. H.FengG. S.SuD. X.Iron and Steel2008431299102
– reference: SuB.ZhangJ.HangJ. C.WangG.WangC.CheX.Iron and Steel20114692228
– reference: DongY.LinH.FuK.MoX.WangH.Miner. Metall. Eng.20113163639
– reference: McClellJ. M.MetiusG. E.JOM2003658303410.1007/s11837-003-0101-3
– reference: ManningC. P.FruehanR. J.JOM20016310364310.1007/s11837-001-0054-3
– reference: TangH.QinY.QiT.DongZ.XueQ.J. Iron Steel Res. Int.201623210911510.1016/S1006-706X(16)30021-8
– reference: WuS.OliveiraD.DaiY.XuJ.Int. J. Miner. Metall. Mater.201219321722410.1007/s12613-012-0541-2
– reference: GaoY. W.LiuC. S.LiJ. S.TangH. Y.Metal Mine201344797175
– reference: HasanbeigiA.ArensM.PriceL.Renewable and Sustainable Energy Review201433364565810.1016/j.rser.2014.02.031
– reference: WangY.RenJ.Int. J. Miner. Process.2005771116122
– reference: GuoJ.XuW.Modern Mining201353172528
– reference: WangR.FuJ.Iron and Steel20074261720
– reference: MillsK. C.SridharS.Ironmak. Steelmak.199926426226710.1179/030192399677121
– reference: LiuS.ZhaoY.WangW.WenS.Miner. Metall. Process.2014312136142
– reference: TsuchiyaN.TokudaM.OhtaniM.Metall. Trans. B19767231532110.1007/BF02652699
– reference: AraujoA. C.VianaP. R. M.PeresA. E. C.Miner. Eng.200518221922410.1016/j.mineng.2004.08.023
– volume: 63
  start-page: 36
  issue: 10
  year: 2001
  ident: 2401027_CR18
  publication-title: JOM
  doi: 10.1007/s11837-001-0054-3
– volume: 7
  start-page: 315
  issue: 2
  year: 1976
  ident: 2401027_CR20
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02652699
– volume: 40
  start-page: 5
  issue: 1
  year: 2015
  ident: 2401027_CR4
  publication-title: Sintering and Pelletizing
– volume: 447
  start-page: 71
  issue: 9
  year: 2013
  ident: 2401027_CR2
  publication-title: Metal Mine
– volume: 26
  start-page: 262
  issue: 4
  year: 1999
  ident: 2401027_CR23
  publication-title: Ironmak. Steelmak.
  doi: 10.1179/030192399677121
– volume: 19
  start-page: 217
  issue: 3
  year: 2012
  ident: 2401027_CR9
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-012-0541-2
– volume: 31
  start-page: 36
  issue: 6
  year: 2011
  ident: 2401027_CR13
  publication-title: Miner. Metall. Eng.
– volume: 30
  start-page: 458
  issue: 5
  year: 2007
  ident: 2401027_CR22
  publication-title: J. Wuhan Univ. Sci. Technol.
– volume: 31
  start-page: 487
  issue: 5
  year: 1991
  ident: 2401027_CR5
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.31.487
– volume: 46
  start-page: 22
  issue: 9
  year: 2011
  ident: 2401027_CR11
  publication-title: Iron and Steel
– volume: 14
  start-page: 27
  issue: 6
  year: 2007
  ident: 2401027_CR7
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(07)60085-5
– volume: 33
  start-page: 645
  issue: 3
  year: 2014
  ident: 2401027_CR17
  publication-title: Renewable and Sustainable Energy Review
  doi: 10.1016/j.rser.2014.02.031
– volume: 43
  start-page: 99
  issue: 12
  year: 2008
  ident: 2401027_CR6
  publication-title: Iron and Steel
– volume: 77
  start-page: 116
  issue: 1
  year: 2005
  ident: 2401027_CR15
  publication-title: Int. J. Miner. Process.
– volume: 42
  start-page: 17
  issue: 6
  year: 2007
  ident: 2401027_CR10
  publication-title: Iron and Steel
– volume: 18
  start-page: 219
  issue: 2
  year: 2005
  ident: 2401027_CR16
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.08.023
– volume: 65
  start-page: 30
  issue: 8
  year: 2003
  ident: 2401027_CR19
  publication-title: JOM
  doi: 10.1007/s11837-003-0101-3
– volume: 23
  start-page: 109
  issue: 2
  year: 2016
  ident: 2401027_CR21
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(16)30021-8
– volume: 31
  start-page: 136
  issue: 2
  year: 2014
  ident: 2401027_CR1
  publication-title: Miner. Metall. Process.
– volume: 531
  start-page: 25
  issue: 7
  year: 2013
  ident: 2401027_CR3
  publication-title: Modern Mining
– volume: 23
  start-page: 256
  issue: 1
  year: 1983
  ident: 2401027_CR8
  publication-title: Trans. ISIJ
  doi: 10.2355/isijinternational1966.23.256
– volume: 32
  start-page: 62
  issue: 4
  year: 2012
  ident: 2401027_CR14
  publication-title: Min. Metall. Eng.
– volume: 35
  start-page: 117
  issue: 2
  year: 2015
  ident: 2401027_CR12
  publication-title: Min. Metall. Eng.
SSID ssj0000096328
Score 2.0736618
Snippet A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method,FASTMELT,which comprised direct reduction and...
A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed. In this method, FASTMELT, which comprised direct reduction and...
SourceID crossref
springer
elsevier
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms Applied and Technical Physics
Biochar
Direct reduction
Engineering
High-silica hematite
Low-silicon molten iron
Machines
Manufacturing
Materials Engineering
Materials Science
Melt separation
Metallic Materials
Physical Chemistry
Processes
二氧化硅颗粒
低硅铁水
分离过程
生产
生物炭
直接还原
硅铁矿
金属化率
Title Production of low-silicon molten iron from high-silica hematite using biochar
URI http://lib.cqvip.com/qk/86787X/201701/671433515.html
https://dx.doi.org/10.1016/S1006-706X(17)30005-5
https://link.springer.com/article/10.1016/S1006-706X(17)30005-5
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pBdCrqVHLwoIe6Jk3T9jhEmY4N8QN3C0ma6GC26ibe_NvN68f8ABU8FVJeWvJe834vze8XhPaJDtKIy9RTPHAFivRTTyqVepZKX1IeGGqBjdwf8O4NOx-GwwY6rrkwsK2ymvvLOb2YrauWdjWa7cfRqH1FCo4JHxKQXPdDIJozFkGUH72R2ToLYPSAlow4VzyDwQeRp-ykaDwg0WHRjxeCzMJ9nt09ueTxU7r69tu0yEanK2i5gpG4U77pKmqYrIkWapbxpImWPgkNrqH-RSns6pyAc4vH-as3GY1dEGT4IR872IyB7YaBa4JBwLi8K3Gp6Do1GLbH32E1yoGltY5uTk-uj7tedZCCp10BOvWUrzhT1obMytjGUeKbkBgaWZaayDUmRvnafcrSoRGd6tgSmSSaUk1NRGVqgw00l-WZ2USYJnHALY8J08qVnlxyFioTB8AzCbX1t1BrNnbisRTMEBwOWQ8cctpCrB5NoSsNcjgKYyxmm83AIQIcIkgkCocIZ3Y0M6v7_MMgrl0lvkSTcIniL9N27VpRfc6T3y22__-wFlqkABOKJZ0dNDd9fjG7DuRM1V4RxXtovnPW6w7g2ru87b0DF4X1Xg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_Cgh7pt2qTtUURZH7sIKuwtJGmiC2ur7op_30wf6wNU8Joy05JJMt-k-b4A7Ac6zGIuM0_x0BUo0s88qVTmWSp9SXloqEU2crfHO3fRRZ_1p-Ck4cLgscp67a_W9HK1rlvadW-2nwaD9k1Qckx4P0DJdZ-xaZhBdSrWgpnj88tOb7LVgjA9pBUpztXPaPPB5an8lI0HQXxYuvIYKi08FPn9s8sfP2Wsb39Oy4R0tggLNZIkx9XHLsGUyZdhtiEaj5Zh_pPW4Ap0ryttVxcHUlgyLN680WDoxkFOHouhQ84ECW8E6SYENYyrp5JUoq5jQ_CE_D1RgwKJWqtwd3Z6e9Lx6rsUPO1q0LGnfMUjZS2LrExsEqe-YYGhsY0yE7vG1Chfu9ksHSDRmU5sINNUU6qpianMbLgGrbzIzToQmiYhtzwJIq1c9cklj5gySYhUE6atvwFbk74TT5VmhuB4z3rowNMGRE1vCl3LkONtGEMxOW-GAREYEBHEogyIcGZHE7PG5x8GSRMq8WVACZcr_jJtN6EV9Ywe_W6x-f-X7cFs57Z7Ja7Oe5dbMEcRNZQ7PNvQGr-8mh2HecZqtx7T7-Pi9mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+low-silicon+molten+iron+from+high-silica+hematite+using+biochar&rft.jtitle=%E9%92%A2%E9%93%81%E7%A0%94%E7%A9%B6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Hui-qing+Tang+Xiu-feng+Fu+Yan-qi+Qin+Shi-yu+Zhao+Qing-guo+Xue&rft.date=2017&rft.issn=1006-706X&rft.eissn=2210-3988&rft.volume=24&rft.issue=1&rft.spage=27&rft.epage=33&rft_id=info:doi/10.1016%2FS1006-706X%2817%2930005-5&rft.externalDocID=671433515
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86787X%2F86787X.jpg