Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 30; no. 3; pp. 1233 - 1241
Main Authors Doh, Jaehyeok, Lee, Seung Uk, Lee, Jongsoo
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.03.2016
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-016-0227-1

Cover

Abstract In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material’s behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity’s effect on the material property through a first-order sensitivity analysis.
AbstractList In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material’s behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity’s effect on the material property through a first-order sensitivity analysis.
In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material’s behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity’s effect on the material property through a first-order sensitivity analysis. KCI Citation Count: 0
Author Lee, Seung Uk
Doh, Jaehyeok
Lee, Jongsoo
Author_xml – sequence: 1
  givenname: Jaehyeok
  surname: Doh
  fullname: Doh, Jaehyeok
  organization: School of Mechanical Engineering, Yonsei University
– sequence: 2
  givenname: Seung Uk
  surname: Lee
  fullname: Lee, Seung Uk
  organization: Gyeongbuk Hybrid Technology Institute
– sequence: 3
  givenname: Jongsoo
  surname: Lee
  fullname: Lee, Jongsoo
  email: jleej@yonsei.ac.kr
  organization: School of Mechanical Engineering, Yonsei University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002085887$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1rFTEUhgepYFv9Ae4G3Ogimo_JJLOsRWuhIEgFd-HczJm56Z2bXJOM2oX_vZk7LqSgi_AGznM-37PqxAePVfWS0beMUvUuMc5pSygrj3NF2JPqlHWqJULz5qT8ldCk6Zpvz6qzlO4obXnD2Gn1-z3YHTnEcIARsgu-9jhHmIrknyHuyAYS9jUcCvLL7SFjDR6m--RSHYY6xxnrlCOmRIqA8_UGt_DDhXiMb924XQLox7yt95hhmpytlzrRwfS8ejrAlPDFHz2vvn78cHv5idx8vrq-vLghVmiRCTSykZb3zaZXvGzH-wGAa1RSWimplBJEy1oQ0iLtASTrbYt0UEqjpQMT59Wbta6Pg9lZZwK4o47B7KK5-HJ7bRiVWmhd2NcrWzb-PmPKZu-SxWkCj2FOhmlKJeVSdwV99Qi9C3Ms5ylUp1THheSiUGylbAwpRRzMIZZLxvvS0izmmdU8U8wzi3lmGVg9yrEuH_1Zjjz9N5Ovmal08SPGv2b6Z9IDEHmxmg
CitedBy_id crossref_primary_10_1051_matecconf_201821004030
crossref_primary_10_1177_1748006X221132870
crossref_primary_10_1002_pen_24910
crossref_primary_10_3390_admsci14040075
crossref_primary_10_1016_j_eswa_2022_118039
crossref_primary_10_1007_s12206_017_1041_0
crossref_primary_10_1177_0954407017735263
crossref_primary_10_1016_j_ijfatigue_2021_106535
crossref_primary_10_1007_s12206_018_0838_9
crossref_primary_10_1007_s40999_016_0122_2
crossref_primary_10_1177_1475090218813598
crossref_primary_10_1080_0305215X_2018_1428316
Cites_doi 10.2514/3.47042
10.1557/jmr.2014.24
10.1016/j.compstruc.2005.09.022
10.1016/j.cma.2006.11.005
10.1007/s12206-009-0806-5
10.3795/KSME-A.2008.32.1.021
10.3795/KSME-A.2011.35.8.889
10.1016/j.ijforecast.2006.03.001
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media Mar 2016
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media Mar 2016
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
ACYCR
DOI 10.1007/s12206-016-0227-1
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
Korean Citation Index
DatabaseTitle CrossRef
Engineering Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Technology Research Database

Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 1241
ExternalDocumentID oai_kci_go_kr_ARTI_1058388
10_1007_s12206_016_0227_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
8FD
ABRTQ
DWQXO
FR3
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
AABYN
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADMVV
ADOXG
AEEQQ
AEFTE
AEKVL
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SCV
UNUBA
ID FETCH-LOGICAL-c383t-a4545c2d4bd722272dfaa28e755c550555a3616a35ce0daa51dc6e0f778ec0f13
IEDL.DBID 8FG
ISSN 1738-494X
IngestDate Tue Nov 21 21:34:06 EST 2023
Thu Sep 04 14:51:09 EDT 2025
Fri Jul 25 11:04:27 EDT 2025
Tue Jul 01 02:20:24 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Back-propagation neural network
Meta-model
Diffusion necking
Sensitivity analysis
DP590
Weighted-average method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-a4545c2d4bd722272dfaa28e755c550555a3616a35ce0daa51dc6e0f778ec0f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G704-000058.2016.30.3.029
PQID 1977923523
PQPubID 326249
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1058388
proquest_miscellaneous_1800502589
proquest_journals_1977923523
crossref_primary_10_1007_s12206_016_0227_1
crossref_citationtrail_10_1007_s12206_016_0227_1
springer_journals_10_1007_s12206_016_0227_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160300
2016-3-00
20160301
2016-03
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 3
  year: 2016
  text: 20160300
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2016
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References SeoY.HyunH. C.LeeH.KimN.Forming limit diagrams of Zircaloy-4 and Zirlo sheets for stamping of spacer grids of nuclear fuel rodsKorean Society of Mechanical Engineers201135888989710.3795/KSME-A.2011.35.8.889
El-ZeghayarM.TopperT.BonnenJ.SohmshettyR.Effective strain-fatigue life of dual phase 590 steel, Proceedings of the 12th International Conference on Fracture2009110
LeeJ.JeongH.ChoiD. H.VolovoiV.MavrisD.An enhancement of constraint feasibility in BPN based approximate optimizationComputer Method in Applied Mechanics and Engineering20071962147216010.1016/j.cma.2006.11.0051173.74369
HyunH. C.KimM.BangS.LeeH.On acquiring true stress-strain curves for sheet specimen using tensile test and fe analysis based on a local necking criterionJournal of Materials Research20142969570710.1557/jmr.2014.24
KimH.LeeJ.Parameter analysis and optimization of paper feeding devices to minimize jamming and simultaneous feeding of multiple pages, Proceedings of the Institution of Mechanical EngineersPart C: Journal of Mechanical Engineering Science20112251126732684
KeelerS. P.BackW. A.Plastic instability and fracture in sheet stretched over rigid punchesASM Transactions Quarterly19635612548
BridgmanP. W.Studies in large plastic flow and fracture19520049.25606
JeongH.YunJ. H.KoJ. C.LeeI. H.LeeJ.Approximate analysis of first order sensitivity using backpropagation neural networks2012
HyunH. C.LeeJ. H.LeeH.Mathematical expressions for stress-strain curve of metallic materialKorean Society of Mechanical Engineers200832212810.3795/KSME-A.2008.32.1.021
HyperMesh User Guide, HyperMesh Version 11.0, Altair Engineering Inc., Troy, MI (2012).
HanP.LeeJ.A response surface based sequential approximate optimization using constraint-shifting analogyJournal of Mechanical Science and Technology2009232903291210.1007/s12206-009-0806-5
Sudarsana RaoH.GhorpadeV. G.MukherjeeA.A genetic algorithm based back propagation network for simulation of stress–strain response of ceramic-matrixcompositesComputer and Structure20068433033910.1016/j.compstruc.2005.09.022
KS B 0802, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2003).
LingY.Uniaxial true stress-strain after neckingAMP Journal of Technology199653748
HyndmanR. J.KoehlerA. B.Another look at measures of forecast accuracyInternational Journal of Forecasting200622467968810.1016/j.ijforecast.2006.03.001
LeeS. U.Prediction of springback of DP590 sheet metal using Yoshida-Uemori model2012
ABAQUS User’s Manual, Version 6.12, Dassault Systemes Simulia, Inc., Providence, RI, USA (2012).
KS-B0801-13B, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2007).
LeeJ.HajelaP.Parallel genetic algorithm implementation in multidisciplinary rotor blade designJournal of Aircraft199633596296910.2514/3.47042
INSTRON 5569, Instron Corporation, Norwood, MA (2006).
H. C. Hyun (227_CR17) 2014; 29
M. El-Zeghayar (227_CR6) 2009
J. Lee (227_CR18) 2007; 196
Y. Seo (227_CR14) 2011; 35
J. Lee (227_CR7) 1996; 33
227_CR11
S. U. Lee (227_CR5) 2012
227_CR10
R. J. Hyndman (227_CR19) 2006; 22
P. Han (227_CR20) 2009; 23
Y. Ling (227_CR2) 1996; 5
H. Jeong (227_CR9) 2012
P. W. Bridgman (227_CR1) 1952
H. C. Hyun (227_CR3) 2008; 32
S. P. Keeler (227_CR13) 1963; 56
H. Kim (227_CR8) 2011; 225
227_CR16
H. Sudarsana Rao (227_CR4) 2006; 84
227_CR15
227_CR12
References_xml – reference: LeeJ.HajelaP.Parallel genetic algorithm implementation in multidisciplinary rotor blade designJournal of Aircraft199633596296910.2514/3.47042
– reference: KeelerS. P.BackW. A.Plastic instability and fracture in sheet stretched over rigid punchesASM Transactions Quarterly19635612548
– reference: LeeS. U.Prediction of springback of DP590 sheet metal using Yoshida-Uemori model2012
– reference: HyperMesh User Guide, HyperMesh Version 11.0, Altair Engineering Inc., Troy, MI (2012).
– reference: ABAQUS User’s Manual, Version 6.12, Dassault Systemes Simulia, Inc., Providence, RI, USA (2012).
– reference: INSTRON 5569, Instron Corporation, Norwood, MA (2006).
– reference: SeoY.HyunH. C.LeeH.KimN.Forming limit diagrams of Zircaloy-4 and Zirlo sheets for stamping of spacer grids of nuclear fuel rodsKorean Society of Mechanical Engineers201135888989710.3795/KSME-A.2011.35.8.889
– reference: Sudarsana RaoH.GhorpadeV. G.MukherjeeA.A genetic algorithm based back propagation network for simulation of stress–strain response of ceramic-matrixcompositesComputer and Structure20068433033910.1016/j.compstruc.2005.09.022
– reference: KS-B0801-13B, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2007).
– reference: KimH.LeeJ.Parameter analysis and optimization of paper feeding devices to minimize jamming and simultaneous feeding of multiple pages, Proceedings of the Institution of Mechanical EngineersPart C: Journal of Mechanical Engineering Science20112251126732684
– reference: BridgmanP. W.Studies in large plastic flow and fracture19520049.25606
– reference: KS B 0802, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2003).
– reference: El-ZeghayarM.TopperT.BonnenJ.SohmshettyR.Effective strain-fatigue life of dual phase 590 steel, Proceedings of the 12th International Conference on Fracture2009110
– reference: HyunH. C.KimM.BangS.LeeH.On acquiring true stress-strain curves for sheet specimen using tensile test and fe analysis based on a local necking criterionJournal of Materials Research20142969570710.1557/jmr.2014.24
– reference: JeongH.YunJ. H.KoJ. C.LeeI. H.LeeJ.Approximate analysis of first order sensitivity using backpropagation neural networks2012
– reference: HyndmanR. J.KoehlerA. B.Another look at measures of forecast accuracyInternational Journal of Forecasting200622467968810.1016/j.ijforecast.2006.03.001
– reference: HanP.LeeJ.A response surface based sequential approximate optimization using constraint-shifting analogyJournal of Mechanical Science and Technology2009232903291210.1007/s12206-009-0806-5
– reference: HyunH. C.LeeJ. H.LeeH.Mathematical expressions for stress-strain curve of metallic materialKorean Society of Mechanical Engineers200832212810.3795/KSME-A.2008.32.1.021
– reference: LingY.Uniaxial true stress-strain after neckingAMP Journal of Technology199653748
– reference: LeeJ.JeongH.ChoiD. H.VolovoiV.MavrisD.An enhancement of constraint feasibility in BPN based approximate optimizationComputer Method in Applied Mechanics and Engineering20071962147216010.1016/j.cma.2006.11.0051173.74369
– volume-title: Prediction of springback of DP590 sheet metal using Yoshida-Uemori model
  year: 2012
  ident: 227_CR5
– volume: 33
  start-page: 962
  issue: 5
  year: 1996
  ident: 227_CR7
  publication-title: Journal of Aircraft
  doi: 10.2514/3.47042
– volume: 5
  start-page: 37
  year: 1996
  ident: 227_CR2
  publication-title: AMP Journal of Technology
– start-page: 1
  volume-title: Effective strain-fatigue life of dual phase 590 steel, Proceedings of the 12th International Conference on Fracture
  year: 2009
  ident: 227_CR6
– volume: 29
  start-page: 695
  year: 2014
  ident: 227_CR17
  publication-title: Journal of Materials Research
  doi: 10.1557/jmr.2014.24
– volume: 84
  start-page: 330
  year: 2006
  ident: 227_CR4
  publication-title: Computer and Structure
  doi: 10.1016/j.compstruc.2005.09.022
– volume-title: Approximate analysis of first order sensitivity using backpropagation neural networks
  year: 2012
  ident: 227_CR9
– volume: 56
  start-page: 25
  issue: 1
  year: 1963
  ident: 227_CR13
  publication-title: ASM Transactions Quarterly
– volume: 225
  start-page: 2673
  issue: 11
  year: 2011
  ident: 227_CR8
  publication-title: Part C: Journal of Mechanical Engineering Science
– volume: 196
  start-page: 2147
  year: 2007
  ident: 227_CR18
  publication-title: Computer Method in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2006.11.005
– volume: 23
  start-page: 2903
  year: 2009
  ident: 227_CR20
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-009-0806-5
– volume: 32
  start-page: 21
  year: 2008
  ident: 227_CR3
  publication-title: Korean Society of Mechanical Engineers
  doi: 10.3795/KSME-A.2008.32.1.021
– volume-title: Studies in large plastic flow and fracture
  year: 1952
  ident: 227_CR1
– ident: 227_CR15
– ident: 227_CR16
– volume: 35
  start-page: 889
  issue: 8
  year: 2011
  ident: 227_CR14
  publication-title: Korean Society of Mechanical Engineers
  doi: 10.3795/KSME-A.2011.35.8.889
– ident: 227_CR12
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 227_CR19
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: 227_CR10
– ident: 227_CR11
SSID ssj0062411
Score 2.1234453
Snippet In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1233
SubjectTerms Approximation
Automotive bodies
Back propagation
Back propagation networks
Chassis
Control
Diffusion
Dynamical Systems
Engineering
Finite difference method
Finite element method
Industrial and Production Engineering
Mathematical analysis
Mathematical models
Mechanical Engineering
Model accuracy
Necking
Neural networks
Plastic properties
Root-mean-square errors
Sensitivity analysis
Stress propagation
Stress-strain curves
Stress-strain relationships
True stress
Vibration
기계공학
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4FDy1OkLcggTiBXieNHcmyrlgISp1ZaTpZjO2W1JYt2sxJC4r8z48R9CZB6ysGP-DFjf6OZ-UzIWyW09FI4VjZKMQGYntWBYzBVmXvtrc6bGOX7RZ2ciU9TOR3zuFcp2j25JONJfZXsxnm0fjFolmsGJs-GLKq6mpCN_Q9fPx-lA1jBpRTtLA26LGoxTc7Mv3Vy4zq63y3bG0jzlnM03jnHW-Q0jXYINZnvrftmz_26ReR4x-k8IpsjBqX7g9A8JvdC94Q8vMZM-JT8PrBuzuDHcN7EvaNIfAmNuiFsnOHt52lkJP85A9QbqB3pTeiipf1yHeiQhsJW8RUKmvgAYjmSJGNB6M77b_R7AAvgYuYo9oMK8YycHR-dHp6w8aUG5sDC7ZkVAMQc96LxGpNruW-t5VXQUjo0gaS0pSqULaULubdWFt6pkLdaV8HlbVE-J5Nu0YUXhDZWtbnjQbjW4utolRK2ULW2QpdNo0RG8rRhxo005jiPC3NFwIwrazB0DVfWFBl5d9nkx8Dh8b_Kb0AKzNzNDDJv4_d8YeZLA_bFR2iDbuYqI7tJSMyo8ytTAJQGuAyWfUZeXxaDtqILxnZhsYY6FRLucFnVGXmf5OJaF_8a1fadau-QBzwKFobK7ZIJbvpLwE5982rUlT-bTw-P
  priority: 102
  providerName: Springer Nature
Title Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material
URI https://link.springer.com/article/10.1007/s12206-016-0227-1
https://www.proquest.com/docview/1977923523
https://www.proquest.com/docview/1800502589
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002085887
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2016, 30(3), , pp.1233-1241
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9gIHVF5ioVQGcQJZJI4f2RPaot0WkCqEWGk5WY7ttKstSdndSlz635nxJn0g0VOkOHYeM_Z8kxl_A_BWS6OCkp4XldZcIqbnwygomarIggnOZFXK8j3WR1P5ZaZm3Q-3VZdW2a-JaaEOrad_5B9yBCoIRtBv-nj-m1PVKIqudiU0tmAnR0tDel5ODvuVWKN1Sg6XwUkth3LWRzXT1jkhki9NKbjC8PyWXdpqlvUtyPlPlDQZn8kuPOxQIxttxPwI7sXmMTy4wSX4BC4PnF9wHAtXiPS1GVFVYqdmk-jNyV4FljjE_8wRp0bmOkIS1tZsvbyIbLNxhK9S3QjW7-BP7URrTA2xOVmfsl8RMfvZ3DMah1T4KUwn4x-fjnhXW4F79EnX3EmETl4EWQVD22FFqJ0TZTRKeXJalHKFzrUrlI9ZcE7lweuY1caU0Wd1XjyD7aZt4nNgldN15kWUvnZUz6zU0uV6aJw0RVVpOYCs_7LWd8Tj9B5n9poymYRhKdmMhGHzAby76nK-Yd246-I3KC678HNLXNl0PGntYmnRI_iMfSgwXA5gr5em7Wbpyl7r1ABeXzXj_KKgiWtie4HXlESRI1Q5HMD7XgtuDPG_p3px9w1fwn2RlI-y2fZgm6T8CuHNutpPOrwPO6PDn1_HeDwYH3_7jmenYvQXK0H6bw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNwQDxFaAGD4AKySBzHzh4QotBql5YVQq20N-M4Tlltm5TdrYADf4nfyIw36QOJ3nrag2NnkxmPv8nMfAPwXEmdlZl0PC2U4hIxPe97QclUaVzq0uq4CFm-IzXYlx_H2XgF_nS1MJRW2dnEYKjLxtE38tcJAhUEI-g3vT3-zqlrFEVXuxYaS7XY8b9-oMs2fzP8gPJ9IcT21t77AW-7CnCH3tiCW4mgwYlSFqWmQlBRVtaK3OsscwTXs8ymKlE2zZyPS2uzpHTKx5XWuXdxlaS47iqsSapo7cHa5tbo85fO9is8D4OLp9GMyL4cd3HUUKwnRPDeKelXaJ5cOAlX61l1AeT-E5cNx932LbjZ4lT2bqlYt2HF13fgxjn2wrvwe9O6Kce10CYF-TIix8RJ9TK1nNMJWbLAWv5zgsjYM9tSoLCmYovZiWfLUhU-D50qWMcZEMaJSJkGfH2w-MaOPHoJhxPHaB3aNPdg_0re-33o1U3tHwArrKpiJ7x0laUOarmSNlF9baVOi0LJCOLuzRrXUp3TcxyaM5JmEoah9DYShkkieHk65XjJ83HZxc9QXGbqJobYuen3oDHTmUEfZIhzKBSdR7DRSdO0dmFuzrQ4gqenw7ijKUxja9-c4DU5kfKILO9H8KrTgnNL_O9fPbz8hk_g2mDv067ZHY521uG6CIpIuXQb0COJP0JwtSgetxrN4OtVb6K_EL80uA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WwnBAfEUKQUMggvIauI4dvaAEKVddSlaVYhKezOO45TVlqTd3Qo48Mf4dcx4kz6Q6K2nPTh2NpnxzDeZ8TcAL5XUWZlJx9NCKS4R0_O-F1RMlcalLq2Oi1DlO1K7B_LjOBuvwJ_uLAyVVXY2MRjqsnH0jXwzQaCCYATjps2qLYvY3x68Oz7h1EGKMq1dO42liuz5Xz8wfJu_HW6jrF8JMdj58mGXtx0GuMPIbMGtRADhRCmLUtOhUFFW1orc6yxzBN2zzKYqUTbNnI9La7OkdMrHlda5d3GVpLjuKqxp9IqyB2tbO6P9z50fUOgbQ7in0aTIvhx3OdVwcE-IEMlTAbDQPLnkFVfrWXUJ8P6Tow2ub3AHbreYlb1fKtldWPH1Pbh1gcnwPvzesm7KcS20T0HWjIgycVK9LDPn5C1LFhjMf04QJXtmWzoU1lRsMTv1bHlshc9D1wrW8QeEcSJVpgFfHy6-se8eI4ajiWO0Dm2gB3BwLe_9IfTqpvaPgBVWVbETXrrKUje1XEmbqL62UqdFoWQEcfdmjWtpz-k5jsw5YTMJw1CpGwnDJBG8PptyvOT8uOriFyguM3UTQ0zd9HvYmOnMYDwyxDmUls4j2OikaVobMTfnGh3B87Nh3N2UsrG1b07xmpwIekSW9yN402nBhSX-96_Wr77hM7iBm8d8Go72HsNNEfSQyuo2oEcCf4I4a1E8bRWawdfr3kN_AVP_OOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back-propagation+neural+network-based+approximate+analysis+of+true+stress-strain+behaviors+of+high-strength+metallic+material&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Doh%2C+Jaehyeok&rft.au=Lee%2C+Seung+Uk&rft.au=Lee%2C+Jongsoo&rft.date=2016-03-01&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=30&rft.issue=3&rft.spage=1233&rft.epage=1241&rft_id=info:doi/10.1007%2Fs12206-016-0227-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon