Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material
In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with...
Saved in:
Published in | Journal of mechanical science and technology Vol. 30; no. 3; pp. 1233 - 1241 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Mechanical Engineers
01.03.2016
Springer Nature B.V 대한기계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-494X 1976-3824 |
DOI | 10.1007/s12206-016-0227-1 |
Cover
Abstract | In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material’s behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity’s effect on the material property through a first-order sensitivity analysis. |
---|---|
AbstractList | In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material’s behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity’s effect on the material property through a first-order sensitivity analysis. In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material’s behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity’s effect on the material property through a first-order sensitivity analysis. KCI Citation Count: 0 |
Author | Lee, Seung Uk Doh, Jaehyeok Lee, Jongsoo |
Author_xml | – sequence: 1 givenname: Jaehyeok surname: Doh fullname: Doh, Jaehyeok organization: School of Mechanical Engineering, Yonsei University – sequence: 2 givenname: Seung Uk surname: Lee fullname: Lee, Seung Uk organization: Gyeongbuk Hybrid Technology Institute – sequence: 3 givenname: Jongsoo surname: Lee fullname: Lee, Jongsoo email: jleej@yonsei.ac.kr organization: School of Mechanical Engineering, Yonsei University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002085887$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1rFTEUhgepYFv9Ae4G3Ogimo_JJLOsRWuhIEgFd-HczJm56Z2bXJOM2oX_vZk7LqSgi_AGznM-37PqxAePVfWS0beMUvUuMc5pSygrj3NF2JPqlHWqJULz5qT8ldCk6Zpvz6qzlO4obXnD2Gn1-z3YHTnEcIARsgu-9jhHmIrknyHuyAYS9jUcCvLL7SFjDR6m--RSHYY6xxnrlCOmRIqA8_UGt_DDhXiMb924XQLox7yt95hhmpytlzrRwfS8ejrAlPDFHz2vvn78cHv5idx8vrq-vLghVmiRCTSykZb3zaZXvGzH-wGAa1RSWimplBJEy1oQ0iLtASTrbYt0UEqjpQMT59Wbta6Pg9lZZwK4o47B7KK5-HJ7bRiVWmhd2NcrWzb-PmPKZu-SxWkCj2FOhmlKJeVSdwV99Qi9C3Ms5ylUp1THheSiUGylbAwpRRzMIZZLxvvS0izmmdU8U8wzi3lmGVg9yrEuH_1Zjjz9N5Ovmal08SPGv2b6Z9IDEHmxmg |
CitedBy_id | crossref_primary_10_1051_matecconf_201821004030 crossref_primary_10_1177_1748006X221132870 crossref_primary_10_1002_pen_24910 crossref_primary_10_3390_admsci14040075 crossref_primary_10_1016_j_eswa_2022_118039 crossref_primary_10_1007_s12206_017_1041_0 crossref_primary_10_1177_0954407017735263 crossref_primary_10_1016_j_ijfatigue_2021_106535 crossref_primary_10_1007_s12206_018_0838_9 crossref_primary_10_1007_s40999_016_0122_2 crossref_primary_10_1177_1475090218813598 crossref_primary_10_1080_0305215X_2018_1428316 |
Cites_doi | 10.2514/3.47042 10.1557/jmr.2014.24 10.1016/j.compstruc.2005.09.022 10.1016/j.cma.2006.11.005 10.1007/s12206-009-0806-5 10.3795/KSME-A.2008.32.1.021 10.3795/KSME-A.2011.35.8.889 10.1016/j.ijforecast.2006.03.001 |
ContentType | Journal Article |
Copyright | The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media Mar 2016 |
Copyright_xml | – notice: The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media Mar 2016 |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W ACYCR |
DOI | 10.1007/s12206-016-0227-1 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DELNET Engineering & Technology Collection Korean Citation Index |
DatabaseTitle | CrossRef Engineering Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3824 |
EndPage | 1241 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1058388 10_1007_s12206_016_0227_1 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZZE ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 8FD ABRTQ DWQXO FR3 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO AABYN AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADMVV ADOXG AEEQQ AEFTE AEKVL AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SCV UNUBA |
ID | FETCH-LOGICAL-c383t-a4545c2d4bd722272dfaa28e755c550555a3616a35ce0daa51dc6e0f778ec0f13 |
IEDL.DBID | 8FG |
ISSN | 1738-494X |
IngestDate | Tue Nov 21 21:34:06 EST 2023 Thu Sep 04 14:51:09 EDT 2025 Fri Jul 25 11:04:27 EDT 2025 Tue Jul 01 02:20:24 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Back-propagation neural network Meta-model Diffusion necking Sensitivity analysis DP590 Weighted-average method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-a4545c2d4bd722272dfaa28e755c550555a3616a35ce0daa51dc6e0f778ec0f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G704-000058.2016.30.3.029 |
PQID | 1977923523 |
PQPubID | 326249 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1058388 proquest_miscellaneous_1800502589 proquest_journals_1977923523 crossref_primary_10_1007_s12206_016_0227_1 crossref_citationtrail_10_1007_s12206_016_0227_1 springer_journals_10_1007_s12206_016_0227_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160300 2016-3-00 20160301 2016-03 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 3 year: 2016 text: 20160300 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of mechanical science and technology |
PublicationTitleAbbrev | J Mech Sci Technol |
PublicationYear | 2016 |
Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
References | SeoY.HyunH. C.LeeH.KimN.Forming limit diagrams of Zircaloy-4 and Zirlo sheets for stamping of spacer grids of nuclear fuel rodsKorean Society of Mechanical Engineers201135888989710.3795/KSME-A.2011.35.8.889 El-ZeghayarM.TopperT.BonnenJ.SohmshettyR.Effective strain-fatigue life of dual phase 590 steel, Proceedings of the 12th International Conference on Fracture2009110 LeeJ.JeongH.ChoiD. H.VolovoiV.MavrisD.An enhancement of constraint feasibility in BPN based approximate optimizationComputer Method in Applied Mechanics and Engineering20071962147216010.1016/j.cma.2006.11.0051173.74369 HyunH. C.KimM.BangS.LeeH.On acquiring true stress-strain curves for sheet specimen using tensile test and fe analysis based on a local necking criterionJournal of Materials Research20142969570710.1557/jmr.2014.24 KimH.LeeJ.Parameter analysis and optimization of paper feeding devices to minimize jamming and simultaneous feeding of multiple pages, Proceedings of the Institution of Mechanical EngineersPart C: Journal of Mechanical Engineering Science20112251126732684 KeelerS. P.BackW. A.Plastic instability and fracture in sheet stretched over rigid punchesASM Transactions Quarterly19635612548 BridgmanP. W.Studies in large plastic flow and fracture19520049.25606 JeongH.YunJ. H.KoJ. C.LeeI. H.LeeJ.Approximate analysis of first order sensitivity using backpropagation neural networks2012 HyunH. C.LeeJ. H.LeeH.Mathematical expressions for stress-strain curve of metallic materialKorean Society of Mechanical Engineers200832212810.3795/KSME-A.2008.32.1.021 HyperMesh User Guide, HyperMesh Version 11.0, Altair Engineering Inc., Troy, MI (2012). HanP.LeeJ.A response surface based sequential approximate optimization using constraint-shifting analogyJournal of Mechanical Science and Technology2009232903291210.1007/s12206-009-0806-5 Sudarsana RaoH.GhorpadeV. G.MukherjeeA.A genetic algorithm based back propagation network for simulation of stress–strain response of ceramic-matrixcompositesComputer and Structure20068433033910.1016/j.compstruc.2005.09.022 KS B 0802, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2003). LingY.Uniaxial true stress-strain after neckingAMP Journal of Technology199653748 HyndmanR. J.KoehlerA. B.Another look at measures of forecast accuracyInternational Journal of Forecasting200622467968810.1016/j.ijforecast.2006.03.001 LeeS. U.Prediction of springback of DP590 sheet metal using Yoshida-Uemori model2012 ABAQUS User’s Manual, Version 6.12, Dassault Systemes Simulia, Inc., Providence, RI, USA (2012). KS-B0801-13B, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2007). LeeJ.HajelaP.Parallel genetic algorithm implementation in multidisciplinary rotor blade designJournal of Aircraft199633596296910.2514/3.47042 INSTRON 5569, Instron Corporation, Norwood, MA (2006). H. C. Hyun (227_CR17) 2014; 29 M. El-Zeghayar (227_CR6) 2009 J. Lee (227_CR18) 2007; 196 Y. Seo (227_CR14) 2011; 35 J. Lee (227_CR7) 1996; 33 227_CR11 S. U. Lee (227_CR5) 2012 227_CR10 R. J. Hyndman (227_CR19) 2006; 22 P. Han (227_CR20) 2009; 23 Y. Ling (227_CR2) 1996; 5 H. Jeong (227_CR9) 2012 P. W. Bridgman (227_CR1) 1952 H. C. Hyun (227_CR3) 2008; 32 S. P. Keeler (227_CR13) 1963; 56 H. Kim (227_CR8) 2011; 225 227_CR16 H. Sudarsana Rao (227_CR4) 2006; 84 227_CR15 227_CR12 |
References_xml | – reference: LeeJ.HajelaP.Parallel genetic algorithm implementation in multidisciplinary rotor blade designJournal of Aircraft199633596296910.2514/3.47042 – reference: KeelerS. P.BackW. A.Plastic instability and fracture in sheet stretched over rigid punchesASM Transactions Quarterly19635612548 – reference: LeeS. U.Prediction of springback of DP590 sheet metal using Yoshida-Uemori model2012 – reference: HyperMesh User Guide, HyperMesh Version 11.0, Altair Engineering Inc., Troy, MI (2012). – reference: ABAQUS User’s Manual, Version 6.12, Dassault Systemes Simulia, Inc., Providence, RI, USA (2012). – reference: INSTRON 5569, Instron Corporation, Norwood, MA (2006). – reference: SeoY.HyunH. C.LeeH.KimN.Forming limit diagrams of Zircaloy-4 and Zirlo sheets for stamping of spacer grids of nuclear fuel rodsKorean Society of Mechanical Engineers201135888989710.3795/KSME-A.2011.35.8.889 – reference: Sudarsana RaoH.GhorpadeV. G.MukherjeeA.A genetic algorithm based back propagation network for simulation of stress–strain response of ceramic-matrixcompositesComputer and Structure20068433033910.1016/j.compstruc.2005.09.022 – reference: KS-B0801-13B, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2007). – reference: KimH.LeeJ.Parameter analysis and optimization of paper feeding devices to minimize jamming and simultaneous feeding of multiple pages, Proceedings of the Institution of Mechanical EngineersPart C: Journal of Mechanical Engineering Science20112251126732684 – reference: BridgmanP. W.Studies in large plastic flow and fracture19520049.25606 – reference: KS B 0802, Korean Standards Information Center, Korean Industrial Standard, Seoul, Korea (2003). – reference: El-ZeghayarM.TopperT.BonnenJ.SohmshettyR.Effective strain-fatigue life of dual phase 590 steel, Proceedings of the 12th International Conference on Fracture2009110 – reference: HyunH. C.KimM.BangS.LeeH.On acquiring true stress-strain curves for sheet specimen using tensile test and fe analysis based on a local necking criterionJournal of Materials Research20142969570710.1557/jmr.2014.24 – reference: JeongH.YunJ. H.KoJ. C.LeeI. H.LeeJ.Approximate analysis of first order sensitivity using backpropagation neural networks2012 – reference: HyndmanR. J.KoehlerA. B.Another look at measures of forecast accuracyInternational Journal of Forecasting200622467968810.1016/j.ijforecast.2006.03.001 – reference: HanP.LeeJ.A response surface based sequential approximate optimization using constraint-shifting analogyJournal of Mechanical Science and Technology2009232903291210.1007/s12206-009-0806-5 – reference: HyunH. C.LeeJ. H.LeeH.Mathematical expressions for stress-strain curve of metallic materialKorean Society of Mechanical Engineers200832212810.3795/KSME-A.2008.32.1.021 – reference: LingY.Uniaxial true stress-strain after neckingAMP Journal of Technology199653748 – reference: LeeJ.JeongH.ChoiD. H.VolovoiV.MavrisD.An enhancement of constraint feasibility in BPN based approximate optimizationComputer Method in Applied Mechanics and Engineering20071962147216010.1016/j.cma.2006.11.0051173.74369 – volume-title: Prediction of springback of DP590 sheet metal using Yoshida-Uemori model year: 2012 ident: 227_CR5 – volume: 33 start-page: 962 issue: 5 year: 1996 ident: 227_CR7 publication-title: Journal of Aircraft doi: 10.2514/3.47042 – volume: 5 start-page: 37 year: 1996 ident: 227_CR2 publication-title: AMP Journal of Technology – start-page: 1 volume-title: Effective strain-fatigue life of dual phase 590 steel, Proceedings of the 12th International Conference on Fracture year: 2009 ident: 227_CR6 – volume: 29 start-page: 695 year: 2014 ident: 227_CR17 publication-title: Journal of Materials Research doi: 10.1557/jmr.2014.24 – volume: 84 start-page: 330 year: 2006 ident: 227_CR4 publication-title: Computer and Structure doi: 10.1016/j.compstruc.2005.09.022 – volume-title: Approximate analysis of first order sensitivity using backpropagation neural networks year: 2012 ident: 227_CR9 – volume: 56 start-page: 25 issue: 1 year: 1963 ident: 227_CR13 publication-title: ASM Transactions Quarterly – volume: 225 start-page: 2673 issue: 11 year: 2011 ident: 227_CR8 publication-title: Part C: Journal of Mechanical Engineering Science – volume: 196 start-page: 2147 year: 2007 ident: 227_CR18 publication-title: Computer Method in Applied Mechanics and Engineering doi: 10.1016/j.cma.2006.11.005 – volume: 23 start-page: 2903 year: 2009 ident: 227_CR20 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-009-0806-5 – volume: 32 start-page: 21 year: 2008 ident: 227_CR3 publication-title: Korean Society of Mechanical Engineers doi: 10.3795/KSME-A.2008.32.1.021 – volume-title: Studies in large plastic flow and fracture year: 1952 ident: 227_CR1 – ident: 227_CR15 – ident: 227_CR16 – volume: 35 start-page: 889 issue: 8 year: 2011 ident: 227_CR14 publication-title: Korean Society of Mechanical Engineers doi: 10.3795/KSME-A.2011.35.8.889 – ident: 227_CR12 – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 227_CR19 publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2006.03.001 – ident: 227_CR10 – ident: 227_CR11 |
SSID | ssj0062411 |
Score | 2.1234453 |
Snippet | In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1233 |
SubjectTerms | Approximation Automotive bodies Back propagation Back propagation networks Chassis Control Diffusion Dynamical Systems Engineering Finite difference method Finite element method Industrial and Production Engineering Mathematical analysis Mathematical models Mechanical Engineering Model accuracy Necking Neural networks Plastic properties Root-mean-square errors Sensitivity analysis Stress propagation Stress-strain curves Stress-strain relationships True stress Vibration 기계공학 |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4FDy1OkLcggTiBXieNHcmyrlgISp1ZaTpZjO2W1JYt2sxJC4r8z48R9CZB6ysGP-DFjf6OZ-UzIWyW09FI4VjZKMQGYntWBYzBVmXvtrc6bGOX7RZ2ciU9TOR3zuFcp2j25JONJfZXsxnm0fjFolmsGJs-GLKq6mpCN_Q9fPx-lA1jBpRTtLA26LGoxTc7Mv3Vy4zq63y3bG0jzlnM03jnHW-Q0jXYINZnvrftmz_26ReR4x-k8IpsjBqX7g9A8JvdC94Q8vMZM-JT8PrBuzuDHcN7EvaNIfAmNuiFsnOHt52lkJP85A9QbqB3pTeiipf1yHeiQhsJW8RUKmvgAYjmSJGNB6M77b_R7AAvgYuYo9oMK8YycHR-dHp6w8aUG5sDC7ZkVAMQc96LxGpNruW-t5VXQUjo0gaS0pSqULaULubdWFt6pkLdaV8HlbVE-J5Nu0YUXhDZWtbnjQbjW4utolRK2ULW2QpdNo0RG8rRhxo005jiPC3NFwIwrazB0DVfWFBl5d9nkx8Dh8b_Kb0AKzNzNDDJv4_d8YeZLA_bFR2iDbuYqI7tJSMyo8ytTAJQGuAyWfUZeXxaDtqILxnZhsYY6FRLucFnVGXmf5OJaF_8a1fadau-QBzwKFobK7ZIJbvpLwE5982rUlT-bTw-P priority: 102 providerName: Springer Nature |
Title | Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material |
URI | https://link.springer.com/article/10.1007/s12206-016-0227-1 https://www.proquest.com/docview/1977923523 https://www.proquest.com/docview/1800502589 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002085887 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Mechanical Science and Technology, 2016, 30(3), , pp.1233-1241 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9gIHVF5ioVQGcQJZJI4f2RPaot0WkCqEWGk5WY7ttKstSdndSlz635nxJn0g0VOkOHYeM_Z8kxl_A_BWS6OCkp4XldZcIqbnwygomarIggnOZFXK8j3WR1P5ZaZm3Q-3VZdW2a-JaaEOrad_5B9yBCoIRtBv-nj-m1PVKIqudiU0tmAnR0tDel5ODvuVWKN1Sg6XwUkth3LWRzXT1jkhki9NKbjC8PyWXdpqlvUtyPlPlDQZn8kuPOxQIxttxPwI7sXmMTy4wSX4BC4PnF9wHAtXiPS1GVFVYqdmk-jNyV4FljjE_8wRp0bmOkIS1tZsvbyIbLNxhK9S3QjW7-BP7URrTA2xOVmfsl8RMfvZ3DMah1T4KUwn4x-fjnhXW4F79EnX3EmETl4EWQVD22FFqJ0TZTRKeXJalHKFzrUrlI9ZcE7lweuY1caU0Wd1XjyD7aZt4nNgldN15kWUvnZUz6zU0uV6aJw0RVVpOYCs_7LWd8Tj9B5n9poymYRhKdmMhGHzAby76nK-Yd246-I3KC678HNLXNl0PGntYmnRI_iMfSgwXA5gr5em7Wbpyl7r1ABeXzXj_KKgiWtie4HXlESRI1Q5HMD7XgtuDPG_p3px9w1fwn2RlI-y2fZgm6T8CuHNutpPOrwPO6PDn1_HeDwYH3_7jmenYvQXK0H6bw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNwQDxFaAGD4AKySBzHzh4QotBql5YVQq20N-M4Tlltm5TdrYADf4nfyIw36QOJ3nrag2NnkxmPv8nMfAPwXEmdlZl0PC2U4hIxPe97QclUaVzq0uq4CFm-IzXYlx_H2XgF_nS1MJRW2dnEYKjLxtE38tcJAhUEI-g3vT3-zqlrFEVXuxYaS7XY8b9-oMs2fzP8gPJ9IcT21t77AW-7CnCH3tiCW4mgwYlSFqWmQlBRVtaK3OsscwTXs8ymKlE2zZyPS2uzpHTKx5XWuXdxlaS47iqsSapo7cHa5tbo85fO9is8D4OLp9GMyL4cd3HUUKwnRPDeKelXaJ5cOAlX61l1AeT-E5cNx932LbjZ4lT2bqlYt2HF13fgxjn2wrvwe9O6Kce10CYF-TIix8RJ9TK1nNMJWbLAWv5zgsjYM9tSoLCmYovZiWfLUhU-D50qWMcZEMaJSJkGfH2w-MaOPHoJhxPHaB3aNPdg_0re-33o1U3tHwArrKpiJ7x0laUOarmSNlF9baVOi0LJCOLuzRrXUp3TcxyaM5JmEoah9DYShkkieHk65XjJ83HZxc9QXGbqJobYuen3oDHTmUEfZIhzKBSdR7DRSdO0dmFuzrQ4gqenw7ijKUxja9-c4DU5kfKILO9H8KrTgnNL_O9fPbz8hk_g2mDv067ZHY521uG6CIpIuXQb0COJP0JwtSgetxrN4OtVb6K_EL80uA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WwnBAfEUKQUMggvIauI4dvaAEKVddSlaVYhKezOO45TVlqTd3Qo48Mf4dcx4kz6Q6K2nPTh2NpnxzDeZ8TcAL5XUWZlJx9NCKS4R0_O-F1RMlcalLq2Oi1DlO1K7B_LjOBuvwJ_uLAyVVXY2MRjqsnH0jXwzQaCCYATjps2qLYvY3x68Oz7h1EGKMq1dO42liuz5Xz8wfJu_HW6jrF8JMdj58mGXtx0GuMPIbMGtRADhRCmLUtOhUFFW1orc6yxzBN2zzKYqUTbNnI9La7OkdMrHlda5d3GVpLjuKqxp9IqyB2tbO6P9z50fUOgbQ7in0aTIvhx3OdVwcE-IEMlTAbDQPLnkFVfrWXUJ8P6Tow2ub3AHbreYlb1fKtldWPH1Pbh1gcnwPvzesm7KcS20T0HWjIgycVK9LDPn5C1LFhjMf04QJXtmWzoU1lRsMTv1bHlshc9D1wrW8QeEcSJVpgFfHy6-se8eI4ajiWO0Dm2gB3BwLe_9IfTqpvaPgBVWVbETXrrKUje1XEmbqL62UqdFoWQEcfdmjWtpz-k5jsw5YTMJw1CpGwnDJBG8PptyvOT8uOriFyguM3UTQ0zd9HvYmOnMYDwyxDmUls4j2OikaVobMTfnGh3B87Nh3N2UsrG1b07xmpwIekSW9yN402nBhSX-96_Wr77hM7iBm8d8Go72HsNNEfSQyuo2oEcCf4I4a1E8bRWawdfr3kN_AVP_OOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back-propagation+neural+network-based+approximate+analysis+of+true+stress-strain+behaviors+of+high-strength+metallic+material&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Doh%2C+Jaehyeok&rft.au=Lee%2C+Seung+Uk&rft.au=Lee%2C+Jongsoo&rft.date=2016-03-01&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=30&rft.issue=3&rft.spage=1233&rft.epage=1241&rft_id=info:doi/10.1007%2Fs12206-016-0227-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |