CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down Syndrome
The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEA...
Saved in:
Published in | Free radical biology & medicine Vol. 183; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs).
Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.
[Display omitted]
•BACH-1/Nrf-2 has a fundamental role in the regulation of anti-oxidant response.•BACH-1 is among the genes encoded on HSA21 found to be overexpressed in Down Syndrome.•Targeting BACH-1/Nrf-2 axis is a valid therapeutic strategy in disease with increased Oxidative Stress.•Oxidative stress is an early event in Down Syndrome.•CAPE and VP961 are able to restore BACH-1/Nrf-2 axis in Down Syndrome. |
---|---|
AbstractList | The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory. The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory. [Display omitted] •BACH-1/Nrf-2 has a fundamental role in the regulation of anti-oxidant response.•BACH-1 is among the genes encoded on HSA21 found to be overexpressed in Down Syndrome.•Targeting BACH-1/Nrf-2 axis is a valid therapeutic strategy in disease with increased Oxidative Stress.•Oxidative stress is an early event in Down Syndrome.•CAPE and VP961 are able to restore BACH-1/Nrf-2 axis in Down Syndrome. The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory. |
Author | Caforio, Matteo Locatelli, Franco Petrini, Stefania Perluigi, Marzia Tramutola, Antonella Salerno, Loredana Di Domenico, Fabio Pagnotta, Sara Folgiero, Valentina Barone, Eugenio Pittalà, Valeria Butterfield, D. Allan |
Author_xml | – sequence: 1 givenname: Sara surname: Pagnotta fullname: Pagnotta, Sara organization: Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy – sequence: 2 givenname: Antonella surname: Tramutola fullname: Tramutola, Antonella organization: Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy – sequence: 3 givenname: Eugenio surname: Barone fullname: Barone, Eugenio organization: Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy – sequence: 4 givenname: Fabio surname: Di Domenico fullname: Di Domenico, Fabio organization: Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy – sequence: 5 givenname: Valeria surname: Pittalà fullname: Pittalà, Valeria organization: Department of Drug and Health Sciences, University of Catania, Catania, Italy – sequence: 6 givenname: Loredana surname: Salerno fullname: Salerno, Loredana organization: Department of Drug and Health Sciences, University of Catania, Catania, Italy – sequence: 7 givenname: Valentina surname: Folgiero fullname: Folgiero, Valentina organization: Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy – sequence: 8 givenname: Matteo surname: Caforio fullname: Caforio, Matteo organization: Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy – sequence: 9 givenname: Franco surname: Locatelli fullname: Locatelli, Franco organization: Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy – sequence: 10 givenname: Stefania surname: Petrini fullname: Petrini, Stefania organization: Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, Rome, Italy – sequence: 11 givenname: D. Allan surname: Butterfield fullname: Butterfield, D. Allan organization: Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA – sequence: 12 givenname: Marzia orcidid: 0000-0003-4668-5239 surname: Perluigi fullname: Perluigi, Marzia email: marzia.perluigi@uniroma1.it organization: Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35283228$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEtvEzEURi1URNPCX0CW2LCZqV_jscUqpGmLVEHEa2t57DvCUeIpthPIv6-rFCRYdXU35x59OmfoJE4REHpDSUsJlRfrdkwAyfohTFvwLSOMtYS3hMhnaEZVzxvRaXmCZkRp2nRK6FN0lvOaECI6rl6gU94xxRlTM7RazFdLbKPHoWScD7H8gBIc9pDC3pawB_x9pSXFCXKZEuD388UNvfj4-Yph-ztkHCK-nH5F_OUQfap7XqLno91kePV4z9G3q-XXxU1z--n6w2J-2ziueGm0dZxa0QtQwlMFTI-jc47xUQ51mVOsFyP03HHJmR6klAPtuRbW-U4S5fg5env03qXp566OM9uQHWw2NsK0y4ZJrrRginYVff2I7oYazNylsLXpYP5UqMC7I-DSlHOC8S9CiXlobtbmn-bmobkh3NTm9Xv-37cLpaabYkk2bJ7oWB4dUJPtAySTXYDowIcErhg_hSd57gHBT6Ut |
CitedBy_id | crossref_primary_10_3390_ph15060692 crossref_primary_10_1093_toxres_tfae080 crossref_primary_10_1016_j_freeradbiomed_2022_07_017 crossref_primary_10_1089_ars_2024_0586 crossref_primary_10_1152_physrev_00030_2022 crossref_primary_10_1152_ajpcell_00224_2023 crossref_primary_10_1089_ars_2022_0214 crossref_primary_10_3892_mmr_2024_13334 crossref_primary_10_1016_j_freeradbiomed_2022_07_014 crossref_primary_10_1002_advs_202412850 crossref_primary_10_3390_antiox12081564 crossref_primary_10_3390_molecules28217424 crossref_primary_10_1016_j_fbio_2024_105808 crossref_primary_10_1111_cpr_13321 crossref_primary_10_3389_fphar_2024_1491563 crossref_primary_10_1016_j_neubiorev_2024_105794 crossref_primary_10_18632_aging_205970 |
Cites_doi | 10.1007/s13311-020-00978-4 10.1016/j.bbadis.2011.12.010 10.1097/00004703-200102000-00007 10.3233/JAD-141254 10.1016/j.neurobiolaging.2006.03.008 10.1007/s00018-016-2223-0 10.1124/pr.117.014753 10.1089/ars.2016.6686 10.1038/s41572-019-0143-7 10.1016/j.freeradbiomed.2010.04.016 10.3390/ijms20102441 10.1093/emboj/cdf516 10.1016/j.neuroscience.2012.12.041 10.1186/s40035-018-0133-9 10.1155/2018/1347969 10.1042/BJ20140772 10.1016/j.freeradbiomed.2014.03.027 10.1007/s00335-011-9357-z 10.1016/j.freeradbiomed.2021.01.042 10.1016/j.freeradbiomed.2016.10.508 10.1007/978-3-7091-6721-2_17 10.1089/neu.2011.1858 10.14336/AD.2017.0903 10.1080/15548627.2017.1389356 10.3390/ijms18122772 10.1016/j.neuroscience.2008.06.056 10.2174/1381612823666170210151411 10.1007/s10522-006-9002-5 10.1016/j.bbadis.2013.04.013 10.1007/s11010-007-9643-y 10.1016/j.bbadis.2011.10.001 10.1002/jcp.26080 10.3390/antiox9080692 10.1155/2014/145342 10.1016/j.chemphyslip.2012.05.003 10.1016/j.redox.2019.101162 10.1016/j.nbd.2019.02.003 10.1186/1471-2164-8-268 10.1093/brain/awh316 10.1002/prca.201300066 10.1074/jbc.M500166200 10.1016/j.neulet.2008.04.082 10.1089/ars.2008.2242 10.1093/jnen/60.8.759 10.1002/med.21257 10.1016/j.pneurobio.2020.101892 10.1124/mol.61.3.554 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2022.03.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 13 |
ExternalDocumentID | 35283228 10_1016_j_freeradbiomed_2022_03_006 S0891584922001010 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c383t-9ac31a474e84d18e29ffccc23f6b322c8274fe73c36329b666b17394acd5608c3 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Jul 11 02:26:51 EDT 2025 Wed Feb 19 02:26:27 EST 2025 Tue Jul 01 01:11:38 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Fri Feb 23 02:39:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress Down syndrome NRF2 BACH1 |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-9ac31a474e84d18e29ffccc23f6b322c8274fe73c36329b666b17394acd5608c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4668-5239 |
PMID | 35283228 |
PQID | 2638942815 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2638942815 pubmed_primary_35283228 crossref_primary_10_1016_j_freeradbiomed_2022_03_006 crossref_citationtrail_10_1016_j_freeradbiomed_2022_03_006 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2022_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wei (bib9) 2008; 155 Butterfield (bib21) 2014; 463 Piano Mortari (bib31) 2018; 14 Sorrenti (bib15) 2019; 20 Nunomura (bib43) 2001; 60 Niki (bib41) 2010; 49 Scapagnini (bib12) 2002; 61 Conti (bib26) 2007; 8 Di Domenico (bib6) 2015; 44 Pittala (bib16) 2017; 23 Antonarakis (bib18) 2020; 6 Tramutola (bib33) 2018; 7 Di Domenico (bib46) 2019; 23 Tomiyama (bib30) 2018; 233 Wei (bib8) 2004; 127 Ferrando-Miguel (bib28) 2003 Rueda Revilla, Martinez-Cue (bib19) 2020; 9 Zhao (bib10) 2012; 29 Murtaza (bib7) 2014; 2014 Perluigi, Di Domenico, Buttterfield (bib37) 2014; 8 Calkins (bib4) 2009; 11 Di Domenico (bib35) 2013; 1832 Sharma (bib32) 2019; 125 Kumar, Kaur, Bansal (bib13) 2017; 13 Tramutola (bib42) 2017; 26 Morroni (bib14) 2018; 9 Cuadrado (bib5) 2018; 70 Zana, Janka, Kalman (bib23) 2007; 28 Lanzillotta (bib27) 2021; 196 Dhakshinamoorthy (bib3) 2005; 280 Capone (bib24) 2001; 22 Loboda (bib1) 2016; 73 Lott (bib20) 2012; 1822 Di Domenico (bib36) 2014; 71 Pinchuk (bib40) 2012; 165 Reinholdt (bib29) 2011; 22 Zhang (bib2) 2018; 2018 Palozza (bib45) 2008; 309 Cenini (bib22) 2012; 1822 Vomund (bib39) 2017; 18 Sakoda (bib48) 2008; 440 Magesh, Chen, Hu (bib17) 2012; 32 Zuliani (bib38) 2021; 18 Sun (bib47) 2002; 21 Barone (bib44) 2017; 111 Pallardo (bib25) 2006; 7 Barros Silva (bib11) 2013; 233 Lanzillotta (bib34) 2021; 165 Tomiyama (10.1016/j.freeradbiomed.2022.03.006_bib30) 2018; 233 Wei (10.1016/j.freeradbiomed.2022.03.006_bib9) 2008; 155 Morroni (10.1016/j.freeradbiomed.2022.03.006_bib14) 2018; 9 Di Domenico (10.1016/j.freeradbiomed.2022.03.006_bib35) 2013; 1832 Murtaza (10.1016/j.freeradbiomed.2022.03.006_bib7) 2014; 2014 Palozza (10.1016/j.freeradbiomed.2022.03.006_bib45) 2008; 309 Capone (10.1016/j.freeradbiomed.2022.03.006_bib24) 2001; 22 Sakoda (10.1016/j.freeradbiomed.2022.03.006_bib48) 2008; 440 Di Domenico (10.1016/j.freeradbiomed.2022.03.006_bib46) 2019; 23 Di Domenico (10.1016/j.freeradbiomed.2022.03.006_bib6) 2015; 44 Sharma (10.1016/j.freeradbiomed.2022.03.006_bib32) 2019; 125 Rueda Revilla (10.1016/j.freeradbiomed.2022.03.006_bib19) 2020; 9 Di Domenico (10.1016/j.freeradbiomed.2022.03.006_bib36) 2014; 71 Vomund (10.1016/j.freeradbiomed.2022.03.006_bib39) 2017; 18 Piano Mortari (10.1016/j.freeradbiomed.2022.03.006_bib31) 2018; 14 Barros Silva (10.1016/j.freeradbiomed.2022.03.006_bib11) 2013; 233 Lott (10.1016/j.freeradbiomed.2022.03.006_bib20) 2012; 1822 Wei (10.1016/j.freeradbiomed.2022.03.006_bib8) 2004; 127 Antonarakis (10.1016/j.freeradbiomed.2022.03.006_bib18) 2020; 6 Niki (10.1016/j.freeradbiomed.2022.03.006_bib41) 2010; 49 Pinchuk (10.1016/j.freeradbiomed.2022.03.006_bib40) 2012; 165 Sorrenti (10.1016/j.freeradbiomed.2022.03.006_bib15) 2019; 20 Dhakshinamoorthy (10.1016/j.freeradbiomed.2022.03.006_bib3) 2005; 280 Scapagnini (10.1016/j.freeradbiomed.2022.03.006_bib12) 2002; 61 Tramutola (10.1016/j.freeradbiomed.2022.03.006_bib42) 2017; 26 Zana (10.1016/j.freeradbiomed.2022.03.006_bib23) 2007; 28 Reinholdt (10.1016/j.freeradbiomed.2022.03.006_bib29) 2011; 22 Conti (10.1016/j.freeradbiomed.2022.03.006_bib26) 2007; 8 Cuadrado (10.1016/j.freeradbiomed.2022.03.006_bib5) 2018; 70 Cenini (10.1016/j.freeradbiomed.2022.03.006_bib22) 2012; 1822 Perluigi (10.1016/j.freeradbiomed.2022.03.006_bib37) 2014; 8 Loboda (10.1016/j.freeradbiomed.2022.03.006_bib1) 2016; 73 Calkins (10.1016/j.freeradbiomed.2022.03.006_bib4) 2009; 11 Pallardo (10.1016/j.freeradbiomed.2022.03.006_bib25) 2006; 7 Lanzillotta (10.1016/j.freeradbiomed.2022.03.006_bib34) 2021; 165 Zhang (10.1016/j.freeradbiomed.2022.03.006_bib2) 2018; 2018 Pittala (10.1016/j.freeradbiomed.2022.03.006_bib16) 2017; 23 Tramutola (10.1016/j.freeradbiomed.2022.03.006_bib33) 2018; 7 Zhao (10.1016/j.freeradbiomed.2022.03.006_bib10) 2012; 29 Nunomura (10.1016/j.freeradbiomed.2022.03.006_bib43) 2001; 60 Barone (10.1016/j.freeradbiomed.2022.03.006_bib44) 2017; 111 Magesh (10.1016/j.freeradbiomed.2022.03.006_bib17) 2012; 32 Sun (10.1016/j.freeradbiomed.2022.03.006_bib47) 2002; 21 Kumar (10.1016/j.freeradbiomed.2022.03.006_bib13) 2017; 13 Ferrando-Miguel (10.1016/j.freeradbiomed.2022.03.006_bib28) 2003 Butterfield (10.1016/j.freeradbiomed.2022.03.006_bib21) 2014; 463 Lanzillotta (10.1016/j.freeradbiomed.2022.03.006_bib27) 2021; 196 Zuliani (10.1016/j.freeradbiomed.2022.03.006_bib38) 2021; 18 |
References_xml | – volume: 2014 start-page: 145342 year: 2014 ident: bib7 article-title: Caffeic acid phenethyl ester and therapeutic potentials publication-title: BioMed Res. Int. – volume: 125 start-page: 176 year: 2019 end-page: 189 ident: bib32 article-title: Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease publication-title: Neurobiol. Dis. – volume: 26 start-page: 280 year: 2017 end-page: 298 ident: bib42 article-title: Polyubiquitinylation profile in down syndrome brain before and after the development of Alzheimer neuropathology publication-title: Antioxidants Redox Signal. – volume: 309 start-page: 61 year: 2008 end-page: 68 ident: bib45 article-title: The protective role of carotenoids against 7-keto-cholesterol formation in solution publication-title: Mol. Cell. Biochem. – volume: 13 start-page: S10 year: 2017 end-page: S15 ident: bib13 article-title: Caffeic acid phenethyl ester (CAPE) prevents development of STZ-ICV induced dementia in rats publication-title: Pharmacogn. Mag. – volume: 8 start-page: 268 year: 2007 ident: bib26 article-title: Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy publication-title: BMC Genom. – volume: 9 start-page: 605 year: 2018 end-page: 622 ident: bib14 article-title: Neuroprotective effect of caffeic acid phenethyl ester in A mouse model of Alzheimer's disease involves Nrf2/HO-1 pathway publication-title: Aging Dis. – volume: 9 year: 2020 ident: bib19 article-title: Antioxidants in down syndrome: from preclinical studies to clinical trials publication-title: Antioxidants – volume: 155 start-page: 1098 year: 2008 end-page: 1105 ident: bib9 article-title: Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity publication-title: Neuroscience – start-page: 193 year: 2003 end-page: 205 ident: bib28 article-title: Overexpression of transcription factor BACH1 in fetal Down syndrome brain publication-title: J. Neural. Transm. Suppl. – volume: 1832 start-page: 1249 year: 2013 end-page: 1259 ident: bib35 article-title: Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain publication-title: Biochim. Biophys. Acta – volume: 2018 start-page: 1347969 year: 2018 ident: bib2 article-title: Bach1: function, regulation, and involvement in disease publication-title: Oxid. Med. Cell. Longev. – volume: 280 start-page: 16891 year: 2005 end-page: 16900 ident: bib3 article-title: Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants publication-title: J. Biol. Chem. – volume: 440 start-page: 160 year: 2008 end-page: 165 ident: bib48 article-title: Regulation of heme oxygenase-1 by transcription factor Bach1 in the mouse brain publication-title: Neurosci. Lett. – volume: 196 start-page: 101892 year: 2021 ident: bib27 article-title: Chronic PERK induction promotes Alzheimer-like neuropathology in Down syndrome: insights for therapeutic intervention publication-title: Prog. Neurobiol. – volume: 32 start-page: 687 year: 2012 end-page: 726 ident: bib17 article-title: Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents publication-title: Med. Res. Rev. – volume: 60 start-page: 759 year: 2001 end-page: 767 ident: bib43 article-title: Oxidative damage is the earliest event in Alzheimer disease publication-title: J. Neuropathol. Exp. Neurol. – volume: 22 start-page: 685 year: 2011 end-page: 691 ident: bib29 article-title: Molecular characterization of the translocation breakpoints in the Down syndrome mouse model Ts65Dn publication-title: Mamm. Genome – volume: 23 start-page: 2657 year: 2017 end-page: 2664 ident: bib16 article-title: Novel caffeic acid phenethyl ester (cape) analogues as inducers of heme oxygenase-1 publication-title: Curr. Pharmaceut. Des. – volume: 20 year: 2019 ident: bib15 article-title: Protective effects of caffeic acid phenethyl ester (CAPE) and novel cape analogue as inducers of heme oxygenase-1 in streptozotocin-induced type 1 diabetic rats publication-title: Int. J. Mol. Sci. – volume: 44 start-page: 1107 year: 2015 end-page: 1120 ident: bib6 article-title: Bach1 overexpression in Down syndrome correlates with the alteration of the HO-1/BVR-a system: insights for transition to Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 1822 start-page: 130 year: 2012 end-page: 138 ident: bib22 article-title: Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome publication-title: Biochim. Biophys. Acta – volume: 233 start-page: 1671 year: 2018 end-page: 1684 ident: bib30 article-title: 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells publication-title: J. Cell. Physiol. – volume: 49 start-page: 503 year: 2010 end-page: 515 ident: bib41 article-title: Assessment of antioxidant capacity in vitro and in vivo publication-title: Free Radic. Biol. Med. – volume: 11 start-page: 497 year: 2009 end-page: 508 ident: bib4 article-title: The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease publication-title: Antioxidants Redox Signal. – volume: 7 start-page: 28 year: 2018 ident: bib33 article-title: Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome publication-title: Transl. Neurodegener. – volume: 8 start-page: 73 year: 2014 end-page: 85 ident: bib37 article-title: Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: insights from proteomics publication-title: Proteonomics Clin. Appl. – volume: 71 start-page: 270 year: 2014 end-page: 280 ident: bib36 article-title: Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease publication-title: Free Radic. Biol. Med. – volume: 14 start-page: 22 year: 2018 end-page: 37 ident: bib31 article-title: The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity publication-title: Autophagy – volume: 233 start-page: 86 year: 2013 end-page: 94 ident: bib11 article-title: Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats publication-title: Neuroscience – volume: 111 start-page: 262 year: 2017 end-page: 269 ident: bib44 article-title: HNE-modified proteins in Down syndrome: involvement in development of Alzheimer disease neuropathology publication-title: Free Radic. Biol. Med. – volume: 21 start-page: 5216 year: 2002 end-page: 5224 ident: bib47 article-title: Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene publication-title: EMBO J. – volume: 127 start-page: 2629 year: 2004 end-page: 2635 ident: bib8 article-title: Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury publication-title: Brain – volume: 28 start-page: 648 year: 2007 end-page: 676 ident: bib23 article-title: Oxidative stress: a bridge between Down's syndrome and Alzheimer's disease publication-title: Neurobiol. Aging – volume: 23 start-page: 101162 year: 2019 ident: bib46 article-title: Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: focus on HNE-modified proteins in a mouse model of down syndrome publication-title: Redox Biol. – volume: 29 start-page: 1209 year: 2012 end-page: 1218 ident: bib10 article-title: Caffeic Acid phenethyl ester protects blood-brain barrier integrity and reduces contusion volume in rodent models of traumatic brain injury publication-title: J. Neurotrauma – volume: 73 start-page: 3221 year: 2016 end-page: 3247 ident: bib1 article-title: Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism publication-title: Cell. Mol. Life Sci. – volume: 165 start-page: 638 year: 2012 end-page: 647 ident: bib40 article-title: Evaluation of antioxidants: scope, limitations and relevance of assays publication-title: Chem. Phys. Lipids – volume: 61 start-page: 554 year: 2002 end-page: 561 ident: bib12 article-title: Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers publication-title: Mol. Pharmacol. – volume: 6 start-page: 9 year: 2020 ident: bib18 article-title: Down syndrome publication-title: Nat. Rev. Dis. Prim. – volume: 18 year: 2017 ident: bib39 article-title: Nrf2, the master regulator of anti-oxidative responses publication-title: Int. J. Mol. Sci. – volume: 22 start-page: 40 year: 2001 end-page: 59 ident: bib24 article-title: Down syndrome: advances in molecular biology and the neurosciences publication-title: J. Dev. Behav. Pediatr. – volume: 70 start-page: 348 year: 2018 end-page: 383 ident: bib5 article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach publication-title: Pharmacol. Rev. – volume: 1822 start-page: 657 year: 2012 end-page: 663 ident: bib20 article-title: Antioxidants in down syndrome publication-title: Biochim. Biophys. Acta – volume: 463 start-page: 177 year: 2014 end-page: 189 ident: bib21 article-title: Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in Down's syndrome and Alzheimer's disease brain publication-title: Biochem. J. – volume: 165 start-page: 152 year: 2021 end-page: 170 ident: bib34 article-title: Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: a harmful synergistic path in down syndrome publication-title: Free Radic. Biol. Med. – volume: 18 start-page: 340 year: 2021 end-page: 363 ident: bib38 article-title: The dysregulation of OGT/OGA cycle mediates tau and APP neuropathology in down syndrome publication-title: Neurotherapeutics – volume: 7 start-page: 211 year: 2006 end-page: 220 ident: bib25 article-title: Multiple evidence for an early age pro-oxidant state in Down Syndrome patients publication-title: Biogerontology – volume: 18 start-page: 340 issue: 1 year: 2021 ident: 10.1016/j.freeradbiomed.2022.03.006_bib38 article-title: The dysregulation of OGT/OGA cycle mediates tau and APP neuropathology in down syndrome publication-title: Neurotherapeutics doi: 10.1007/s13311-020-00978-4 – volume: 1822 start-page: 657 issue: 5 year: 2012 ident: 10.1016/j.freeradbiomed.2022.03.006_bib20 article-title: Antioxidants in down syndrome publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2011.12.010 – volume: 22 start-page: 40 issue: 1 year: 2001 ident: 10.1016/j.freeradbiomed.2022.03.006_bib24 article-title: Down syndrome: advances in molecular biology and the neurosciences publication-title: J. Dev. Behav. Pediatr. doi: 10.1097/00004703-200102000-00007 – volume: 44 start-page: 1107 issue: 4 year: 2015 ident: 10.1016/j.freeradbiomed.2022.03.006_bib6 article-title: Bach1 overexpression in Down syndrome correlates with the alteration of the HO-1/BVR-a system: insights for transition to Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-141254 – volume: 28 start-page: 648 issue: 5 year: 2007 ident: 10.1016/j.freeradbiomed.2022.03.006_bib23 article-title: Oxidative stress: a bridge between Down's syndrome and Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.03.008 – volume: 73 start-page: 3221 issue: 17 year: 2016 ident: 10.1016/j.freeradbiomed.2022.03.006_bib1 article-title: Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2223-0 – volume: 70 start-page: 348 issue: 2 year: 2018 ident: 10.1016/j.freeradbiomed.2022.03.006_bib5 article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach publication-title: Pharmacol. Rev. doi: 10.1124/pr.117.014753 – volume: 26 start-page: 280 issue: 7 year: 2017 ident: 10.1016/j.freeradbiomed.2022.03.006_bib42 article-title: Polyubiquitinylation profile in down syndrome brain before and after the development of Alzheimer neuropathology publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2016.6686 – volume: 6 start-page: 9 issue: 1 year: 2020 ident: 10.1016/j.freeradbiomed.2022.03.006_bib18 article-title: Down syndrome publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-019-0143-7 – volume: 49 start-page: 503 issue: 4 year: 2010 ident: 10.1016/j.freeradbiomed.2022.03.006_bib41 article-title: Assessment of antioxidant capacity in vitro and in vivo publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.04.016 – volume: 13 start-page: S10 issue: Suppl 1 year: 2017 ident: 10.1016/j.freeradbiomed.2022.03.006_bib13 article-title: Caffeic acid phenethyl ester (CAPE) prevents development of STZ-ICV induced dementia in rats publication-title: Pharmacogn. Mag. – volume: 20 issue: 10 year: 2019 ident: 10.1016/j.freeradbiomed.2022.03.006_bib15 article-title: Protective effects of caffeic acid phenethyl ester (CAPE) and novel cape analogue as inducers of heme oxygenase-1 in streptozotocin-induced type 1 diabetic rats publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20102441 – volume: 21 start-page: 5216 issue: 19 year: 2002 ident: 10.1016/j.freeradbiomed.2022.03.006_bib47 article-title: Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene publication-title: EMBO J. doi: 10.1093/emboj/cdf516 – volume: 233 start-page: 86 year: 2013 ident: 10.1016/j.freeradbiomed.2022.03.006_bib11 article-title: Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.12.041 – volume: 7 start-page: 28 year: 2018 ident: 10.1016/j.freeradbiomed.2022.03.006_bib33 article-title: Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome publication-title: Transl. Neurodegener. doi: 10.1186/s40035-018-0133-9 – volume: 2018 start-page: 1347969 year: 2018 ident: 10.1016/j.freeradbiomed.2022.03.006_bib2 article-title: Bach1: function, regulation, and involvement in disease publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2018/1347969 – volume: 463 start-page: 177 issue: 2 year: 2014 ident: 10.1016/j.freeradbiomed.2022.03.006_bib21 article-title: Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in Down's syndrome and Alzheimer's disease brain publication-title: Biochem. J. doi: 10.1042/BJ20140772 – volume: 71 start-page: 270 year: 2014 ident: 10.1016/j.freeradbiomed.2022.03.006_bib36 article-title: Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.03.027 – volume: 22 start-page: 685 issue: 11–12 year: 2011 ident: 10.1016/j.freeradbiomed.2022.03.006_bib29 article-title: Molecular characterization of the translocation breakpoints in the Down syndrome mouse model Ts65Dn publication-title: Mamm. Genome doi: 10.1007/s00335-011-9357-z – volume: 165 start-page: 152 year: 2021 ident: 10.1016/j.freeradbiomed.2022.03.006_bib34 article-title: Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: a harmful synergistic path in down syndrome publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.01.042 – volume: 111 start-page: 262 year: 2017 ident: 10.1016/j.freeradbiomed.2022.03.006_bib44 article-title: HNE-modified proteins in Down syndrome: involvement in development of Alzheimer disease neuropathology publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.10.508 – start-page: 193 issue: 67 year: 2003 ident: 10.1016/j.freeradbiomed.2022.03.006_bib28 article-title: Overexpression of transcription factor BACH1 in fetal Down syndrome brain publication-title: J. Neural. Transm. Suppl. doi: 10.1007/978-3-7091-6721-2_17 – volume: 29 start-page: 1209 issue: 6 year: 2012 ident: 10.1016/j.freeradbiomed.2022.03.006_bib10 article-title: Caffeic Acid phenethyl ester protects blood-brain barrier integrity and reduces contusion volume in rodent models of traumatic brain injury publication-title: J. Neurotrauma doi: 10.1089/neu.2011.1858 – volume: 9 start-page: 605 issue: 4 year: 2018 ident: 10.1016/j.freeradbiomed.2022.03.006_bib14 article-title: Neuroprotective effect of caffeic acid phenethyl ester in A mouse model of Alzheimer's disease involves Nrf2/HO-1 pathway publication-title: Aging Dis. doi: 10.14336/AD.2017.0903 – volume: 14 start-page: 22 issue: 1 year: 2018 ident: 10.1016/j.freeradbiomed.2022.03.006_bib31 article-title: The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity publication-title: Autophagy doi: 10.1080/15548627.2017.1389356 – volume: 18 issue: 12 year: 2017 ident: 10.1016/j.freeradbiomed.2022.03.006_bib39 article-title: Nrf2, the master regulator of anti-oxidative responses publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18122772 – volume: 155 start-page: 1098 issue: 4 year: 2008 ident: 10.1016/j.freeradbiomed.2022.03.006_bib9 article-title: Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.06.056 – volume: 23 start-page: 2657 issue: 18 year: 2017 ident: 10.1016/j.freeradbiomed.2022.03.006_bib16 article-title: Novel caffeic acid phenethyl ester (cape) analogues as inducers of heme oxygenase-1 publication-title: Curr. Pharmaceut. Des. doi: 10.2174/1381612823666170210151411 – volume: 7 start-page: 211 issue: 4 year: 2006 ident: 10.1016/j.freeradbiomed.2022.03.006_bib25 article-title: Multiple evidence for an early age pro-oxidant state in Down Syndrome patients publication-title: Biogerontology doi: 10.1007/s10522-006-9002-5 – volume: 1832 start-page: 1249 issue: 8 year: 2013 ident: 10.1016/j.freeradbiomed.2022.03.006_bib35 article-title: Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.04.013 – volume: 309 start-page: 61 issue: 1–2 year: 2008 ident: 10.1016/j.freeradbiomed.2022.03.006_bib45 article-title: The protective role of carotenoids against 7-keto-cholesterol formation in solution publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-007-9643-y – volume: 1822 start-page: 130 issue: 2 year: 2012 ident: 10.1016/j.freeradbiomed.2022.03.006_bib22 article-title: Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2011.10.001 – volume: 233 start-page: 1671 issue: 2 year: 2018 ident: 10.1016/j.freeradbiomed.2022.03.006_bib30 article-title: 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26080 – volume: 9 issue: 8 year: 2020 ident: 10.1016/j.freeradbiomed.2022.03.006_bib19 article-title: Antioxidants in down syndrome: from preclinical studies to clinical trials publication-title: Antioxidants doi: 10.3390/antiox9080692 – volume: 2014 start-page: 145342 year: 2014 ident: 10.1016/j.freeradbiomed.2022.03.006_bib7 article-title: Caffeic acid phenethyl ester and therapeutic potentials publication-title: BioMed Res. Int. doi: 10.1155/2014/145342 – volume: 165 start-page: 638 issue: 6 year: 2012 ident: 10.1016/j.freeradbiomed.2022.03.006_bib40 article-title: Evaluation of antioxidants: scope, limitations and relevance of assays publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2012.05.003 – volume: 23 start-page: 101162 year: 2019 ident: 10.1016/j.freeradbiomed.2022.03.006_bib46 article-title: Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: focus on HNE-modified proteins in a mouse model of down syndrome publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101162 – volume: 125 start-page: 176 year: 2019 ident: 10.1016/j.freeradbiomed.2022.03.006_bib32 article-title: Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2019.02.003 – volume: 8 start-page: 268 year: 2007 ident: 10.1016/j.freeradbiomed.2022.03.006_bib26 article-title: Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy publication-title: BMC Genom. doi: 10.1186/1471-2164-8-268 – volume: 127 start-page: 2629 issue: Pt 12 year: 2004 ident: 10.1016/j.freeradbiomed.2022.03.006_bib8 article-title: Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury publication-title: Brain doi: 10.1093/brain/awh316 – volume: 8 start-page: 73 issue: 1–2 year: 2014 ident: 10.1016/j.freeradbiomed.2022.03.006_bib37 article-title: Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: insights from proteomics publication-title: Proteonomics Clin. Appl. doi: 10.1002/prca.201300066 – volume: 280 start-page: 16891 issue: 17 year: 2005 ident: 10.1016/j.freeradbiomed.2022.03.006_bib3 article-title: Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500166200 – volume: 440 start-page: 160 issue: 2 year: 2008 ident: 10.1016/j.freeradbiomed.2022.03.006_bib48 article-title: Regulation of heme oxygenase-1 by transcription factor Bach1 in the mouse brain publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2008.04.082 – volume: 11 start-page: 497 issue: 3 year: 2009 ident: 10.1016/j.freeradbiomed.2022.03.006_bib4 article-title: The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2008.2242 – volume: 60 start-page: 759 issue: 8 year: 2001 ident: 10.1016/j.freeradbiomed.2022.03.006_bib43 article-title: Oxidative damage is the earliest event in Alzheimer disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/60.8.759 – volume: 32 start-page: 687 issue: 4 year: 2012 ident: 10.1016/j.freeradbiomed.2022.03.006_bib17 article-title: Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents publication-title: Med. Res. Rev. doi: 10.1002/med.21257 – volume: 196 start-page: 101892 year: 2021 ident: 10.1016/j.freeradbiomed.2022.03.006_bib27 article-title: Chronic PERK induction promotes Alzheimer-like neuropathology in Down syndrome: insights for therapeutic intervention publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2020.101892 – volume: 61 start-page: 554 issue: 3 year: 2002 ident: 10.1016/j.freeradbiomed.2022.03.006_bib12 article-title: Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers publication-title: Mol. Pharmacol. doi: 10.1124/mol.61.3.554 |
SSID | ssj0004538 |
Score | 2.465824 |
SecondaryResourceType | review_article |
Snippet | The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals BACH1 Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism Caffeic Acids Down Syndrome Humans Kelch-Like ECH-Associated Protein 1 - genetics Kelch-Like ECH-Associated Protein 1 - metabolism Mice NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism NRF2 Oxidative Stress Phenylethyl Alcohol - analogs & derivatives |
Title | CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down Syndrome |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2022.03.006 https://www.ncbi.nlm.nih.gov/pubmed/35283228 https://www.proquest.com/docview/2638942815 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKiouVQsFtqXICNRbWGI7Lw6V0oXVAmK1Kg9xsxw_pCAa0O5SdS_8dsZOwuOAhMQxke1YM2PPfPH4G4Bt6S5kot8MKGMy4NrqIFOFCqy2qUaj4bGnUjoZxoNzfnQZXc5Br70L49Iqm72_3tP9bt286TbS7N6WZfd0N81CdJ8ZpZ4ozeF2zhNn5Tv34TPGcF_N2jUOXOuPsPWU42XHxrgja3_THcEipTXjafyal3otCvXeqP8ZPjVhJMnrmX6BOVMtwXJeIYT-OyM_iU_s9H_Ml2Chrjc5W4ZRLx8dEFlpUk4nZDKrMPrDAYhGM_znGcDJxSiLQzL29WYM-Z33BmF3-KdPifxfTkhZkX2E7eS04Tn4Cuf9g7PeIGhKKgQKoeg0yKRioeQJNynXYWpoZq1SijIbF7i0VYog1ZqEKRYzmhWIbYowYRmXSmNolCq2AvPVTWXWgCRWuTPXRMnI8gI1EVsdoZqZLaJIGdaBvVaEQjV8467sxbVoE8uuxAv5Cyd_scsEyr8D_LHzbU278bZuv1pdiRdWJNBBvG2AzVbDAteZOzyRlbm5mwjqQjvEamHUgdVa9Y8z8ww5lKbf3vv577DonurMoHWYn47vzA8MeqbFhrfqDfiQHx4Phg_wOgBv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKqAXVKDAQgEjqt7CEtt59VBpWVhteaxW5SFuluOHlKoNaHep2Et_e8dOwuOAhNRrYjvWzNgzXzz-BuCzdBcy0W8GlDEZcG11kKlcBVbbVKPR8NhTKZ0P4v4VP7mJbmag29yFcWmV9d5f7el-t66ftGtptu-Kon1xkGYhus-MUk-Uhrj9Hcfl68oY7P8Nn1GG-3LWrnXgms_D3lOSlx0Z486s_VV3RIuUVpSn8Wtu6rUw1Luj3gdYrONI0qmmugQzplyGlU6JGPr3lHwhPrPT_zJfhrmq4OR0BYbdzvCYyFKTYjIm42mJ4R8OQDTa4R9PAU6uh1kckpEvOGPIYafbD9uDHz1K5EMxJkVJjhC3k4ua6OAjXPWOL7v9oK6pECjEopMgk4qFkifcpFyHqaGZtUopymyc49pWKaJUaxKmWMxoliO4ycOEZVwqjbFRqtgqzJa3pVkHkljlDl0TJSPLc1RFbHWEemY2jyJlWAu-NiIUqiYcd3Uvfokms-yneCF_4eQvDphA-beAP3a-q3g33tbtW6Mr8cKMBHqItw2w22hY4EJzpyeyNLf3Y0FdbIdgLYxasFap_nFmniKH0nTjfz-_Awv9y_MzcfZ9cLoJ792bKk3oE8xORvdmCyOgSb7tLfwfvP0B_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAPE+and+its+synthetic+derivative+VP961+restore+BACH1%2FNRF2+axis+in+Down+Syndrome&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Pagnotta%2C+Sara&rft.au=Tramutola%2C+Antonella&rft.au=Barone%2C+Eugenio&rft.au=Di+Domenico%2C+Fabio&rft.date=2022-04-01&rft.issn=1873-4596&rft.eissn=1873-4596&rft.volume=183&rft.spage=1&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2022.03.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |