Microstructural Constituents and Mechanical Properties of Low-Density Fe-Cr-Ni-Mn-Al-C Stainless Steels

Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was a...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 15; p. 5121
Main Authors Scherbring, Steffen, Chen, Guanghui, Veltel, Bastian, Bartzsch, Gert, Richter, Julia, Vollmer, Malte, Blankenburg, Malte, Shyamal, Saikat, Volkova, Olena, Niendorf, Thomas, Lienert, Ulrich, Sahu, Puspendu, Mola, Javad
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1–6) (wt.%) stainless steels to assess its influence on microstructure and mechanical properties. According to density measurements based on Archimedes’ principle, densities were between 7.70 and 7.08 g/cm3. High-energy X-ray diffraction estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.% Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the increase in strength due to the presence of ferrite was more pronounced compared to standard duplex stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.
AbstractList Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1–6) (wt.%) stainless steels to assess its influence on microstructure and mechanical properties. According to density measurements based on Archimedes’ principle, densities were between 7.70 and 7.08 g/cm 3 . High-energy X-ray diffraction estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.% Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the increase in strength due to the presence of ferrite was more pronounced compared to standard duplex stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.
Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1–6) (wt.%) stainless steels to assess its influence on microstructure and mechanical properties. According to density measurements based on Archimedes’ principle, densities were between 7.70 and 7.08 g/cm3. High-energy X-ray diffraction estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.% Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the increase in strength due to the presence of ferrite was more pronounced compared to standard duplex stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.
Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1-6) (wt.%) stainless steels to assess its influence on microstructure and mechanical properties. According to density measurements based on Archimedes' principle, densities were between 7.70 and 7.08 g/cm3. High-energy X-ray diffraction estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.% Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the increase in strength due to the presence of ferrite was more pronounced compared to standard duplex stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1-6) (wt.%) stainless steels to assess its influence on microstructure and mechanical properties. According to density measurements based on Archimedes' principle, densities were between 7.70 and 7.08 g/cm3. High-energy X-ray diffraction estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.% Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the increase in strength due to the presence of ferrite was more pronounced compared to standard duplex stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.
Author Shyamal, Saikat
Veltel, Bastian
Blankenburg, Malte
Richter, Julia
Lienert, Ulrich
Chen, Guanghui
Volkova, Olena
Sahu, Puspendu
Scherbring, Steffen
Vollmer, Malte
Bartzsch, Gert
Mola, Javad
Niendorf, Thomas
AuthorAffiliation 4 Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany; malte.blankenburg@desy.de (M.B.); ulrich.lienert@desy.de (U.L.)
1 Materials Design and Structural Integrity Laboratory, Faculty of Engineering and Computer Sciences, Osnabrück University of Applied Sciences, 49076 Osnabrück, Germany; steffen.scherbring@hs-osnabrueck.de (S.S.); chenguanghui@wust.edu.cn (G.C.); baveltel@gmail.com (B.V.)
3 Institute of Materials Engineering—Metallic Materials, University of Kassel, 34125 Kassel, Germany; julia.richter@uni-kassel.de (J.R.); vollmer@uni-kassel.de (M.V.); niendorf@uni-kassel.de (T.N.)
2 Institute of Iron and Steel Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; gert.bartzsch@iest.tu-freiberg.de (G.B.); volkova@iest.tu-freiberg.de (O.V.)
5 Department of Physics, Jadavpur University, Kolkata 700032, India; saikat.shyamal923@gmail.com (S.S.); psahu74@gmail.com (P.S.)
AuthorAffiliation_xml – name: 2 Institute of Iron and Steel Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; gert.bartzsch@iest.tu-freiberg.de (G.B.); volkova@iest.tu-freiberg.de (O.V.)
– name: 4 Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany; malte.blankenburg@desy.de (M.B.); ulrich.lienert@desy.de (U.L.)
– name: 3 Institute of Materials Engineering—Metallic Materials, University of Kassel, 34125 Kassel, Germany; julia.richter@uni-kassel.de (J.R.); vollmer@uni-kassel.de (M.V.); niendorf@uni-kassel.de (T.N.)
– name: 5 Department of Physics, Jadavpur University, Kolkata 700032, India; saikat.shyamal923@gmail.com (S.S.); psahu74@gmail.com (P.S.)
– name: 1 Materials Design and Structural Integrity Laboratory, Faculty of Engineering and Computer Sciences, Osnabrück University of Applied Sciences, 49076 Osnabrück, Germany; steffen.scherbring@hs-osnabrueck.de (S.S.); chenguanghui@wust.edu.cn (G.C.); baveltel@gmail.com (B.V.)
Author_xml – sequence: 1
  givenname: Steffen
  orcidid: 0000-0002-8046-5945
  surname: Scherbring
  fullname: Scherbring, Steffen
– sequence: 2
  givenname: Guanghui
  surname: Chen
  fullname: Chen, Guanghui
– sequence: 3
  givenname: Bastian
  orcidid: 0000-0003-3437-3297
  surname: Veltel
  fullname: Veltel, Bastian
– sequence: 4
  givenname: Gert
  surname: Bartzsch
  fullname: Bartzsch, Gert
– sequence: 5
  givenname: Julia
  orcidid: 0000-0003-0371-6509
  surname: Richter
  fullname: Richter, Julia
– sequence: 6
  givenname: Malte
  orcidid: 0000-0002-8098-8498
  surname: Vollmer
  fullname: Vollmer, Malte
– sequence: 7
  givenname: Malte
  surname: Blankenburg
  fullname: Blankenburg, Malte
– sequence: 8
  givenname: Saikat
  orcidid: 0000-0003-3197-218X
  surname: Shyamal
  fullname: Shyamal, Saikat
– sequence: 9
  givenname: Olena
  surname: Volkova
  fullname: Volkova, Olena
– sequence: 10
  givenname: Thomas
  orcidid: 0000-0003-2622-5817
  surname: Niendorf
  fullname: Niendorf, Thomas
– sequence: 11
  givenname: Ulrich
  surname: Lienert
  fullname: Lienert, Ulrich
– sequence: 12
  givenname: Puspendu
  surname: Sahu
  fullname: Sahu, Puspendu
– sequence: 13
  givenname: Javad
  orcidid: 0000-0002-9057-3114
  surname: Mola
  fullname: Mola, Javad
BookMark eNptkV1rFTEQhoNUbK298RcseCNCbD422c2NUFarwjmtoF6H2ZzZNmVPckyySv-9ObSiLc7NDMwz7-TNPCcHIQYk5CVnb6U07HQLXHGluOBPyBE3RlNu2vbgn_qQnOR8w2pIyXthnpFDqXrTKdUekau1dynmkhZXlgRzM8SQiy8LhpIbCJtmje4agne19yXFHabiMTdxalbxF32PIfty25wjHRK98HQd6NlMh-ZrAR9mzLlWiHN-QZ5OMGc8uc_H5Pv5h2_DJ7q6_Ph5OFtRJ3tZqFGTAWZMD0KyCZye3LThOMJoxIisZ-g0OIGsFa7baFDQjVIKMU5jNxrt5DF5d6e7W8Ytbly1UV3ZXfJbSLc2grcPO8Ff26v405oq04q2Cry-F0jxx4K52K3PDucZAsYlW6GNZpxp1Vf01SP0Ji4pVHtWdIx1rWZaVordUft_zgkn63yB4uN-v58tZ3Z_SPv3kHXkzaORP-__D_wbXTWf0A
CitedBy_id crossref_primary_10_1016_j_jmst_2024_03_014
crossref_primary_10_1016_j_mtcomm_2023_105388
crossref_primary_10_1007_s40735_024_00886_6
crossref_primary_10_1016_j_jmrt_2024_10_063
crossref_primary_10_1016_j_jmst_2024_12_013
Cites_doi 10.1016/j.scriptamat.2014.07.019
10.1016/j.msea.2009.11.052
10.1002/srin.200606440
10.1016/j.matdes.2016.09.033
10.1016/j.actamat.2014.12.015
10.1016/S1359-6454(02)00353-1
10.1016/j.msea.2020.140084
10.1007/s11661-019-05385-9
10.1051/metal:2000110
10.1016/j.msea.2016.08.106
10.1016/j.scriptamat.2007.02.028
10.3139/9783446449626.fm
10.1016/j.actamat.2017.01.011
10.1016/0921-5093(95)09991-3
10.1007/s40831-021-00392-w
10.1007/BF02648382
10.1016/j.jmst.2019.02.008
10.1016/j.actamat.2017.06.014
10.1016/0308-0161(94)90021-3
10.1016/S0254-0584(01)00460-6
10.1016/j.jmst.2021.01.031
10.1016/j.msea.2009.02.023
10.1016/j.wear.2009.07.010
10.1016/j.matdes.2021.109813
10.1002/adem.201800658
10.2355/isijinternational.43.438
10.1016/j.actamat.2010.07.026
10.1016/0001-6160(73)90071-0
10.1016/j.cirp.2018.04.049
10.1016/j.ijhydene.2013.02.127
10.1016/j.scriptamat.2022.114597
10.1007/BF02646146
10.1016/S0167-577X(03)00342-2
10.1007/s11661-012-1318-y
10.1016/j.actamat.2016.05.046
10.1016/j.actamat.2022.117985
10.1016/S0921-5093(02)00062-X
10.1007/BF02651615
10.1016/j.scriptamat.2012.10.040
10.1038/srep23137
10.1016/j.msea.2015.10.005
10.1016/j.actamat.2017.06.046
10.1007/s11661-015-2782-y
10.1016/j.jcsr.2008.07.011
10.1016/j.actamat.2015.06.065
10.1023/A:1014914310735
10.5772/67935
10.1016/j.jallcom.2017.02.271
10.1088/1742-6596/425/20/202012
10.1088/1468-6996/14/1/014208
10.1007/s11663-003-0084-z
10.1016/j.msea.2007.10.009
10.1088/1009-1963/11/6/315
10.1016/j.scriptamat.2018.08.012
10.1016/j.matdes.2014.09.074
10.1007/s10853-008-2919-0
10.1016/j.actamat.2011.12.043
10.1007/s11661-009-0050-8
10.1088/1757-899X/373/1/012005
10.1016/j.jmst.2020.09.023
10.31399/asm.hb.mhde2.9781627081993
10.1016/B978-0-08-100270-4.00013-5
10.1007/s11837-014-1084-y
10.1016/j.intermet.2004.07.048
10.1107/S1600576715004306
10.1016/j.msea.2014.09.001
10.1016/j.msea.2021.140909
10.1016/S1359-6454(03)00089-2
10.1038/nature14144
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15155121
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC9332424
10_3390_ma15155121
GrantInformation_xml – fundername: German Research Foundation (Deutsche Forschungsgemeinschaft)
  grantid: 433662460
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c383t-95f9a0998a230fac6fcfd1ebab92be080ec6ac2e042c7d6a5a7b3322bfb7b96c3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:20:33 EDT 2025
Fri Jul 11 09:32:00 EDT 2025
Fri Jul 25 11:58:14 EDT 2025
Tue Jul 01 03:10:40 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-95f9a0998a230fac6fcfd1ebab92be080ec6ac2e042c7d6a5a7b3322bfb7b96c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2622-5817
0000-0003-0371-6509
0000-0003-3197-218X
0000-0003-3437-3297
0000-0002-8046-5945
0000-0002-8098-8498
0000-0002-9057-3114
OpenAccessLink https://www.proquest.com/docview/2700746063?pq-origsite=%requestingapplication%
PMID 35897554
PQID 2700746063
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9332424
proquest_miscellaneous_2696010658
proquest_journals_2700746063
crossref_citationtrail_10_3390_ma15155121
crossref_primary_10_3390_ma15155121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220723
PublicationDateYYYYMMDD 2022-07-23
PublicationDate_xml – month: 7
  year: 2022
  text: 20220723
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huang (ref_18) 2012; 43
Estrin (ref_70) 2018; 142
Zuidema (ref_24) 1987; 18
ref_13
ref_12
Kieffer (ref_43) 2013; 425
Rahimi (ref_17) 2016; 111
Eshed (ref_53) 2022; 235
Rawlings (ref_75) 2002; 37
Imlau (ref_26) 2009; 40
ref_16
Suutala (ref_35) 1983; 14
Zhi (ref_51) 2008; 487
Rahimi (ref_47) 2016; 649
Dastur (ref_42) 2019; 50
Rahimi (ref_14) 2014; 618
Stallybrass (ref_54) 2005; 13
Govindaraj (ref_58) 2021; 808
Zhang (ref_11) 2015; 65
Mahato (ref_31) 2015; 86
Krauss (ref_34) 2003; 34
Abbasi (ref_66) 2009; 513–514
Ashiotis (ref_44) 2015; 48
Morris (ref_9) 2010; 58
Seo (ref_69) 2017; 135
Song (ref_19) 2017; 127
Harwarth (ref_22) 2021; 206
Dai (ref_65) 2002; 11
Wang (ref_7) 2018; 67
Suutala (ref_36) 1982; 13
Jeong (ref_64) 2012; 60
Hsiao (ref_57) 2002; 74
Chen (ref_37) 2022; 213
Kim (ref_29) 2015; 518
Zhang (ref_60) 2020; 36
Lehnhoff (ref_48) 2014; 92
Gussev (ref_28) 2018; 157
Chen (ref_4) 2020; 797
Sun (ref_50) 2013; 68
ref_39
Frommeyer (ref_15) 2006; 77
Wittig (ref_27) 2009; 80
Herrmann (ref_2) 2003; 51
Guo (ref_55) 2003; 51
Frommeyer (ref_71) 2003; 43
Mola (ref_72) 2015; 46
Ennis (ref_33) 2016; 115
Kim (ref_62) 2016; 676
Sun (ref_20) 2016; 6
Simmons (ref_5) 1996; 207
Zuazo (ref_46) 2014; 66
Bei (ref_61) 2010; 527
Choi (ref_68) 2015; 98
(ref_56) 2002; 338
Rahimi (ref_38) 2019; 21
Hung (ref_63) 2021; 86
Morris (ref_74) 2013; 14
ref_41
ref_40
ref_1
Tian (ref_30) 2008; 43
ref_3
Song (ref_21) 2017; 706
ref_49
Tyson (ref_73) 1973; 21
Abbasi (ref_23) 2010; 268
Holappa (ref_8) 2021; 7
Meng (ref_67) 2007; 56
Martin (ref_25) 2013; 38
Baddoo (ref_6) 2008; 64
Rahimi (ref_32) 2018; 373
Frommeyer (ref_45) 2000; 97
Carpenter (ref_52) 2003; 57
Zhang (ref_59) 2021; 72
Saxena (ref_10) 1994; 60
References_xml – volume: 92
  start-page: 19
  year: 2014
  ident: ref_48
  article-title: The Influence of Silicon and Aluminum Alloying on the Lattice Parameter and Stacking Fault Energy of Austenitic Steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.07.019
– volume: 527
  start-page: 2079
  year: 2010
  ident: ref_61
  article-title: Aging Effects on the Mechanical Properties of Alumina-Forming Austenitic Stainless Steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.11.052
– volume: 77
  start-page: 627
  year: 2006
  ident: ref_15
  article-title: Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.200606440
– volume: 111
  start-page: 640
  year: 2016
  ident: ref_17
  article-title: Volumetric Changes Associated with B2-(Ni,Fe)Al Dissolution in an Al-Alloyed Ferritic Steel
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.09.033
– volume: 86
  start-page: 69
  year: 2015
  ident: ref_31
  article-title: An Effective Stacking Fault Energy Viewpoint on the Formation of Extended Defects and Their Contribution to Strain Hardening in a Fe–Mn–Si–Al Twinning-Induced Plasticity Steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.015
– volume: 51
  start-page: 101
  year: 2003
  ident: ref_55
  article-title: Microstructural Evolution in a PH13-8 Stainless Steel after Ageing
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00353-1
– volume: 797
  start-page: 140084
  year: 2020
  ident: ref_4
  article-title: Impact of Al Addition on Deformation Behavior of Fe–Cr–Ni–Mn–C Austenitic Stainless Steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140084
– volume: 50
  start-page: 4550
  year: 2019
  ident: ref_42
  article-title: Martensite Reversion Duality Behavior in a Cold-Rolled High Mn Transformation-Induced Plasticity Steel
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-019-05385-9
– ident: ref_16
– ident: ref_39
– volume: 97
  start-page: 1245
  year: 2000
  ident: ref_45
  article-title: Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels
  publication-title: Rev. Met. Paris
  doi: 10.1051/metal:2000110
– volume: 676
  start-page: 216
  year: 2016
  ident: ref_62
  article-title: Stacking Fault Energy and Deformation Mechanisms in Fe-XMn-0.6C-YAl TWIP Steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.106
– volume: 56
  start-page: 931
  year: 2007
  ident: ref_67
  article-title: Dependence of Deformation Twinning on Grain Orientation in Compressed High Manganese Steels
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2007.02.028
– ident: ref_3
  doi: 10.3139/9783446449626.fm
– volume: 127
  start-page: 1
  year: 2017
  ident: ref_19
  article-title: Microstructural Evolution of Single Ni2TiAl or Hierarchical NiAl/Ni2TiAl Precipitates in Fe-Ni-Al-Cr-Ti Ferritic Alloys during Thermal Treatment for Elevated-Temperature Applications
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.01.011
– volume: 207
  start-page: 159
  year: 1996
  ident: ref_5
  article-title: Overview: High-Nitrogen Alloying of Stainless Steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(95)09991-3
– volume: 7
  start-page: 806
  year: 2021
  ident: ref_8
  article-title: A Review of Circular Economy Prospects for Stainless Steelmaking Slags
  publication-title: J. Sustain. Met.
  doi: 10.1007/s40831-021-00392-w
– volume: 13
  start-page: 2121
  year: 1982
  ident: ref_36
  article-title: Effect of Manganese and Nitrogen on the Solidification Mode in Austenitic Stainless Steel Welds
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/BF02648382
– volume: 36
  start-page: 65
  year: 2020
  ident: ref_60
  article-title: Tensile Ductility and Deformation Mechanisms of a Nanotwinned 316L Austenitic Stainless Steel
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.02.008
– volume: 135
  start-page: 112
  year: 2017
  ident: ref_69
  article-title: Micro-Plasticity of Medium Mn Austenitic Steel: Perfect Dislocation Plasticity and Deformation Twinning
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.014
– volume: 60
  start-page: 151
  year: 1994
  ident: ref_10
  article-title: Fatigue and Fracture Behavior of a Nickel-Chromium Free Austenitic Steel
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/0308-0161(94)90021-3
– volume: 74
  start-page: 134
  year: 2002
  ident: ref_57
  article-title: Aging Reactions in a 17-4 PH Stainless Steel
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(01)00460-6
– volume: 86
  start-page: 192
  year: 2021
  ident: ref_63
  article-title: Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.01.031
– volume: 513–514
  start-page: 72
  year: 2009
  ident: ref_66
  article-title: The Fracture and Plastic Deformation of Aluminum Alloyed Hadfield Steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.02.023
– volume: 268
  start-page: 202
  year: 2010
  ident: ref_23
  article-title: On the Comparison of the Abrasive Wear Behavior of Aluminum Alloyed and Standard Hadfield Steels
  publication-title: Wear
  doi: 10.1016/j.wear.2009.07.010
– volume: 206
  start-page: 109813
  year: 2021
  ident: ref_22
  article-title: Aluminum-Alloyed Lightweight Stainless Steels Strengthened by B2-(Ni,Fe)Al Precipitates
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109813
– volume: 21
  start-page: 1800658
  year: 2019
  ident: ref_38
  article-title: Thermal Analysis of the Formation and Dissolution of Cr-Rich Carbides in Al-Alloyed Stainless Steels
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201800658
– volume: 43
  start-page: 438
  year: 2003
  ident: ref_71
  article-title: Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.43.438
– volume: 58
  start-page: 6080
  year: 2010
  ident: ref_9
  article-title: High Creep Strength, Dispersion-Strengthened Iron Aluminide Prepared by Multidirectional High-Strain Forging
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.07.026
– volume: 21
  start-page: 621
  year: 1973
  ident: ref_73
  article-title: Anisotropy of Cleavage in B.C.C. Transition Metals
  publication-title: Acta Met.
  doi: 10.1016/0001-6160(73)90071-0
– volume: 67
  start-page: 21
  year: 2018
  ident: ref_7
  article-title: Role of Manufacturing towards Achieving Circular Economy: The Steel Case
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2018.04.049
– ident: ref_41
– volume: 38
  start-page: 5989
  year: 2013
  ident: ref_25
  article-title: Development of a Stable High-Aluminum Austenitic Stainless Steel for Hydrogen Applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.02.127
– volume: 213
  start-page: 114597
  year: 2022
  ident: ref_37
  article-title: Non-Cube-on-Cube Orientation Relationship between M23C6 and Austenite in an Austenitic Stainless Steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114597
– volume: 18
  start-page: 1629
  year: 1987
  ident: ref_24
  article-title: The Effect of Aluminum on the Work Hardening and Wear Resistance of Hadfield Manganese Steel
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/BF02646146
– volume: 57
  start-page: 4456
  year: 2003
  ident: ref_52
  article-title: X-Ray Diffraction Study of M7C3 Carbide within a High Chromium White Iron
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(03)00342-2
– volume: 43
  start-page: 3423
  year: 2012
  ident: ref_18
  article-title: Effect of Al on the NiAl-Type B2 Precipitates in Ferritic Superalloys
  publication-title: Met. Mat Trans A
  doi: 10.1007/s11661-012-1318-y
– volume: 115
  start-page: 132
  year: 2016
  ident: ref_33
  article-title: The Role of Aluminium in Chemical and Phase Segregation in a TRIP-Assisted Dual Phase Steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.046
– volume: 235
  start-page: 117985
  year: 2022
  ident: ref_53
  article-title: M7C3: The Story of a Misunderstood Carbide
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117985
– volume: 338
  start-page: 142
  year: 2002
  ident: ref_56
  article-title: The Effect of Ageing upon the Microstructure and Mechanical Properties of Type 15-5 PH Stainless Steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00062-X
– volume: 14
  start-page: 191
  year: 1983
  ident: ref_35
  article-title: Effect of Solidification Conditions on the Solidification Mode in Austenitic Stainless Steels
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/BF02651615
– volume: 68
  start-page: 384
  year: 2013
  ident: ref_50
  article-title: New Design Aspects of Creep-Resistant NiAl-Strengthened Ferritic Alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.10.040
– volume: 6
  start-page: 23137
  year: 2016
  ident: ref_20
  article-title: Load Partitioning between the Bcc-Iron Matrix and NiAl-Type Precipitates in a Ferritic Alloy on Multiple Length Scales
  publication-title: Sci. Rep.
  doi: 10.1038/srep23137
– volume: 649
  start-page: 301
  year: 2016
  ident: ref_47
  article-title: Influence of Al on the Temperature Dependence of Strain Hardening Behavior and Glide Planarity in Fe–Cr–Ni–Mn–C Austenitic Stainless Steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.10.005
– volume: 142
  start-page: 283
  year: 2018
  ident: ref_70
  article-title: Twinning-Induced Plasticity (TWIP) Steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.046
– volume: 46
  start-page: 1450
  year: 2015
  ident: ref_72
  article-title: Segregation-Induced Enhancement of Low-Temperature Tensile Ductility in a Cast High-Nitrogen Austenitic Stainless Steel Exhibiting Deformation-Induced A′ Martensite Formation
  publication-title: Met. Mat Trans A
  doi: 10.1007/s11661-015-2782-y
– volume: 64
  start-page: 1199
  year: 2008
  ident: ref_6
  article-title: Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2008.07.011
– volume: 98
  start-page: 391
  year: 2015
  ident: ref_68
  article-title: Size and Orientation Effects in Partial Dislocation-Mediated Deformation of Twinning-Induced Plasticity Steel Micro-Pillars
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.065
– volume: 37
  start-page: 1823
  year: 2002
  ident: ref_75
  article-title: Effect of Thermomechanical Treatment on the Properties of Fe-11Al and Fe-14Al Alloys
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014914310735
– ident: ref_49
  doi: 10.5772/67935
– volume: 706
  start-page: 584
  year: 2017
  ident: ref_21
  article-title: Primary and Secondary Precipitates in a Hierarchical-Precipitate-Strengthened Ferritic Alloy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.02.271
– volume: 425
  start-page: 202012
  year: 2013
  ident: ref_43
  article-title: PyFAI, a Versatile Library for Azimuthal Regrouping
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/425/20/202012
– volume: 14
  start-page: 014208
  year: 2013
  ident: ref_74
  article-title: Microstructure and Cleavage in Lath Martensitic Steels
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/14/1/014208
– ident: ref_40
– volume: 34
  start-page: 781
  year: 2003
  ident: ref_34
  article-title: Solidification, Segregation, and Banding in Carbon and Alloy Steels
  publication-title: Met. Mater. Trans B
  doi: 10.1007/s11663-003-0084-z
– volume: 487
  start-page: 171
  year: 2008
  ident: ref_51
  article-title: Effect of Heat Treatment on Microstructure and Mechanical Properties of a Ti-Bearing Hypereutectic High Chromium White Cast Iron
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.10.009
– volume: 11
  start-page: 596
  year: 2002
  ident: ref_65
  article-title: Stacking Fault Energy of Cryogenic Austenitic Steels
  publication-title: Chin. Phys.
  doi: 10.1088/1009-1963/11/6/315
– volume: 157
  start-page: 162
  year: 2018
  ident: ref_28
  article-title: Examining the Influence of Stacking Fault Width on Deformation Twinning in an Austenitic Stainless Steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.08.012
– volume: 65
  start-page: 682
  year: 2015
  ident: ref_11
  article-title: Effect of Aluminum on Microstructure, Mechanical Properties and Pitting Corrosion Resistance of Ultra-Pure 429 Ferritic Stainless Steels
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.09.074
– volume: 43
  start-page: 6214
  year: 2008
  ident: ref_30
  article-title: Effect of Al Content on Stacking Fault Energy in Austenitic Fe–Mn–Al–C Alloys
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2919-0
– volume: 60
  start-page: 2290
  year: 2012
  ident: ref_64
  article-title: In Situ Neutron Diffraction Study of the Microstructure and Tensile Deformation Behavior in Al-Added High Manganese Austenitic Steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.043
– volume: 40
  start-page: 3076
  year: 2009
  ident: ref_26
  article-title: Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-009-0050-8
– volume: 373
  start-page: 012005
  year: 2018
  ident: ref_32
  article-title: On the Origin of Subgrain Boundaries during Conventional Solidification of Austenitic Stainless Steels
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/373/1/012005
– ident: ref_12
– volume: 72
  start-page: 180
  year: 2021
  ident: ref_59
  article-title: Multi-Scale Study on the Heterogeneous Deformation Behavior in Duplex Stainless Steel
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.09.023
– ident: ref_13
  doi: 10.31399/asm.hb.mhde2.9781627081993
– ident: ref_1
  doi: 10.1016/B978-0-08-100270-4.00013-5
– volume: 66
  start-page: 1747
  year: 2014
  ident: ref_46
  article-title: Low-Density Steels: Complex Metallurgy for Automotive Applications
  publication-title: JOM
  doi: 10.1007/s11837-014-1084-y
– volume: 13
  start-page: 1263
  year: 2005
  ident: ref_54
  article-title: The Strengthening Effect of (Ni,Fe)Al Precipitates on the Mechanical Properties at High Temperatures of Ferritic Fe–Al–Ni–Cr Alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2004.07.048
– volume: 48
  start-page: 510
  year: 2015
  ident: ref_44
  article-title: The Fast Azimuthal Integration Python Library: PyFAI
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576715004306
– volume: 618
  start-page: 46
  year: 2014
  ident: ref_14
  article-title: Microstructure and Mechanical Properties of Al-Alloyed Fe–Cr–Ni–Mn–C Stainless Steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.09.001
– volume: 80
  start-page: 67
  year: 2009
  ident: ref_27
  article-title: Temperature Dependent Deformation Mechanisms of a High Nitrogen-Manganese Austenitic Stainless Steel
  publication-title: Steel Res. Int.
– volume: 808
  start-page: 140909
  year: 2021
  ident: ref_58
  article-title: Precipitation Reactions in 12Cr–3Ni–3Mn–3Cu–0.15Nb Steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.140909
– volume: 51
  start-page: 2847
  year: 2003
  ident: ref_2
  article-title: Deformation Behaviour of Iron-Rich Iron-Aluminum Alloys at Low Temperatures
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00089-2
– volume: 518
  start-page: 77
  year: 2015
  ident: ref_29
  article-title: Brittle Intermetallic Compound Makes Ultrastrong Low-Density Steel with Large Ductility
  publication-title: Nature
  doi: 10.1038/nature14144
SSID ssj0000331829
Score 2.3715143
Snippet Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5121
SubjectTerms Alloy systems
Aluminum
Chromium
Cooling
Corrosion resistance
Deformation
Density
Dilatometry
Duplex stainless steels
Ferrite
Intermetallic compounds
Iron constituents
Manganese
Mechanical properties
Microstructure
Nickel
Room temperature
Solidification
Stainless steel
Steel scrap
Sustainable materials
Temperature
X-ray diffraction
Yield stress
Title Microstructural Constituents and Mechanical Properties of Low-Density Fe-Cr-Ni-Mn-Al-C Stainless Steels
URI https://www.proquest.com/docview/2700746063
https://www.proquest.com/docview/2696010658
https://pubmed.ncbi.nlm.nih.gov/PMC9332424
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB58XPQgPrG-WNGLh8UmmybZk2i1itgiPqC3sNnMaqEmPiriv3cmTVsL4i0hSxZ2dma_eew3AIearynTsSVjdIEMPJNJjSqTISLBEbSZV6Zi2p3w6jG47ja6VcDtoyqrHNnE0lBnheUY-TEnSKOA4LY6eX2T3DWKs6tVC41ZmCcTHJPzNX920bm9G0dZ6or2rK-HvKSK_PvjF-OVXU18b_okmsDL6eLIX6dNaxmWKpgoTodyXYEZzFdh8Rd54Bo8tbmWbsj_ytwZgntvcuKfSyOEyTPRRr7Wy1IQtxxzf2fyVFE4cVN8yXOuXB98ixbK5rvs9GQ7l6d92RT3HCzokwGkJ6STcx0eWxcPzStZtU2QltzNgdQNpw0Bv9iQe-GMDZ11mYepSbWfIiFEtKGxPpK62igLTcNEqSK9Tl0apTq0agPm8iLHTRAGXews67whPxodgQcMY_qdCjICOvUaHI2WMLEVpzi3tugn5FvwcieT5a7BwXjs65BJ489ROyNJJJU2fSQT2ddgf_yZ9ICTGybH4pPGhLpMGTfiGkRTEhzPxkza01_y3nPJqK0V48pg6__Jt2HB58sP9Uj6agfmSMC4S5BkkO7BbNy63Kt2H71ddr0f93vnVQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED4x9rDxMPFrWhkMo7EHHiyaOE3iBzShslJGU00aSLxljnMeSCVh0AnxT_E37i5pWipNvPEWyZYj-c6-73x33wHsai5TJrMlY3SBDDyTS40qlyEiwRG0uVeFYpJh2D8Pvl90LhbgsamF4bTK5k6sLuq8tPxGvs8B0igguK2-3vyR3DWKo6tNC41aLU7x4Z5ctruDkyOS7xff73076_blpKuAtOSNjaXuOG0IF8WG0LczNnTW5R5mJtN-hgSg0IbG-kjabKM8NB0TZYrUPnNZlOnQKlr3FbwOlNJ8ouLe8fRNp63ohPi6ZkGl8fb-tfGqHiq-N2_3ZmB2PhXziW3rLcO7CSgVh7UWrcACFquw9ISqcA1-J5y5V7PNMlOH4E6fnGbAiRjCFLlIkIuIWebiB7_w3zJVqyidGJT38ojz5McPooeyeyuHVzIp5OFIdsVPfpoY0XVLX0h2eh3OX2Q738NiURb4AYRBFzvLN4whrx0dQRUMY1pOBTnBqnYL9potTO2EwZwbaYxS8mR4u9PZdrfg83TuTc3b8d9Zm40k0snZvUtnmtaCnekwnToOpZgCy780J9RVgLoTtyCak-D0b8zbPT9SXF1W_N1aMYoNNp7_-Ta86Z8lg3RwMjz9CG99LrtoR9JXm7BIwsYtAkPj7FOlgQJ-vbTK_wOuzyNd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxF2gKLgAOHVWyvY3sPqCpJo5Y2UQRU6s1dr2ehUmr3EVT1r_HrOuNH0kiIW2-WvNqVZmd3vtmZ-Qbgo-YyZTJbMkEXytA3udSochkhEhxBm_tVKGY8ifaOwm_H_eM1-NvWwnBaZXsnVhd1Xlp-I-9xgDQOCW6rnmvSIqbD0fb5heQOUhxpbdtp1CpygDfX5L5dfdkf0l5_CoLR7s_Bnmw6DEhLntlc6r7ThjBSYgiJO2MjZ13uY2YyHWRIYAptZGyApNk2ziPTN3Gm6AhkLoszHVlF8z6A9Zi8Iq8D6193J9PvixceT9F5CXTNiaqU9npnxq86qgT-qhVcQtvVxMw7lm70FJ40EFXs1Dr1DNaweA6P7xAXvoBfY87jq7lnmbdDcN9PTjrgtAxhilyMkUuKWQPElN_7L5m4VZROHJbXcshZ8_MbMUI5uJSTUzku5M5MDsQPfqiY0eVLX0hW-yUc3YtAX0GnKAt8DcKgS5zl-8aQD4-OgAtGCU2nwpxAlteFz60IU9vwmXNbjVlKfg2LO12KuwsfFmPPaxaPf47aancibU7yVbrUuy68X_ymM8iBFVNg-YfGRLoKV_eTLsQrO7hYjVm8V_8Up78rNm-tGNOGG_9f_B08JHVPD_cnB5vwKOAaDC-WgdqCDu01viFkNM_eNioo4OS-tf4WkZ0o7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+Constituents+and+Mechanical+Properties+of+Low-Density+Fe-Cr-Ni-Mn-Al-C+Stainless+Steels&rft.jtitle=Materials&rft.au=Scherbring%2C+Steffen&rft.au=Chen%2C+Guanghui&rft.au=Veltel%2C+Bastian&rft.au=Bartzsch%2C+Gert&rft.date=2022-07-23&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Fma15155121&rft_id=info%3Apmid%2F35897554&rft.externalDocID=PMC9332424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon