Geometrical dynamics of edge-driven accretive surface growth

Accretion of mineralized thin wall-like structures via localized growth along their edges is observed in physical and biological systems ranging from molluscan and brachiopod shells to carbonate–silica composite precipitates. To understand the shape of these mineralized structures, we develop a math...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 478; no. 2257
Main Authors Nadir Kaplan, C., Mahadevan, L.
Format Journal Article
LanguageEnglish
Published 26.01.2022
Online AccessGet full text

Cover

Loading…
Abstract Accretion of mineralized thin wall-like structures via localized growth along their edges is observed in physical and biological systems ranging from molluscan and brachiopod shells to carbonate–silica composite precipitates. To understand the shape of these mineralized structures, we develop a mathematical framework that treats the thin-walled shells as a smooth surface left in the wake of the growth front that can be described as an evolving space curve. Our theory then takes an explicit geometric form for the prescription of the velocity of the growth front curve, along with compatibility relations and a closure equation related to the nature of surface curling. Solutions of these equations capture a range of geometric precipitate patterns seen in abiotic and biotic forms across scales. In addition to providing a framework for the growth and form of these thin-walled morphologies, our theory suggests a new class of dynamical systems involving moving space curves that are compatible with non-Euclidean embeddings of surfaces.
AbstractList Accretion of mineralized thin wall-like structures via localized growth along their edges is observed in physical and biological systems ranging from molluscan and brachiopod shells to carbonate–silica composite precipitates. To understand the shape of these mineralized structures, we develop a mathematical framework that treats the thin-walled shells as a smooth surface left in the wake of the growth front that can be described as an evolving space curve. Our theory then takes an explicit geometric form for the prescription of the velocity of the growth front curve, along with compatibility relations and a closure equation related to the nature of surface curling. Solutions of these equations capture a range of geometric precipitate patterns seen in abiotic and biotic forms across scales. In addition to providing a framework for the growth and form of these thin-walled morphologies, our theory suggests a new class of dynamical systems involving moving space curves that are compatible with non-Euclidean embeddings of surfaces.
Author Mahadevan, L.
Nadir Kaplan, C.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0003-1314-1497
  surname: Nadir Kaplan
  fullname: Nadir Kaplan, C.
  organization: Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
– sequence: 2
  givenname: L.
  orcidid: 0000-0002-5114-0519
  surname: Mahadevan
  fullname: Mahadevan, L.
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA, Department of Physics, Harvard University, Cambridge, MA 02138, USA, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
BookMark eNotz81KAzEUBeAgFWyrW9d5gYy5uZM_cCNFq1Bwo-uQJpk60pkpyaj07Z1BV-fAgQPfiiz6oU-E3AKvgFtzl8vJV4ILqLhCc0GWUGtgwtZqMXVUNZPTeEVWpXxyzq00eknut2no0pjb4I80nnvftaHQoaEpHhKLuf1OPfUh5DROlZav3PiQ6CEPP-PHNbls_LGkm_9ck_enx7fNM9u9bl82DzsW0ODILPokvBeaawgKvAaBAjVIyWMw0e4hQhAJ7N6YGKXgGGVUVtXaoEJscE2qv9-Qh1Jyatwpt53PZwfczXY3291sd7MdfwH4-E6I
Cites_doi 10.1021/nn100575k
10.7717/peerj.383
10.1371/journal.pone.0036925
10.1666/07070.1
10.1103/PhysRevLett.51.1111
10.1098/rspa.2010.0138
10.1126/science.1090163
10.1017/CBO9780511606359
10.1002/pssa.200824453
10.1073/pnas.1007808108
10.1126/science.147.3663.1294
10.1073/pnas.0911954106
10.1103/RevModPhys.61.385
10.1137/0149007
10.1126/science.1234621
10.1038/35084000
10.1002/adma.202003999
10.1126/science.aah6350
10.1017/S0022112072002307
10.1103/PhysRevE.99.053001
10.1039/c3sm50660f
10.1002/chem.201102407
10.1093/oso/9780198520245.001.0001
10.1103/PhysRevE.57.4323
10.1088/1478-3975/9/6/066006
10.1098/rspa.2013.0604
10.1016/j.jmps.2008.12.004
10.1038/nature05545
10.1073/pnas.1220443110
10.1103/RevModPhys.52.1
10.1063/1.5089659
10.1103/RevModPhys.74.953
10.1021/acs.jpcc.7b09559
10.1016/j.jmps.2014.01.011
10.1021/acs.chemrev.5b00014
10.1103/PhysRevLett.119.048001
10.1063/1.1713333
10.1103/PhysRevLett.69.2603
10.1103/PhysRevLett.67.3203
10.1073/pnas.1709025114
10.1126/science.1165349
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1098/rspa.2021.0638
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1471-2946
ExternalDocumentID 10_1098_rspa_2021_0638
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
AAYXX
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADACV
ADBBV
ADODI
ADULT
AELPN
AEUPB
AEXZC
AFVYC
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AQVQM
AS~
BGBPD
BTFSW
CAG
CITATION
COF
DCCCD
DOOOF
DQDLB
DSRWC
EBS
ECEWR
EJD
FEDTE
FRP
H13
HGD
HH5
HQ3
HQ6
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NSAHA
OK1
OP1
RHF
RNS
ROL
RRY
SA0
TR2
V1E
W8F
WHG
XSW
YF5
ZCG
ZE2
~02
ID FETCH-LOGICAL-c383t-93ae2aa27071c61a71232371550dc8d9b1d1c2e19b88dd5203d5d6964783633f3
ISSN 1364-5021
IngestDate Thu Sep 26 16:13:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2257
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-93ae2aa27071c61a71232371550dc8d9b1d1c2e19b88dd5203d5d6964783633f3
ORCID 0000-0002-5114-0519
0000-0003-1314-1497
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2021.0638
ParticipantIDs crossref_primary_10_1098_rspa_2021_0638
PublicationCentury 2000
PublicationDate 2022-01-26
PublicationDateYYYYMMDD 2022-01-26
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-26
  day: 26
PublicationDecade 2020
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationYear 2022
References de Gennes PG (e_1_3_7_47_2) 1993
Doi M (e_1_3_7_2_2) 1986
e_1_3_7_40_2
Stoker JJ (e_1_3_7_9_2) 1969
e_1_3_7_43_2
e_1_3_7_44_2
e_1_3_7_22_2
e_1_3_7_41_2
e_1_3_7_21_2
e_1_3_7_42_2
e_1_3_7_24_2
e_1_3_7_23_2
e_1_3_7_48_2
e_1_3_7_26_2
e_1_3_7_45_2
e_1_3_7_25_2
e_1_3_7_46_2
e_1_3_7_28_2
e_1_3_7_27_2
e_1_3_7_29_2
Safran S (e_1_3_7_4_2) 1984
Simkiss K (e_1_3_7_20_2) 1989
Alnaes MS (e_1_3_7_35_2) 2015; 3
e_1_3_7_31_2
e_1_3_7_30_2
e_1_3_7_33_2
e_1_3_7_11_2
e_1_3_7_32_2
e_1_3_7_12_2
e_1_3_7_13_2
e_1_3_7_34_2
e_1_3_7_14_2
e_1_3_7_37_2
e_1_3_7_15_2
e_1_3_7_36_2
e_1_3_7_16_2
e_1_3_7_39_2
e_1_3_7_17_2
e_1_3_7_38_2
e_1_3_7_18_2
Millman RD (e_1_3_7_10_2) 1977
e_1_3_7_19_2
e_1_3_7_3_2
e_1_3_7_6_2
e_1_3_7_5_2
e_1_3_7_8_2
e_1_3_7_7_2
References_xml – ident: e_1_3_7_8_2
  doi: 10.1021/nn100575k
– ident: e_1_3_7_18_2
  doi: 10.7717/peerj.383
– ident: e_1_3_7_29_2
  doi: 10.1371/journal.pone.0036925
– volume-title: Biomineralization: cell biology and mineral deposition
  year: 1989
  ident: e_1_3_7_20_2
  contributor:
    fullname: Simkiss K
– ident: e_1_3_7_21_2
  doi: 10.1666/07070.1
– ident: e_1_3_7_12_2
  doi: 10.1103/PhysRevLett.51.1111
– ident: e_1_3_7_37_2
  doi: 10.1098/rspa.2010.0138
– ident: e_1_3_7_15_2
  doi: 10.1126/science.1090163
– volume: 3
  start-page: 100
  year: 2015
  ident: e_1_3_7_35_2
  article-title: The FEniCS Project Version 1.5
  publication-title: Arch. Numer. Softw.
  contributor:
    fullname: Alnaes MS
– ident: e_1_3_7_36_2
  doi: 10.1017/CBO9780511606359
– ident: e_1_3_7_6_2
  doi: 10.1002/pssa.200824453
– ident: e_1_3_7_40_2
  doi: 10.1073/pnas.1007808108
– ident: e_1_3_7_22_2
  doi: 10.1126/science.147.3663.1294
– ident: e_1_3_7_39_2
  doi: 10.1073/pnas.0911954106
– volume-title: Elements of differential geometry
  year: 1977
  ident: e_1_3_7_10_2
  contributor:
    fullname: Millman RD
– volume-title: Differential geometry
  year: 1969
  ident: e_1_3_7_9_2
  contributor:
    fullname: Stoker JJ
– ident: e_1_3_7_48_2
  doi: 10.1103/RevModPhys.61.385
– ident: e_1_3_7_31_2
  doi: 10.1137/0149007
– ident: e_1_3_7_17_2
  doi: 10.1126/science.1234621
– ident: e_1_3_7_24_2
  doi: 10.1038/35084000
– ident: e_1_3_7_45_2
  doi: 10.1002/adma.202003999
– ident: e_1_3_7_13_2
  doi: 10.1126/science.aah6350
– ident: e_1_3_7_33_2
  doi: 10.1017/S0022112072002307
– volume-title: Statistical thermodynamics of surfaces, interfaces, and membranes
  year: 1984
  ident: e_1_3_7_4_2
  contributor:
    fullname: Safran S
– ident: e_1_3_7_44_2
  doi: 10.1103/PhysRevE.99.053001
– ident: e_1_3_7_42_2
  doi: 10.1039/c3sm50660f
– ident: e_1_3_7_16_2
  doi: 10.1002/chem.201102407
– volume-title: The physics of liquid crystals
  year: 1993
  ident: e_1_3_7_47_2
  doi: 10.1093/oso/9780198520245.001.0001
  contributor:
    fullname: de Gennes PG
– ident: e_1_3_7_3_2
  doi: 10.1103/PhysRevE.57.4323
– ident: e_1_3_7_30_2
  doi: 10.1088/1478-3975/9/6/066006
– ident: e_1_3_7_38_2
  doi: 10.1098/rspa.2013.0604
– ident: e_1_3_7_41_2
  doi: 10.1016/j.jmps.2008.12.004
– ident: e_1_3_7_5_2
  doi: 10.1038/nature05545
– ident: e_1_3_7_19_2
  doi: 10.1073/pnas.1220443110
– ident: e_1_3_7_28_2
  doi: 10.1103/RevModPhys.52.1
– ident: e_1_3_7_26_2
  doi: 10.1063/1.5089659
– ident: e_1_3_7_11_2
  doi: 10.1103/RevModPhys.74.953
– ident: e_1_3_7_25_2
  doi: 10.1021/acs.jpcc.7b09559
– ident: e_1_3_7_7_2
  doi: 10.1016/j.jmps.2014.01.011
– ident: e_1_3_7_23_2
  doi: 10.1021/acs.chemrev.5b00014
– volume-title: The theory of polymer dynamics
  year: 1986
  ident: e_1_3_7_2_2
  contributor:
    fullname: Doi M
– ident: e_1_3_7_43_2
  doi: 10.1103/PhysRevLett.119.048001
– ident: e_1_3_7_27_2
  doi: 10.1063/1.1713333
– ident: e_1_3_7_32_2
  doi: 10.1103/PhysRevLett.69.2603
– ident: e_1_3_7_34_2
  doi: 10.1103/PhysRevLett.67.3203
– ident: e_1_3_7_46_2
  doi: 10.1073/pnas.1709025114
– ident: e_1_3_7_14_2
  doi: 10.1126/science.1165349
SSID ssj0009587
Score 2.3926709
Snippet Accretion of mineralized thin wall-like structures via localized growth along their edges is observed in physical and biological systems ranging from molluscan...
SourceID crossref
SourceType Aggregation Database
Title Geometrical dynamics of edge-driven accretive surface growth
Volume 478
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXNpDxaNVoYB8QGqryGli5-FIXBDiIWgRlUDiFjm2AwfYRbuhh_56ZmLn0WoPlEsUWetEmxnPfP7mYUL2uJSxTjMLCylJGXh8zirdMnGWW2MqGbXUxc-L7PQ6ObtJb4Zc1ba6pKlC_WdhXclrpApjIFeskv0PyfYPhQG4B_nCFSQM1xfJ-MROH_BErDbS4o6WbzMzkCNjZoaGLFBaY6HibxvMn2a1gmV8Czvv5m6MSi97LzbvcgYcreBzOsPgwNX1dC1e21MCPCvi7pF_t0Nvw8B71h6xXyhwnsG5erx3jOthOHDhd8pYH4_6EY5pCI75HMzVunvLKbKEpZErdw6tGwPPx3jhOUZvbpNcjvQKzEm-0JJHBVYnwN4em0PxOERoNfisLk7_jyvrEwxdaF2WOL_E-SXOf0NWONgjzPw7_yVHvZnbcxT7f9D39pTf_37_CLuMQMjVKnnvdw_0wKnCGlmyk3XybpDLfJ2seWs9p199S_FvG2R_pCm00xQ6relIU2ivKdRrCnWa8oFcHx9dHZ4yf24G00KKhhVCWa4UzwE-6ixWOcJmkeNm1Ghpiio2seY2LiopjUl5JExqMixJliITohYfyfJkOrGfCDVSRLaOEovRdgQ2UVTD0ha1AWgp62qTfOm-SPno2qOUi7_91ot_-Zm8HRRsmyw3sye7A8ivqXZbuT0D1BpW-g
link.rule.ids 315,783,787,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometrical+dynamics+of+edge-driven+accretive+surface+growth&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Nadir+Kaplan%2C+C.&rft.au=Mahadevan%2C+L.&rft.date=2022-01-26&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=478&rft.issue=2257&rft_id=info:doi/10.1098%2Frspa.2021.0638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rspa_2021_0638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon