A Single-Actuated Swimming Robot: Design, Modelling, and Experiments
This paper describes and investigates a simple swimming mechanism, which comprises two concentric bodies and two passive flaps. The mechanism propels itself forward by oscillating its inner body in a symmetric fashion using a single actuator. Using a few assumptions, we develop a simplified model to...
Saved in:
Published in | Journal of intelligent & robotic systems Vol. 94; no. 2; pp. 471 - 489 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0921-0296 1573-0409 |
DOI | 10.1007/s10846-018-0776-x |
Cover
Loading…
Abstract | This paper describes and investigates a simple swimming mechanism, which comprises two concentric bodies and two passive flaps. The mechanism propels itself forward by oscillating its inner body in a symmetric fashion using a single actuator. Using a few assumptions, we develop a simplified model to investigate the dynamics of the robot and to simulate its motion. Numerical simulations show the effect of design parameters and control inputs on the locomotion performance. Next, we show how changing the control input from symmetric to asymmetric oscillations leads to a turning motion, still using only a single motor. By modulating the asymmetry in the oscillatory input, the turning radius changes. We conclude with a validation of our model with a proof-of-concept prototype showing similar swimming motions. |
---|---|
AbstractList | This paper describes and investigates a simple swimming mechanism, which comprises two concentric bodies and two passive flaps. The mechanism propels itself forward by oscillating its inner body in a symmetric fashion using a single actuator. Using a few assumptions, we develop a simplified model to investigate the dynamics of the robot and to simulate its motion. Numerical simulations show the effect of design parameters and control inputs on the locomotion performance. Next, we show how changing the control input from symmetric to asymmetric oscillations leads to a turning motion, still using only a single motor. By modulating the asymmetry in the oscillatory input, the turning radius changes. We conclude with a validation of our model with a proof-of-concept prototype showing similar swimming motions. This paper describes and investigates a simple swimming mechanism, which h comprises two concentric bodies and two passive flaps. The mechanism propels itself forward by oscillating its inner body in a symmetric fashion using a single actuator. Using a few assumptions, we develop a simplified model to investigate the dynamics of the robot and to simulate its motion. Numerical simulations show the effect of design parameters and control inputs on the locomotion performance. Next, we show how changing the control input from symmetric to asymmetric oscillations leads to a turning motion, still using only a single motor. By modulating the asymmetry in the oscillatory input, the turning radius changes. We conclude with a validation of our model with a proof-of-concept prototype showing similar swimming motions. Keywords Underactuated robots * Dynamics * Marine robotics Mathematics Subject Classification 2010 70B15 |
Audience | Academic |
Author | Degani, Amir Refael, Gilad |
Author_xml | – sequence: 1 givenname: Gilad surname: Refael fullname: Refael, Gilad organization: Technion Autonomous Systems Program, Technion – Israel Institute of Technology – sequence: 2 givenname: Amir orcidid: 0000-0002-4813-8506 surname: Degani fullname: Degani, Amir email: adegani@technion.ac.il organization: Technion Autonomous Systems Program, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology |
BookMark | eNp9kd9rFDEQx4NU8Fr9A3xb8LWpk-Q2P3w72mqFimD1OSS7kyNlLzk3OTz_e3NsQRAs8zAw8_3MMPM9J2cpJyTkLYMrBqDeFwZ6LSkwTUEpSY8vyIr1SlBYgzkjKzCcUeBGviLnpTwCgNG9WZGbTfcQ03ZCuhnqwVUcu4dfcbdrte5b9rl-6G6wxG267L7kEaepNS47l8bu9rjHOe4w1fKavAxuKvjmKV-QHx9vv1_f0fuvnz5fb-7pILSoVCM33IdRee1QO4NcC-WlkF4G7lHI4HupA_DQu2BGwdQaceBSIffaeyEuyLtl7n7OPw9Yqn3Mhzm1lVYwI6HRCp5TcWB9L4zgp1lXi2rrJrQxhVxnN7QYcReH9twQW32jeG8041I2QC3AMOdSZgx2iNXVmFMD42QZ2JMTdnHCNifsyQl7bCT7h9y3x7n597MMX5jStGmL898j_g_9AZAXm9Q |
CitedBy_id | crossref_primary_10_1088_1748_3190_ab745e crossref_primary_10_1109_LRA_2020_3005383 crossref_primary_10_1063_5_0226743 crossref_primary_10_3390_act13060218 crossref_primary_10_1115_1_4051240 crossref_primary_10_3390_biomimetics7040145 |
Cites_doi | 10.1109/IROS.2006.282308 10.1109/ACC.2012.6315688 10.1088/0964-1726/14/6/051 10.1109/IROS.2003.1249259 10.1038/ncomms14189 10.1089/soro.2013.0009 10.1088/1748-3182/7/2/025001 10.1017/S0022112009006806 10.1109/JOE.2004.833117 10.1016/S1672-6529(09)60184-0 10.1109/IROS.2015.7353684 10.1088/0964-1726/22/1/014007 10.1119/1.10903 10.1109/ACC.2015.7170810 10.1109/ROBOT.2007.364246 10.1109/48.757275 10.1088/0964-1726/18/8/085002 10.1109/ROBOT.1995.525765 10.1109/TRO.2014.2382981 10.1109/IGCC.2012.6322263 10.1109/TRO.2013.2280058 10.1063/1.4874306 10.1007/BFb0119402 10.1109/TRO.2013.2251211 10.1098/rsif.2012.0666 10.1007/s11012-015-0286-x 10.1038/srep17414 10.1109/TRO.2013.2291617 10.1103/PhysRevE.79.045302 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V., part of Springer Nature 2018 COPYRIGHT 2019 Springer Journal of Intelligent & Robotic Systems is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. May 2019 |
Copyright_xml | – notice: Springer Science+Business Media B.V., part of Springer Nature 2018 – notice: COPYRIGHT 2019 Springer – notice: Journal of Intelligent & Robotic Systems is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. May 2019 |
DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10846-018-0776-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-0409 |
EndPage | 489 |
ExternalDocumentID | A725981266 10_1007_s10846_018_0776_x |
GrantInformation_xml | – fundername: Technion’s Center for Security Science and Technology-Israel Institute of Technology (IL) grantid: 2017765 |
GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ C6C CCPQU CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV L6V LAK LLZTM M0N M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAFWJ AARHV AASML AAYTO AAYXX ABDBE ABFSG ABQSL ACACY ACBXY ACSTC ACULB ADHKG AEBTG AEFIE AEKMD AEZWR AFEXP AFFNX AFGCZ AFGXO AFHIU AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE AYFIA BBWZM C24 CAG CITATION COF ICD KOW N2Q NDZJH OVD PHGZM PHGZT R4E RHV RNI RZC RZE RZK S1Z S26 S28 SCLPG SCV T16 TEORI AEIIB PMFND 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c383t-8e292bfd7b8ae8a9e2837b636b6f2be36fb568f02f5af9d3174eec267e2b8bb33 |
IEDL.DBID | BENPR |
ISSN | 0921-0296 |
IngestDate | Wed Aug 13 09:21:39 EDT 2025 Wed Aug 13 09:24:12 EDT 2025 Tue Jun 10 20:36:36 EDT 2025 Tue Jul 01 01:57:40 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:35:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 70B15 Underactuated robots Marine robotics Dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-8e292bfd7b8ae8a9e2837b636b6f2be36fb568f02f5af9d3174eec267e2b8bb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4813-8506 |
PQID | 2015539323 |
PQPubID | 326251 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3196056870 proquest_journals_2015539323 gale_infotracacademiconefile_A725981266 crossref_citationtrail_10_1007_s10846_018_0776_x crossref_primary_10_1007_s10846_018_0776_x springer_journals_10_1007_s10846_018_0776_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | with a special section on Unmanned Systems |
PublicationTitle | Journal of intelligent & robotic systems |
PublicationTitleAbbrev | J Intell Robot Syst |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | MohammadshahiDYousefi-komaABahmanyarSMalekiHDesign, fabrication and hydrodynamic analysis of a biomimetic robot fishInt. J. Mech.2008245966 HuangCLvJTianXWangYYuYLiuJMiniaturized swimming soft robot with complex movement actuated and controlled by remote light signalsSci. Rep.201551741410.1038/srep17414 LiuJHuHBiological Inspiration: From carangiform fish to multi-joint robotic fishJ. Bionic Eng.201071354810.1016/S1672-6529(09)60184-0 SarehSRossiterJConnADrescherKGoldsteinRESwimming like algae: Biomimetic soft artificial ciliaJ. R. Soc. Interface201210782012066610.1098/rsif.2012.0666 Kastner, R., Lin, A., Schurgers, C., Jaffe, J., Franks, P., Stewart, B. S.: Sensor platforms for multimodal underwater monitoring. In: 2012 Int. Green Comput. Conf. (IGCC), pp. 1–7 (2012) DillerEZhuangJZhan LumGEdwardsMRSittiMContinuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimmingAppl. Phys. Lett.20141041717410110.1063/1.4874306 KimH-JSongS-HAhnS-HA turtle-like swimming robot using a smart soft composite (SSC) structureSmart Mater. Struct.20132211400710.1088/0964-1726/22/1/014007 KansoESwimming due to transverse shape deformationsJ. Fluid Mech.2009631127148254228510.1017/S00221120090068061181.76033 Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.: Biomimetic propulsion for a swimming surgical micro-robot. In: Proc. 2003 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2003), pp. 2583–2588 (2003) SinghSNSimhaAMittalRBiorobotic AUV maneuvering by pectoral fins: Inverse control design based on CFD parameterizationIEEE J. Ocean. Eng.200429377778510.1109/JOE.2004.833117 JaffeJSA swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamicsNat. Commun.201781418910.1038/ncomms14189 YeomS-WOhI-KA biomimetic jellyfish robot based on ionic polymer metal composite actuatorsSmart Mater. Struct.20091888500210.1088/0964-1726/18/8/085002 YeZSittiMRotating magnetic miniature swimming robots with multiple flexible flagellaIEEE Trans. Robot.201430131310.1109/TRO.2013.2280058 OrYMurrayRMDynamics and stability of a class of low Reynolds number swimmers near a wallPhys. Rev. E - Stat. Nonlinear Soft Matter Phys.20097941410.1103/PhysRevE.79.045302 PurcellEMLife at low Reynolds numberAm. J. Phys197745131110.1119/1.10903 MarcheseADOnalCDRusDAutonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuatorsSoft Robot.201411758710.1089/soro.2013.0009 KimBKimD-HJungJParkJ-OA biomimetic undulatory tadpole robot using ionic polymer–metal composite actuatorsSmart Mater. Struct.20051461579158510.1088/0964-1726/14/6/051 StefaniniCA novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineersBioinspir. Biomim.2012722500110.1088/1748-3182/7/2/025001 Stackpole, E., Lang, D.: OpenROV. [Online]. Available: http://openrov.com (2012) SfakiotakisMLaneDMDaviesJBCBruceJDaviesCReview of fish swimming modes for aquatic locomotionIEEE J. Ocean. Eng.199924223725210.1109/48.757275 Kelly, S. D., Fairchild, M. J., Hassing, P. M., Tallapragada, P.: Proportional heading control for planar navigation: The Chaplygin beanie and fishlike robotic swimming. Am. Control Conf., pp. 4885–4890 (2012) Fukuda, T., Kawamoto, A., Arai, F., Matsuura, H.: Steering mechanism of underwater micro mobile robot. Proc. 1995 IEEE Int. Conf. Robot. Autom. (ICRA 1995), pp. 363–368 (1995) Takagi, K. et al.: Development of a rajiform swimming robot using ionic polymer artificial muscles. In: Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2006), pp. 1861–1866 (2006) DeganiADynamic single actuator robot climbing a chuteMeccanica201651512271243348655510.1007/s11012-015-0286-x1381.70023 Mason, R, Burdick, J: Construction and modelling of a carangiform robotic fish. In: Experimental Robotics VI, pp 235–242 (2000) ZarroukDFearingRSControlled in-plane locomotion of a hexapod using a single actuatorIEEE Trans. Robot.201531115716710.1109/TRO.2014.2382981 Crespi, A., Ijspeert, A. J.: AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In: Proc. 9th Int. Conf. Climbing Walk. Robot. (CLAWAR 2006), pp. 19–27 (2006) Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proc. 2007 IEEE Int. Conf. Robot. Autom. (ICRA 2007), pp. 4975–4980 (2007) HattonRChosetHGeometric swimming at low and high Reynolds numbersIEEE Trans. Robot.201329361562410.1109/TRO.2013.2251211 MazumdarAAsadaHHControl-configured design of spheroidal, appendage-free, underwater vehiclesIEEE Trans. Robot.201430244846010.1109/TRO.2013.2291617 Refael, G., Degani, A.: Momentum-driven single-actuated swimming robot. In: Proc. 2015 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2015), pp. 2285–2290 (2015) Tallapragada, P., A swimming robot with an internal rotor as a nonholonomic system. Am. Control Conf., pp. 657–662 (2015) JS Jaffe (776_CR2) 2017; 8 776_CR32 A Degani (776_CR24) 2016; 51 A Mazumdar (776_CR3) 2014; 30 E Diller (776_CR7) 2014; 104 EM Purcell (776_CR28) 1977; 45 776_CR6 776_CR18 776_CR4 776_CR16 776_CR5 AD Marchese (776_CR14) 2014; 1 E Kanso (776_CR30) 2009; 631 776_CR1 776_CR11 S-W Yeom (776_CR20) 2009; 18 R Hatton (776_CR31) 2013; 29 Z Ye (776_CR8) 2014; 30 J Liu (776_CR15) 2010; 7 M Sfakiotakis (776_CR10) 1999; 24 C Stefanini (776_CR12) 2012; 7 D Zarrouk (776_CR25) 2015; 31 776_CR21 H-J Kim (776_CR13) 2013; 22 B Kim (776_CR17) 2005; 14 S Sareh (776_CR19) 2012; 10 776_CR23 776_CR22 C Huang (776_CR9) 2015; 5 Y Or (776_CR29) 2009; 79 D Mohammadshahi (776_CR26) 2008; 2 SN Singh (776_CR27) 2004; 29 |
References_xml | – reference: KimH-JSongS-HAhnS-HA turtle-like swimming robot using a smart soft composite (SSC) structureSmart Mater. Struct.20132211400710.1088/0964-1726/22/1/014007 – reference: PurcellEMLife at low Reynolds numberAm. J. Phys197745131110.1119/1.10903 – reference: DillerEZhuangJZhan LumGEdwardsMRSittiMContinuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimmingAppl. Phys. Lett.20141041717410110.1063/1.4874306 – reference: StefaniniCA novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineersBioinspir. Biomim.2012722500110.1088/1748-3182/7/2/025001 – reference: Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.: Biomimetic propulsion for a swimming surgical micro-robot. In: Proc. 2003 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2003), pp. 2583–2588 (2003) – reference: HuangCLvJTianXWangYYuYLiuJMiniaturized swimming soft robot with complex movement actuated and controlled by remote light signalsSci. Rep.201551741410.1038/srep17414 – reference: SarehSRossiterJConnADrescherKGoldsteinRESwimming like algae: Biomimetic soft artificial ciliaJ. R. Soc. Interface201210782012066610.1098/rsif.2012.0666 – reference: OrYMurrayRMDynamics and stability of a class of low Reynolds number swimmers near a wallPhys. Rev. E - Stat. Nonlinear Soft Matter Phys.20097941410.1103/PhysRevE.79.045302 – reference: Refael, G., Degani, A.: Momentum-driven single-actuated swimming robot. In: Proc. 2015 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2015), pp. 2285–2290 (2015) – reference: Mason, R, Burdick, J: Construction and modelling of a carangiform robotic fish. In: Experimental Robotics VI, pp 235–242 (2000) – reference: Crespi, A., Ijspeert, A. J.: AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In: Proc. 9th Int. Conf. Climbing Walk. Robot. (CLAWAR 2006), pp. 19–27 (2006) – reference: SinghSNSimhaAMittalRBiorobotic AUV maneuvering by pectoral fins: Inverse control design based on CFD parameterizationIEEE J. Ocean. Eng.200429377778510.1109/JOE.2004.833117 – reference: MarcheseADOnalCDRusDAutonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuatorsSoft Robot.201411758710.1089/soro.2013.0009 – reference: KansoESwimming due to transverse shape deformationsJ. Fluid Mech.2009631127148254228510.1017/S00221120090068061181.76033 – reference: Fukuda, T., Kawamoto, A., Arai, F., Matsuura, H.: Steering mechanism of underwater micro mobile robot. Proc. 1995 IEEE Int. Conf. Robot. Autom. (ICRA 1995), pp. 363–368 (1995) – reference: Takagi, K. et al.: Development of a rajiform swimming robot using ionic polymer artificial muscles. In: Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2006), pp. 1861–1866 (2006) – reference: MohammadshahiDYousefi-komaABahmanyarSMalekiHDesign, fabrication and hydrodynamic analysis of a biomimetic robot fishInt. J. Mech.2008245966 – reference: DeganiADynamic single actuator robot climbing a chuteMeccanica201651512271243348655510.1007/s11012-015-0286-x1381.70023 – reference: MazumdarAAsadaHHControl-configured design of spheroidal, appendage-free, underwater vehiclesIEEE Trans. Robot.201430244846010.1109/TRO.2013.2291617 – reference: HattonRChosetHGeometric swimming at low and high Reynolds numbersIEEE Trans. Robot.201329361562410.1109/TRO.2013.2251211 – reference: Kastner, R., Lin, A., Schurgers, C., Jaffe, J., Franks, P., Stewart, B. S.: Sensor platforms for multimodal underwater monitoring. In: 2012 Int. Green Comput. Conf. (IGCC), pp. 1–7 (2012) – reference: Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proc. 2007 IEEE Int. Conf. Robot. Autom. (ICRA 2007), pp. 4975–4980 (2007) – reference: Tallapragada, P., A swimming robot with an internal rotor as a nonholonomic system. Am. Control Conf., pp. 657–662 (2015) – reference: LiuJHuHBiological Inspiration: From carangiform fish to multi-joint robotic fishJ. Bionic Eng.201071354810.1016/S1672-6529(09)60184-0 – reference: Stackpole, E., Lang, D.: OpenROV. [Online]. Available: http://openrov.com (2012) – reference: KimBKimD-HJungJParkJ-OA biomimetic undulatory tadpole robot using ionic polymer–metal composite actuatorsSmart Mater. Struct.20051461579158510.1088/0964-1726/14/6/051 – reference: YeZSittiMRotating magnetic miniature swimming robots with multiple flexible flagellaIEEE Trans. Robot.201430131310.1109/TRO.2013.2280058 – reference: YeomS-WOhI-KA biomimetic jellyfish robot based on ionic polymer metal composite actuatorsSmart Mater. Struct.20091888500210.1088/0964-1726/18/8/085002 – reference: JaffeJSA swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamicsNat. Commun.201781418910.1038/ncomms14189 – reference: Kelly, S. D., Fairchild, M. J., Hassing, P. M., Tallapragada, P.: Proportional heading control for planar navigation: The Chaplygin beanie and fishlike robotic swimming. Am. Control Conf., pp. 4885–4890 (2012) – reference: SfakiotakisMLaneDMDaviesJBCBruceJDaviesCReview of fish swimming modes for aquatic locomotionIEEE J. Ocean. Eng.199924223725210.1109/48.757275 – reference: ZarroukDFearingRSControlled in-plane locomotion of a hexapod using a single actuatorIEEE Trans. Robot.201531115716710.1109/TRO.2014.2382981 – ident: 776_CR18 doi: 10.1109/IROS.2006.282308 – ident: 776_CR4 doi: 10.1109/ACC.2012.6315688 – volume: 14 start-page: 1579 issue: 6 year: 2005 ident: 776_CR17 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/14/6/051 – ident: 776_CR22 doi: 10.1109/IROS.2003.1249259 – volume: 8 start-page: 14189 year: 2017 ident: 776_CR2 publication-title: Nat. Commun. doi: 10.1038/ncomms14189 – volume: 1 start-page: 75 issue: 1 year: 2014 ident: 776_CR14 publication-title: Soft Robot. doi: 10.1089/soro.2013.0009 – volume: 7 start-page: 25001 issue: 2 year: 2012 ident: 776_CR12 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3182/7/2/025001 – volume: 631 start-page: 127 year: 2009 ident: 776_CR30 publication-title: J. Fluid Mech. doi: 10.1017/S0022112009006806 – volume: 29 start-page: 777 issue: 3 year: 2004 ident: 776_CR27 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2004.833117 – volume: 7 start-page: 35 issue: 1 year: 2010 ident: 776_CR15 publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(09)60184-0 – ident: 776_CR32 doi: 10.1109/IROS.2015.7353684 – volume: 22 start-page: 14007 issue: 1 year: 2013 ident: 776_CR13 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/1/014007 – volume: 2 start-page: 59 issue: 4 year: 2008 ident: 776_CR26 publication-title: Int. J. Mech. – volume: 45 start-page: 3 issue: 1 year: 1977 ident: 776_CR28 publication-title: Am. J. Phys doi: 10.1119/1.10903 – ident: 776_CR5 doi: 10.1109/ACC.2015.7170810 – ident: 776_CR21 doi: 10.1109/ROBOT.2007.364246 – volume: 24 start-page: 237 issue: 2 year: 1999 ident: 776_CR10 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.757275 – volume: 18 start-page: 85002 issue: 8 year: 2009 ident: 776_CR20 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/8/085002 – ident: 776_CR23 doi: 10.1109/ROBOT.1995.525765 – volume: 31 start-page: 157 issue: 1 year: 2015 ident: 776_CR25 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2014.2382981 – ident: 776_CR1 doi: 10.1109/IGCC.2012.6322263 – volume: 30 start-page: 3 issue: 1 year: 2014 ident: 776_CR8 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2013.2280058 – volume: 104 start-page: 174101 issue: 17 year: 2014 ident: 776_CR7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4874306 – ident: 776_CR16 doi: 10.1007/BFb0119402 – volume: 29 start-page: 615 issue: 3 year: 2013 ident: 776_CR31 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2013.2251211 – volume: 10 start-page: 20120666 issue: 78 year: 2012 ident: 776_CR19 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0666 – volume: 51 start-page: 1227 issue: 5 year: 2016 ident: 776_CR24 publication-title: Meccanica doi: 10.1007/s11012-015-0286-x – volume: 5 start-page: 17414 year: 2015 ident: 776_CR9 publication-title: Sci. Rep. doi: 10.1038/srep17414 – volume: 30 start-page: 448 issue: 2 year: 2014 ident: 776_CR3 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2013.2291617 – ident: 776_CR6 – volume: 79 start-page: 1 issue: 4 year: 2009 ident: 776_CR29 publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.79.045302 – ident: 776_CR11 |
SSID | ssj0009859 |
Score | 2.2300181 |
Snippet | This paper describes and investigates a simple swimming mechanism, which comprises two concentric bodies and two passive flaps. The mechanism propels itself... This paper describes and investigates a simple swimming mechanism, which h comprises two concentric bodies and two passive flaps. The mechanism propels itself... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 471 |
SubjectTerms | Actuators Artificial Intelligence Asymmetry Composite materials Computer simulation Control Design parameters Electrical Engineering Engineering Experiments Flaps Locomotion Mathematical models Mechanical Engineering Mechatronics Numerical analysis Ordinary differential equations Reynolds number Robot dynamics Robot learning Robotics Robots Sensors Swimming |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SL3rwURVXq-QgCNrAmuxms94W21IEPVgLvYUkmwWhD7Er-vOd7KP1UQVvS5INYSaZ-YZkvkHojEP7FUBjIkzqk8BaRYRSlCimtKbUGlHUWLq75_1hcDsKR1Ue97x-7V5fSRaW-lOyG_hKCH0FcRQ0BIDjeuhCd9jEQ5osmXZFWBLsUYiTaczrq8xVU3xxRt9N8o-70cLl9HbQVoUVcVIqdxet2WkTbdd1GHB1LJto8xOp4B7qJHgAH2NLEpccAogSD96eJhNoww8zPcuvcad4ttHGrhBawcndxmqa4u6C7X--j4a97uNNn1S1EoiBGDMnwtKY6iyNtFBWqNg6VhvNGdc8o9oynumQi8ynWaiyOAXUAHoxlEeWaqE1YweoMZ1N7SHCcWjAbwtjbArhU8A1gyljlgZRlFmfZx7ya6FJUxGJu3oWY7mkQHZyliBn6eQs3z10sfjluWTR-GvwudOEdCcM5jWqShSA1TmuKplEELIBLuHcQ61aWbI6enNJi1JIAEvZym5ncgD0gZny0GWt32X3r6s6-tfoY7QB64jLl5Et1MhfXu0JoJdcnxa79QNOF-XQ priority: 102 providerName: Springer Nature |
Title | A Single-Actuated Swimming Robot: Design, Modelling, and Experiments |
URI | https://link.springer.com/article/10.1007/s10846-018-0776-x https://www.proquest.com/docview/2015539323 https://www.proquest.com/docview/3196056870 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vejBt1gfJQdBUAM1281mvciqraIoohb0FJJsFoTaqq3Yn-9kN2t933aTfYSZZOabPL4B2ORYvofQmAqTNmjTWkWFUoyqQGnNmDUiz7F0cclPO82zu_DOT7gN_LbK0ibmhjrtGzdHjkG6y3CDaCM4eHqmLmuUW131KTQmoYomWGDwVT1sXV5dj2l3RViw7TEMmlnMy3XN4vAc-l4MpQV1lDZ09MUzfbfPPxZKc__TnoMZDxxJUmh6HiZsbwFmy6QMxI_RBZj-xDC4CMcJucGLrqWJOymC8JLcvD08PmIZue7r_nCfHOd7OHaJy4qWE3TvEtVLSeuD-n-wBJ126_bolPrECdRgwDmkwrKY6SyNtFBWqNg6ihvNA655xrQNeKZDLrIGy0KVxSlCCFSSYTyyTAutg2AZKr1-z64AiUODTlwYY1OMpZpcB_jJOEibUZTZBs9q0CiFJo1nFXfJLbpyzIfs5CxRztLJWY5qsP3xylNBqfHfw1tOE9INN_yuUf7UALbOEVfJJML4DUEK5zVYL5Ul_TgcyHGv-bXa2R9EgGizarBT6ndc_WerVv__1xpM4U1c7Itch8rw5dVuIHYZ6jpMivZJHarJyf15q-67K5Z2WPIO28ntaA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5F9AA9UB6tCA3Uh1aV2lhKvbtebyWEIpI0FMihIRI31_Z6JSRIgKQK_VP9jZ3ZB2kL5cZtZe_DO2PPw4_vA3grsfwThsZcubTFQ-8NV8YIbgJjrRDeqZxj6WQg-6Pw61l0VoNf1VkY2lZZ2cTcUKcTR3PkmKQTww1GG8H-1TUn1ihaXa0oNIpuceR_zjFlm-4ddlC_74TodU8P-rxkFeAOs7EZV14kwmZpbJXxyiSe8F-sDKSVmbA-kJmNpMpaIotMlqToX_EPnJCxF1ZZSxOgaPKfhUGQ0IhSvS8LkF8VFdh-AlN0kchqFbU4qoeeHhN3xQlAh9_-5Qf_9Qb3lmVzb9dbg9UyTGXtol-tQ82PN-BFRQHBSouwAc__wDPchE6bDfHiwvM2nUvBYJYN5-eXl1jGvk3sZPaZdfIdI01GHGw5HHiTmXHKundEA9OXMHoSgb6CpfFk7LeAJZHDkEE551PM3EJpA3xlEqRhHGe-JbM6tCqhaVdimBOVxoVeoC-TnDXKWZOc9W0dPtw9clUAeDx283vShKbBje91pjyjgK0jmCzdjjFbxJBIyjo0KmXpctRP9aKPPlhN1g7jTbSQdfhY6XdR_d9WbT_-rTew3D89OdbHh4Oj17CCFUmxI7MBS7ObH34Ho6aZ3c27KoPvTz02fgMKlicQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5CRULsYRtsE924-AE0acNacBrHQZqmQltxrRAMiTfPdmxpErRs7QT8NX7dzsmFsrHxxlvkJI5zbJ-Lffx9AKsSyzfQNebK5RFveW-4MkZwExtrhfBOFRxLh325c9raO0vOpuC2PgtDaZW1TiwUdT50tEaOQTox3KC3EX8KVVrEUaf35fIHJwYp2mmt6TTKIbLvb64wfBt93u1gX68J0et-3d7hFcMAdxiZjbnyIhM25KlVxiuTecKCsTKWVgZhfSyDTaQKkQiJCVmOthb_xgmZemGVtbQYiup_OsWoKGrA9Fa3f3Q8gfxVSYn0JzBgF5ms91TLg3to9zGMV5zgdPj1H1bxb9vwYJO2sH29l_C8clpZuxxlczDlB_PwoiaEYJV-mIdn99ANX0GnzU7w4tzzNp1SQdeWnVx9v7jAMnY8tMPxJusU-SPrjBjZCnDwdWYGOeve0Q6MXsPpk4j0DTQGw4FfAJYlDh0I5ZzPMY5rSRtjlVmct9I0-EiGJkS10LSrEM2JWONcT7CYSc4a5axJzvq6CR_uXrks4Twee_g99YSmqY71OlOdWMDWEWiWbqcYO6KDJGUTFuvO0pUOGOnJiP3nbdJ96H2ivmzCx7p_J7f_26q3j39rBWZwXuiD3f7-O5jF8qxMz1yExvjnL7-ELtTYLldjlcG3p54evwHR2Syi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single-Actuated+Swimming+Robot%3A+Design%2C+Modelling%2C+and+Experiments&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Gilad+Refael&rft.au=Degani%2C+Amir&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=94&rft.issue=2&rft.spage=471&rft.epage=489&rft_id=info:doi/10.1007%2Fs10846-018-0776-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |