CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT

ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrai...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 819; no. 2; pp. 128 - 149
Main Authors Spacek, Alexander, Scannapieco, Evan, Cohen, Seth, Joshi, Bhavin, Mauskopf, Philip
Format Journal Article
LanguageEnglish
Published United Kingdom The American Astronomical Society 10.03.2016
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/0004-637X/819/2/128

Cover

Loading…
Abstract ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at , which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at and one with 924 galaxies at with typical stellar masses of We then co-add the emission around these galaxies, resulting in a measured tSZ signal at significance for the lower redshift bin and a contaminating signal at for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to for low redshifts and for high redshifts. We find the mean angularly integrated Compton-y values to be Mpc2 for low redshifts and Mpc2 for high redshifts, corresponding to total thermal energies of erg and erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation.
AbstractList Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. The numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation.
Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev–Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at z⩾0.5, which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at 0.5⩽z⩽1.0 and one with 924 galaxies at 1.0⩽z⩽1.5, with typical stellar masses of 1.5×10{sup 11}M{sub ⊙}. We then co-add the emission around these galaxies, resulting in a measured tSZ signal at 2.2σ significance for the lower redshift bin and a contaminating signal at 1.1σ for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to 3.6σ for low redshifts and 0.9σ for high redshifts. We find the mean angularly integrated Compton-y values to be 2.2{sub −0.7}{sup +0.9}×10{sup −7} Mpc{sup 2} for low redshifts and 1.7{sub −1.8}{sup +2.2}×10{sup −7} Mpc{sup 2} for high redshifts, corresponding to total thermal energies of 7.6{sub −2.3}{sup +3.0}×10{sup 60} erg and 6.0{sub −6.3}{sup +7.7}×10{sup 60} erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation.
ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at , which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at and one with 924 galaxies at with typical stellar masses of We then co-add the emission around these galaxies, resulting in a measured tSZ signal at significance for the lower redshift bin and a contaminating signal at for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to for low redshifts and for high redshifts. We find the mean angularly integrated Compton-y values to be Mpc2 for low redshifts and Mpc2 for high redshifts, corresponding to total thermal energies of erg and erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation.
Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev–Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at , which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at and one with 924 galaxies at with typical stellar masses of We then co-add the emission around these galaxies, resulting in a measured tSZ signal at significance for the lower redshift bin and a contaminating signal at for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to for low redshifts and for high redshifts. We find the mean angularly integrated Compton- y values to be Mpc 2 for low redshifts and Mpc 2 for high redshifts, corresponding to total thermal energies of erg and erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation.
Author Spacek, Alexander
Scannapieco, Evan
Cohen, Seth
Mauskopf, Philip
Joshi, Bhavin
Author_xml – sequence: 1
  givenname: Alexander
  surname: Spacek
  fullname: Spacek, Alexander
  organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA
– sequence: 2
  givenname: Evan
  surname: Scannapieco
  fullname: Scannapieco, Evan
  organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA
– sequence: 3
  givenname: Seth
  surname: Cohen
  fullname: Cohen, Seth
  organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA
– sequence: 4
  givenname: Bhavin
  surname: Joshi
  fullname: Joshi, Bhavin
  organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA
– sequence: 5
  givenname: Philip
  surname: Mauskopf
  fullname: Mauskopf, Philip
  organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA
BackLink https://www.osti.gov/biblio/22890143$$D View this record in Osti.gov
BookMark eNqFkc9vmzAUx62qk5p2-wt2sbTDdmHY2AZzZNQkqASiQLIfF4sao1GlkGJy2K1_eo1S7bDDevCznvT5vie9zzW47IdeA_ARo6-E08BFCFHHJ8EPl-PQ9Vzs8QuwwIxwhxIWXILFX-IKXBvzMLdeGC7Ac1zkZbWN0jzNlzBa5jAR4vZbFN_BNIfrqCzTvYAiy9JNlcZRVsLvabWCZbGzdVNkAlYiE2VcbARci6jcbcVa5FUJiwRWKzG_7TrKYLnLf0Zi7_wS2efbYp_GKyiSRMTVe_CurQ9Gf3j9b8AuEVW8crJiOS90FOFkcrhCqvV9jtk9a9U9RszXPsNBzTGiOGS0CRrKGKUsYCGnTaN0XSN7gKb2GhK25AZ8Os8dzNRJo7pJq99q6HutJul5PESYEkt9OVPHcXg6aTPJx84ofTjUvR5ORmKOOMYUefRtNOBBGFCfMIuGZ1SNgzGjbqVdX0_d0E9j3R0kRnLWKGcrcpYkrUbpSavRZsk_2ePYPdbjnzdS7jnVDUf5MJzG3t72v4kXplWkBg
CitedBy_id crossref_primary_10_3847_1538_4357_abb403
crossref_primary_10_1093_mnras_stz2751
crossref_primary_10_1007_s11214_018_0571_9
crossref_primary_10_1093_mnrasl_slw205
crossref_primary_10_3847_1538_4357_834_2_102
crossref_primary_10_3847_1538_4357_abf2b4
crossref_primary_10_3847_1538_4357_ace1e4
crossref_primary_10_1103_PhysRevD_105_023517
crossref_primary_10_3847_0004_637X_825_2_83
crossref_primary_10_1088_1361_6633_aa94d5
crossref_primary_10_1007_s11214_019_0581_2
crossref_primary_10_3847_1538_4357_aaf86b
crossref_primary_10_3847_1538_4357_aada01
crossref_primary_10_1093_mnrasl_sly215
crossref_primary_10_3847_1538_4357_acfd26
crossref_primary_10_3847_1538_4357_ab3db2
crossref_primary_10_3847_1538_4357_aa64d6
crossref_primary_10_3847_1538_4357_abe387
crossref_primary_10_1103_PhysRevD_97_063514
crossref_primary_10_1103_PhysRevD_97_083501
crossref_primary_10_1093_mnras_stx492
crossref_primary_10_1088_1475_7516_2016_08_058
crossref_primary_10_1088_1475_7516_2017_11_040
crossref_primary_10_3847_1538_4357_ab5b96
crossref_primary_10_3847_1538_4357_acdcf4
crossref_primary_10_3847_1538_3881_aace5f
crossref_primary_10_3847_1538_4357_aacf04
Cites_doi 10.1111/j.1365-2966.2007.12153.x
10.1088/0067-0049/216/2/27
10.1111/j.1365-2966.2009.15961.x
10.1093/mnras/202.3.615
10.1086/429549
10.1088/0004-637X/700/1/221
10.1086/426915
10.1086/659879
10.1086/170483
10.1086/377475
10.1086/376392
10.1051/aas:1996164
10.1046/j.1365-8711.2003.06897.x
10.1111/j.1365-2966.2009.15216.x
10.1093/mnras/stu2207
10.1093/mnras/stt1285
10.1088/0004-637X/709/2/611
10.1111/j.1365-2966.2008.13081.x
10.1086/508650
10.1093/mnras/179.4.541
10.1086/175105
10.1051/0004-6361/201321524
10.1111/j.1365-2966.2009.15058.x
10.1111/j.1365-2966.2004.07711.x
10.1111/j.1745-3933.2010.00881.x
10.1038/nature11096
10.1117/12.552473
10.1088/0004-6256/140/6/1868
10.1086/591786
10.1146/annurev-astro-081811-125521
10.1038/nature03202
10.1111/j.1365-2966.2008.13472.x
10.1086/588006
10.1093/mnras/183.3.341
10.1111/j.1365-2966.2008.14247.x
10.1088/0004-637X/762/1/49
10.1093/mnras/stv572
10.1111/j.1365-2966.2005.09192.x
10.1093/mnras/262.3.627
10.1088/2041-8205/798/2/L38
10.1111/j.1365-2966.2006.10519.x
10.1051/0004-6361:200811071
10.1086/319733
10.1086/318372
10.1086/307944
10.1093/mnras/264.1.201
10.1088/0004-637X/736/1/39
10.1086/429289
10.1086/517927
10.1086/499915
10.1086/378940
10.1051/0004-6361/200913811
10.1086/499271
10.1086/591176
10.1046/j.1365-8711.2003.06605.x
10.1088/0004-637X/706/1/525
10.1088/2041-8205/733/1/L16
10.1086/498109
10.1093/mnras/stt689
10.1080/01621459.1954.10501232
10.1086/115307
10.1088/0004-637X/762/1/10
10.1086/187501
10.1046/j.1365-8711.2002.05907.x
10.1093/mnras/stu1592
10.1111/j.1365-2966.2004.08147.x
10.1093/mnras/stu1632
10.1088/0004-637X/779/1/61
10.1086/528948
10.1093/mnras/stt1946
10.1086/591240
10.1088/0004-637X/782/2/69
10.1086/380106
10.1088/0004-637X/712/2/833
10.1086/507672
10.1086/191939
10.1088/0004-637X/802/2/89
10.1111/j.1365-2966.2012.21626.x
10.1086/155378
10.1086/588749
10.1086/305772
10.1111/j.1365-2966.2004.07881.x
10.1086/368392
10.1093/mnras/stu2058
10.1088/0004-637X/722/1/642
10.1086/344249
10.1086/118058
10.1088/0004-637X/776/1/27
10.1093/mnras/stt1354
10.1086/341002
10.1086/318996
10.1046/j.1365-8711.1999.02693.x
10.1086/149449
10.1086/512364
10.1088/2041-8205/775/1/L16
10.1364/AO.47.004418
10.1086/160817
10.1086/386542
10.1088/0004-637X/755/2/173
10.1086/175551
10.1007/BF00653471
10.1088/0004-637X/743/2/146
10.1111/j.1365-2966.2012.21512.x
10.1111/j.1745-3933.2012.01309.x
10.1086/429374
10.1086/383519
10.1051/0004-6361/201015164
10.1111/j.1365-2966.2007.12487.x
10.1086/518860
10.1111/j.1365-2966.2008.14077.x
10.1088/0004-637X/745/2/178
10.1111/j.1365-2966.2006.10918.x
10.1086/342308
10.1088/0004-637X/802/2/135
10.1088/0004-637X/757/1/83
10.1086/524106
10.1088/0004-637X/743/1/90
10.1086/154972
10.1093/mnras/stu1023
10.1086/425569
10.1051/0004-6361:20077910
10.1111/j.1365-2966.2008.13784.x
10.1088/0004-637X/725/1/91
10.1016/S0370-1573(98)00080-5
10.1086/375804
10.1046/j.1365-8711.2000.03077.x
10.1088/0004-637X/794/1/69
ContentType Journal Article
Copyright 2016. The American Astronomical Society. All rights reserved.
Copyright_xml – notice: 2016. The American Astronomical Society. All rights reserved.
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.3847/0004-637X/819/2/128
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

Meteorological & Geoastrophysical Abstracts - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT
EISSN 1538-4357
ExternalDocumentID 22890143
10_3847_0004_637X_819_2_128
apj522355
GeographicLocations Antarctica, South Pole
GeographicLocations_xml – name: Antarctica, South Pole
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c383t-8c0cf66815b5fcb1056e6517a81041954d7d45544575984ddceaa0538da2d39f3
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Fri May 19 01:42:43 EDT 2023
Thu Jul 10 20:04:02 EDT 2025
Fri Jul 11 05:45:28 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Tue Jul 01 01:05:19 EDT 2025
Wed Aug 21 03:33:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-8c0cf66815b5fcb1056e6517a81041954d7d45544575984ddceaa0538da2d39f3
Notes High Redshift
ApJ100317
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1787974635
PQPubID 23462
PageCount 22
ParticipantIDs proquest_miscellaneous_1808114024
crossref_citationtrail_10_3847_0004_637X_819_2_128
proquest_miscellaneous_1787974635
iop_journals_10_3847_0004_637X_819_2_128
crossref_primary_10_3847_0004_637X_819_2_128
osti_scitechconnect_22890143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-10
PublicationDateYYYYMMDD 2016-03-10
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-10
  day: 10
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2016
Publisher The American Astronomical Society
Publisher_xml – name: The American Astronomical Society
References Helou (apj522355bib60) 1988
Wright (apj522355bib140) 2010; 140
Costa (apj522355bib33) 2014; 444
Kriek (apj522355bib71) 2013; 775
Tremaine (apj522355bib129) 2002; 574
Kimm (apj522355bib68) 2012; 425
Schaye (apj522355bib119) 2015; 446
Carlstrom (apj522355bib21) 2011; 123
Ruan (apj522355bib112) 2015; 802
Battaglia (apj522355bib4) 2010; 725
White (apj522355bib137) 1991; 379
Brinchmann (apj522355bib15) 2004; 351
Wyithe (apj522355bib142) 2002; 581
White (apj522355bib138) 1978; 183
Kriek (apj522355bib72) 2009; 700
Hirschmann (apj522355bib62) 2014; 442
Schaffer (apj522355bib117) 2011; 743
Thacker (apj522355bib128) 2006; 653
Vergani (apj522355bib133) 2008; 487
Crichton (apj522355bib36) 2015
Platania (apj522355bib107) 2002; 337
Sunyaev (apj522355bib126) 1970; 7
Bundy (apj522355bib18) 2005; 625
Lapi (apj522355bib75) 2014; 782
Enoki (apj522355bib45) 2014; 794
Greco (apj522355bib57) 2014
Ishihara (apj522355bib64) 2010; 514
Merritt (apj522355bib83) 2001; 547
Fontanot (apj522355bib54) 2009; 397
Chartas (apj522355bib27) 2007; 133
Knigge (apj522355bib69) 2008; 386
Neistein (apj522355bib89) 2006; 372
Buchner (apj522355bib17) 2015; 802
Ganguly (apj522355bib55) 2008; 672
Brammer (apj522355bib14) 2008; 686
McNamara (apj522355bib79) 2005; 433
Dunn (apj522355bib42) 2010; 709
Cen (apj522355bib23) 2015a; 798
Fabian (apj522355bib46) 2012; 50
Merloni (apj522355bib82) 2008; 388
Murphy (apj522355bib87) 2010; 402
Fitzpatrick (apj522355bib53) 1999; 525
Richstone (apj522355bib111) 1998; 395
Kelly (apj522355bib67) 2014; 439
Hand (apj522355bib59) 2011; 736
Birkinshaw (apj522355bib9) 1999; 310
Page (apj522355bib95) 2012; 485
Moe (apj522355bib86) 2009; 706
Natarajan (apj522355bib88) 1997
Chen (apj522355bib31) 2009; 393
Chatterjee (apj522355bib30) 2007; 661
Oke (apj522355bib92) 1983; 266
Hewett (apj522355bib61) 2003; 125
Chatterjee (apj522355bib29) 2009
Wyithe (apj522355bib143) 2003; 595
Ueda (apj522355bib131) 2003; 598
Bauer (apj522355bib5) 2005; 621
Farrah (apj522355bib47) 2012; 745
Mocz (apj522355bib85) 2013; 432
Binney (apj522355bib8) 1977; 215
Schawinski (apj522355bib118) 2007; 382
Pipino (apj522355bib99) 2009; 392
Scannapieco (apj522355bib115) 2005; 635
Mocanu (apj522355bib84) 2013; 779
Arcila-Osejo (apj522355bib2) 2013; 435
Feldmann (apj522355bib49) 2015; 446
Chamberlain (apj522355bib26) 2015; 450
Cattaneo (apj522355bib22) 1999; 308
Cowie (apj522355bib35) 1996; 112
de Kool (apj522355bib38) 2001; 548
Conroy (apj522355bib32) 2010; 712
Best (apj522355bib7) 2005; 362
Eisenhardt (apj522355bib44) 2012; 755
Borguet (apj522355bib12) 2013; 762
Bleem (apj522355bib11) 2015; 216
Burns (apj522355bib19) 1990; 99
Kauffmann (apj522355bib66) 1993; 264
Hamann (apj522355bib58) 2001; 550
Ferrarese (apj522355bib50) 2002; 578
Desai (apj522355bib40) 2012; 757
Treu (apj522355bib130) 2005; 622
Sturm (apj522355bib125) 2011; 733
Faucher-Giguère (apj522355bib48) 2012; 425
Sunyaev (apj522355bib127) 1972; 4
Ruhl (apj522355bib113) 2004; 5498
Scannapieco (apj522355bib116) 2008; 678
Sijacki (apj522355bib121) 2007; 380
Anderson (apj522355bib1) 1954; 49
Padin (apj522355bib94) 2008; 47
Pei (apj522355bib98) 1995; 438
Debuhr (apj522355bib39) 2010; 406
McMahon (apj522355bib78) 2012; 37
Noeske (apj522355bib91) 2007; 660
Feruglio (apj522355bib51) 2010; 518
Planck Collaboration (apj522355bib106) 2015f
Lacey (apj522355bib73) 1993; 262
Cen (apj522355bib24) 2015b
Scannapieco (apj522355bib114) 2004; 608
Hirschmann (apj522355bib63) 2012; 426
Newton (apj522355bib90) 2013; 434
Wright (apj522355bib139) 1994; 91
Chatterjee (apj522355bib28) 2008; 390
Ostriker (apj522355bib93) 2010; 722
Yamamura (apj522355bib144) 2010; 2298
Bruzual (apj522355bib16) 2003; 344
Daddi (apj522355bib37) 2004; 617
Planck Collaboration (apj522355bib104) 2015d
Rafferty (apj522355bib108) 2008; 687
Rees (apj522355bib110) 1977; 179
Planck Collaboration (apj522355bib102) 2015c
Planck Collaboration (apj522355bib100) 2015a
Cameron (apj522355bib20) 2011; 743
Bîrzan (apj522355bib10) 2004; 607
Rafferty (apj522355bib109) 2006; 652
Drory (apj522355bib41) 2008; 680
Veilleux (apj522355bib132) 2013; 776
Simionescu (apj522355bib124) 2009; 495
Bower (apj522355bib13) 2006; 370
Dünner (apj522355bib43) 2013; 762
Peacock (apj522355bib97) 1983; 202
Silk (apj522355bib123) 1977; 211
Wampler (apj522355bib136) 1995; 443
Bertin (apj522355bib6) 1996; 117
Kauffmann (apj522355bib65) 2000; 311
Planck Collaboration (apj522355bib103) 2014; 571
Bruggen (apj522355bib145) 2009; 398
Mauch (apj522355bib77) 2003; 342
Feulner (apj522355bib52) 2005; 633
Barger (apj522355bib3) 2005; 129
Wuyts (apj522355bib141) 2008; 682
Cowie (apj522355bib34) 2008; 686
Papovich (apj522355bib96) 2006; 640
Silk (apj522355bib122) 1968; 151
Chabrier (apj522355bib25) 2003; 115
Planck Collaboration (apj522355bib105) 2015e
Schlegel (apj522355bib120) 1998; 500
Kodama (apj522355bib70) 2004; 350
Lapi (apj522355bib74) 2003; 597
Gralla (apj522355bib56) 2014; 445
Voit (apj522355bib135) 1994; 432
Merloni (apj522355bib81) 2004; 353
Planck Collaboration (apj522355bib101) 2015b
Voges (apj522355bib134) 1999; 349
Marconi (apj522355bib76) 2003; 589
References_xml – volume: 380
  start-page: 877
  year: 2007
  ident: apj522355bib121
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12153.x
– volume: 216
  start-page: 27
  year: 2015
  ident: apj522355bib11
  publication-title: ApJS
  doi: 10.1088/0067-0049/216/2/27
– volume: 402
  start-page: 2403
  year: 2010
  ident: apj522355bib87
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15961.x
– volume: 202
  start-page: 615
  year: 1983
  ident: apj522355bib97
  publication-title: MNRAS
  doi: 10.1093/mnras/202.3.615
– volume: 625
  start-page: 621
  year: 2005
  ident: apj522355bib18
  publication-title: ApJ
  doi: 10.1086/429549
– volume: 700
  start-page: 221
  year: 2009
  ident: apj522355bib72
  publication-title: ApJ
  doi: 10.1088/0004-637X/700/1/221
– volume: 129
  start-page: 578
  year: 2005
  ident: apj522355bib3
  publication-title: AJ
  doi: 10.1086/426915
– volume: 123
  start-page: 568
  year: 2011
  ident: apj522355bib21
  publication-title: PASP
  doi: 10.1086/659879
– volume: 379
  start-page: 52
  year: 1991
  ident: apj522355bib137
  publication-title: ApJ
  doi: 10.1086/170483
– volume: 595
  start-page: 614
  year: 2003
  ident: apj522355bib143
  publication-title: ApJ
  doi: 10.1086/377475
– volume: 115
  start-page: 763
  year: 2003
  ident: apj522355bib25
  publication-title: PASP
  doi: 10.1086/376392
– volume: 117
  start-page: 393
  year: 1996
  ident: apj522355bib6
  publication-title: A&AS
  doi: 10.1051/aas:1996164
– volume: 344
  start-page: 1000
  year: 2003
  ident: apj522355bib16
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06897.x
– volume: 398
  start-page: 548
  year: 2009
  ident: apj522355bib145
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15216.x
– volume: 2298
  start-page: 0
  year: 2010
  ident: apj522355bib144
  publication-title: yCat
– volume: 446
  start-page: 1939
  year: 2015
  ident: apj522355bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2207
– volume: 37
  year: 2012
  ident: apj522355bib78
– volume: 434
  start-page: 3606
  year: 2013
  ident: apj522355bib90
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1285
– volume: 709
  start-page: 611
  year: 2010
  ident: apj522355bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/709/2/611
– volume: 386
  start-page: 1426
  year: 2008
  ident: apj522355bib69
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13081.x
– volume: 653
  start-page: 86
  year: 2006
  ident: apj522355bib128
  publication-title: ApJ
  doi: 10.1086/508650
– volume: 179
  start-page: 541
  year: 1977
  ident: apj522355bib110
  publication-title: MNRAS
  doi: 10.1093/mnras/179.4.541
– volume: 438
  start-page: 623
  year: 1995
  ident: apj522355bib98
  publication-title: ApJ
  doi: 10.1086/175105
– volume: 571
  start-page: A28
  year: 2014
  ident: apj522355bib103
  publication-title: A&A
  doi: 10.1051/0004-6361/201321524
– volume: 397
  start-page: 1776
  year: 2009
  ident: apj522355bib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15058.x
– volume: 350
  start-page: 1005
  year: 2004
  ident: apj522355bib70
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07711.x
– volume: 406
  start-page: L55
  year: 2010
  ident: apj522355bib39
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2010.00881.x
– volume: 485
  start-page: 213
  year: 2012
  ident: apj522355bib95
  publication-title: Natur
  doi: 10.1038/nature11096
– volume: 5498
  start-page: 11
  year: 2004
  ident: apj522355bib113
  publication-title: Proc. SPIE
  doi: 10.1117/12.552473
– volume: 395
  start-page: A14
  year: 1998
  ident: apj522355bib111
  publication-title: Natur
– volume: 349
  start-page: 389
  year: 1999
  ident: apj522355bib134
  publication-title: A&A
– volume: 140
  start-page: 1868
  year: 2010
  ident: apj522355bib140
  publication-title: AJ
  doi: 10.1088/0004-6256/140/6/1868
– volume: 686
  start-page: 1503
  year: 2008
  ident: apj522355bib14
  publication-title: ApJ
  doi: 10.1086/591786
– volume: 50
  start-page: 455
  year: 2012
  ident: apj522355bib46
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125521
– volume: 433
  start-page: 45
  year: 2005
  ident: apj522355bib79
  publication-title: Natur
  doi: 10.1038/nature03202
– volume: 388
  start-page: 1011
  year: 2008
  ident: apj522355bib82
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13472.x
– volume: 680
  start-page: 41
  year: 2008
  ident: apj522355bib41
  publication-title: ApJ
  doi: 10.1086/588006
– volume: 183
  start-page: 341
  year: 1978
  ident: apj522355bib138
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.341
– volume: 393
  start-page: 406
  year: 2009
  ident: apj522355bib31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14247.x
– volume: 762
  start-page: 49
  year: 2013
  ident: apj522355bib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/762/1/49
– volume: 450
  start-page: 1085
  year: 2015
  ident: apj522355bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stv572
– volume: 362
  start-page: 25
  year: 2005
  ident: apj522355bib7
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09192.x
– volume: 262
  start-page: 627
  year: 1993
  ident: apj522355bib73
  publication-title: MNRAS
  doi: 10.1093/mnras/262.3.627
– volume: 798
  start-page: L38
  year: 2015a
  ident: apj522355bib23
  publication-title: ApJL
  doi: 10.1088/2041-8205/798/2/L38
– volume: 370
  start-page: 645
  year: 2006
  ident: apj522355bib13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10519.x
– volume: 495
  start-page: 721
  year: 2009
  ident: apj522355bib124
  publication-title: A&A
  doi: 10.1051/0004-6361:200811071
– volume: 550
  start-page: 142
  year: 2001
  ident: apj522355bib58
  publication-title: ApJ
  doi: 10.1086/319733
– volume: 547
  start-page: 140
  year: 2001
  ident: apj522355bib83
  publication-title: ApJ
  doi: 10.1086/318372
– volume: 525
  start-page: 1011
  year: 1999
  ident: apj522355bib53
  publication-title: ApJ
  doi: 10.1086/307944
– volume: 264
  start-page: 201
  year: 1993
  ident: apj522355bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/264.1.201
– volume: 736
  start-page: 39
  year: 2011
  ident: apj522355bib59
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/1/39
– volume: 621
  start-page: L89
  year: 2005
  ident: apj522355bib5
  publication-title: ApJL
  doi: 10.1086/429289
– year: 2015e
  ident: apj522355bib105
– volume: 660
  start-page: L47
  year: 2007
  ident: apj522355bib91
  publication-title: ApJL
  doi: 10.1086/517927
– volume: 640
  start-page: 92
  year: 2006
  ident: apj522355bib96
  publication-title: ApJ
  doi: 10.1086/499915
– year: 2015d
  ident: apj522355bib104
– volume: 598
  start-page: 886
  year: 2003
  ident: apj522355bib131
  publication-title: ApJ
  doi: 10.1086/378940
– volume: 514
  start-page: A1
  year: 2010
  ident: apj522355bib64
  publication-title: A&A
  doi: 10.1051/0004-6361/200913811
– volume: 635
  start-page: L13
  year: 2005
  ident: apj522355bib115
  publication-title: ApJL
  doi: 10.1086/499271
– volume: 686
  start-page: 72
  year: 2008
  ident: apj522355bib34
  publication-title: ApJ
  doi: 10.1086/591176
– volume: 342
  start-page: 1117
  year: 2003
  ident: apj522355bib77
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06605.x
– volume: 706
  start-page: 525
  year: 2009
  ident: apj522355bib86
  publication-title: ApJ
  doi: 10.1088/0004-637X/706/1/525
– year: 2015c
  ident: apj522355bib102
– volume: 733
  start-page: L16
  year: 2011
  ident: apj522355bib125
  publication-title: ApJL
  doi: 10.1088/2041-8205/733/1/L16
– volume: 633
  start-page: L9
  year: 2005
  ident: apj522355bib52
  publication-title: ApJL
  doi: 10.1086/498109
– year: 1988
  ident: apj522355bib60
  publication-title: Infrared Astronomical Satellite (IRAS) Catalogs and Atlases
– volume: 432
  start-page: 3381
  year: 2013
  ident: apj522355bib85
  publication-title: MNRAS
  doi: 10.1093/mnras/stt689
– volume: 49
  start-page: 765
  year: 1954
  ident: apj522355bib1
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1954.10501232
– volume: 99
  start-page: 14
  year: 1990
  ident: apj522355bib19
  publication-title: AJ
  doi: 10.1086/115307
– volume: 762
  start-page: 10
  year: 2013
  ident: apj522355bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/762/1/10
– volume: 432
  start-page: L19
  year: 1994
  ident: apj522355bib135
  publication-title: ApJL
  doi: 10.1086/187501
– volume: 337
  start-page: 242
  year: 2002
  ident: apj522355bib107
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05907.x
– volume: 445
  start-page: 460
  year: 2014
  ident: apj522355bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1592
– volume: 353
  start-page: 1035
  year: 2004
  ident: apj522355bib81
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08147.x
– volume: 444
  start-page: 2355
  year: 2014
  ident: apj522355bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1632
– volume: 4
  start-page: 173
  year: 1972
  ident: apj522355bib127
  publication-title: CoASP
– volume: 779
  start-page: 61
  year: 2013
  ident: apj522355bib84
  publication-title: ApJ
  doi: 10.1088/0004-637X/779/1/61
– volume: 678
  start-page: 674
  year: 2008
  ident: apj522355bib116
  publication-title: ApJ
  doi: 10.1086/528948
– year: 2015
  ident: apj522355bib36
– volume: 439
  start-page: 28
  year: 2014
  ident: apj522355bib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1946
– volume: 687
  start-page: 899
  year: 2008
  ident: apj522355bib108
  publication-title: ApJ
  doi: 10.1086/591240
– volume: 782
  start-page: 69
  year: 2014
  ident: apj522355bib75
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/2/69
– year: 1997
  ident: apj522355bib88
– volume: 597
  start-page: L93
  year: 2003
  ident: apj522355bib74
  publication-title: ApJL
  doi: 10.1086/380106
– volume: 712
  start-page: 833
  year: 2010
  ident: apj522355bib32
  publication-title: ApJ
  doi: 10.1088/0004-637X/712/2/833
– volume: 652
  start-page: 216
  year: 2006
  ident: apj522355bib109
  publication-title: ApJ
  doi: 10.1086/507672
– volume: 91
  start-page: 111
  year: 1994
  ident: apj522355bib139
  publication-title: ApJS
  doi: 10.1086/191939
– volume: 802
  start-page: 89
  year: 2015
  ident: apj522355bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/802/2/89
– year: 2014
  ident: apj522355bib57
– volume: 426
  start-page: 237
  year: 2012
  ident: apj522355bib63
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21626.x
– volume: 215
  start-page: 483
  year: 1977
  ident: apj522355bib8
  publication-title: ApJ
  doi: 10.1086/155378
– volume: 682
  start-page: 985
  year: 2008
  ident: apj522355bib141
  publication-title: ApJ
  doi: 10.1086/588749
– volume: 500
  start-page: 525
  year: 1998
  ident: apj522355bib120
  publication-title: ApJ
  doi: 10.1086/305772
– volume: 351
  start-page: 1151
  year: 2004
  ident: apj522355bib15
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07881.x
– volume: 125
  start-page: 1784
  year: 2003
  ident: apj522355bib61
  publication-title: AJ
  doi: 10.1086/368392
– volume: 446
  start-page: 521
  year: 2015
  ident: apj522355bib119
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2058
– year: 2015b
  ident: apj522355bib24
– volume: 722
  start-page: 642
  year: 2010
  ident: apj522355bib93
  publication-title: ApJ
  doi: 10.1088/0004-637X/722/1/642
– volume: 581
  start-page: 886
  year: 2002
  ident: apj522355bib142
  publication-title: ApJ
  doi: 10.1086/344249
– volume: 112
  start-page: 839
  year: 1996
  ident: apj522355bib35
  publication-title: AJ
  doi: 10.1086/118058
– volume: 776
  start-page: 27
  year: 2013
  ident: apj522355bib132
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/1/27
– volume: 435
  start-page: 845
  year: 2013
  ident: apj522355bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1354
– volume: 574
  start-page: 740
  year: 2002
  ident: apj522355bib129
  publication-title: ApJ
  doi: 10.1086/341002
– volume: 548
  start-page: 609
  year: 2001
  ident: apj522355bib38
  publication-title: ApJ
  doi: 10.1086/318996
– year: 2009
  ident: apj522355bib29
– volume: 308
  start-page: 77
  year: 1999
  ident: apj522355bib22
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02693.x
– volume: 151
  start-page: 459
  year: 1968
  ident: apj522355bib122
  publication-title: ApJ
  doi: 10.1086/149449
– volume: 133
  start-page: 1849
  year: 2007
  ident: apj522355bib27
  publication-title: AJ
  doi: 10.1086/512364
– year: 2015b
  ident: apj522355bib101
– volume: 775
  start-page: L16
  year: 2013
  ident: apj522355bib71
  publication-title: ApJL
  doi: 10.1088/2041-8205/775/1/L16
– volume: 47
  start-page: 4418
  year: 2008
  ident: apj522355bib94
  publication-title: ApOpt
  doi: 10.1364/AO.47.004418
– volume: 266
  start-page: 713
  year: 1983
  ident: apj522355bib92
  publication-title: ApJ
  doi: 10.1086/160817
– volume: 608
  start-page: 62
  year: 2004
  ident: apj522355bib114
  publication-title: ApJ
  doi: 10.1086/386542
– volume: 755
  start-page: 173
  year: 2012
  ident: apj522355bib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/173
– volume: 443
  start-page: 586
  year: 1995
  ident: apj522355bib136
  publication-title: ApJ
  doi: 10.1086/175551
– volume: 7
  start-page: 3
  year: 1970
  ident: apj522355bib126
  publication-title: Ap&SS
  doi: 10.1007/BF00653471
– volume: 743
  start-page: 146
  year: 2011
  ident: apj522355bib20
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/2/146
– volume: 425
  start-page: 605
  year: 2012
  ident: apj522355bib48
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21512.x
– volume: 425
  start-page: L96
  year: 2012
  ident: apj522355bib68
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2012.01309.x
– volume: 622
  start-page: L5
  year: 2005
  ident: apj522355bib130
  publication-title: ApJL
  doi: 10.1086/429374
– volume: 607
  start-page: 800
  year: 2004
  ident: apj522355bib10
  publication-title: ApJ
  doi: 10.1086/383519
– volume: 518
  start-page: L155
  year: 2010
  ident: apj522355bib51
  publication-title: A&A
  doi: 10.1051/0004-6361/201015164
– volume: 382
  start-page: 1415
  year: 2007
  ident: apj522355bib118
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12487.x
– volume: 661
  start-page: L113
  year: 2007
  ident: apj522355bib30
  publication-title: ApJL
  doi: 10.1086/518860
– volume: 392
  start-page: 475
  year: 2009
  ident: apj522355bib99
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14077.x
– volume: 745
  start-page: 178
  year: 2012
  ident: apj522355bib47
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/2/178
– volume: 372
  start-page: 933
  year: 2006
  ident: apj522355bib89
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10918.x
– volume: 578
  start-page: 90
  year: 2002
  ident: apj522355bib50
  publication-title: ApJ
  doi: 10.1086/342308
– volume: 802
  start-page: 135
  year: 2015
  ident: apj522355bib112
  publication-title: ApJ
  doi: 10.1088/0004-637X/802/2/135
– volume: 757
  start-page: 83
  year: 2012
  ident: apj522355bib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/1/83
– volume: 672
  start-page: 102
  year: 2008
  ident: apj522355bib55
  publication-title: ApJ
  doi: 10.1086/524106
– volume: 743
  start-page: 90
  year: 2011
  ident: apj522355bib117
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/1/90
– volume: 211
  start-page: 638
  year: 1977
  ident: apj522355bib123
  publication-title: ApJ
  doi: 10.1086/154972
– volume: 442
  start-page: 2304
  year: 2014
  ident: apj522355bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1023
– volume: 617
  start-page: 746
  year: 2004
  ident: apj522355bib37
  publication-title: ApJ
  doi: 10.1086/425569
– volume: 487
  start-page: 89
  year: 2008
  ident: apj522355bib133
  publication-title: A&A
  doi: 10.1051/0004-6361:20077910
– year: 2015f
  ident: apj522355bib106
– year: 2015a
  ident: apj522355bib100
– volume: 390
  start-page: 535
  year: 2008
  ident: apj522355bib28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13784.x
– volume: 725
  start-page: 91
  year: 2010
  ident: apj522355bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/1/91
– volume: 310
  start-page: 97
  year: 1999
  ident: apj522355bib9
  publication-title: PhR
  doi: 10.1016/S0370-1573(98)00080-5
– volume: 589
  start-page: L21
  year: 2003
  ident: apj522355bib76
  publication-title: ApJL
  doi: 10.1086/375804
– volume: 311
  start-page: 576
  year: 2000
  ident: apj522355bib65
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03077.x
– volume: 794
  start-page: 69
  year: 2014
  ident: apj522355bib45
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/69
SSID ssj0004299
Score 2.4118316
Snippet ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution...
Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128
SubjectTerms Active galactic nuclei
Astronomical models
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BACKGROUND RADIATION
Computer simulation
COMPUTERIZED SIMULATION
Constraining
cosmic background radiation
COSMIC DUST
COSMOLOGY
DETECTION
EMISSION
Feedback
GALAXIES
galaxies: evolution
GALAXY NUCLEI
intergalactic medium
large-scale structure of universe
Pollution sources
QUASARS
quasars: general
RED SHIFT
RELICT RADIATION
Stacking
Sunyaev-Zeldovich effect
TELESCOPES
UNIVERSE
Title CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT
URI https://iopscience.iop.org/article/10.3847/0004-637X/819/2/128
https://www.proquest.com/docview/1787974635
https://www.proquest.com/docview/1808114024
https://www.osti.gov/biblio/22890143
Volume 819
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLboEBIXBAO0sjEZCQEHTInj_PAxZO4SaJNoTbvCxXLs5MSaiXYHbvzpPCcZCCEqDol8sBPLz-_5e8_29xB66XrcDbVniE-ZIszRnCjtKkIbqoOK-o2jbbxjnvnJkn1ce-sh4NbdhWmvB9P_Doo9UXA_hFa_XbCl9u4BI74brCewmk3oBCzsCN11Qz-0zlfuXv6-F0n5AH_7Bj3r0L8-8sfKNIK_g5VuQc_-stLd0jN9iB4MmBFHfQ8foTv15hAdRVsbxW6vvuNXuCv3QYrtIbpX9KXH6EecZzYrcpql2TmOzjM8FeLsQxR_wmmG5xGY0pXAAhz6orTECAt8mZYJXuRLeBf5TOBSzMQizguB5wJM8EVH_r_A-RSXibDPxTya4cUy-xyJFfkiZq_P8lUaJxgAsIjLJ2g5FWWckCHnAtHgq-5IqN_rxvdDx6u8RleAvvza95xAheC3WXY4ExjmWQafwOMhM0bXSoEih0ZR4_LGfYoONu2mPkIYwKKqTMgV5zVTNat4ExhqnJBXgIG0N0b0drylHgjJbV6MrxIcEyskuzHOpBWSBCFJKkFIY_T2V6Prno9jf_U3IEg56OV2f9UTK20J08_S52p7zkjvJLU7sQAqx-jF7SyQoIF2W0Vt6vYGvgk2D7wyQG576tgEJ-DLUvbs_3t0jO4DPPNJd3rwBB3svt3UzwEC7apTNErz4rSb7T8B25vv5g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pj5QwFG7cNRovRlfNjq5aE6MeZEcKFDgiUxZcBsjCzI5emtLCSYeJM3vw5p_uK7D-iHHiAdJD2zS8vq_fa-n3EHppOb7lSUcZlNjCsE3pG0JawiAtkW5NaGtKvd8xz2i8sD-snNXvd2G6zQj9p1AchIKHT6j92wIs1XcPbINa7moKq9mUTAFhpxvVHqCbjkWpTt-QW5e_7kYSf6TAQ6NBeehfHf2xOh3ACACpO_C1v5C6X36ie-juyBtxMIzyPrrRrI_QcbDVO9ndl2_4Fe7Lw0bF9gjdKobSA_Q9zDOdGTnJkuwMB2cZjhibvQ_Cc5xkeB4AnC4ZZhDUF5UWRyjxZVLFuMwX8C7ylOGKpawM84LhOQMYvugTAJQ4j3AVM_1czIMUl4vsY8CWxieWvp7lyySMMZBgFlYP0SJiVRgbY94FQ0K8ujM8-U62lHqmUzutrIGB0YY6pis8iN20Qpxyle1oFR_X8T1bKdkIAc7sKUGU5bfWI3S47tbNMcJAGEWtPF_4fmOLxq791lVEmZ5fAw-SzgSR6-_N5ShKrnNjfOYQnGgj6cNxm2sjcTASJxyMNEFvfzbaDJoc-6u_AUPy0Te3-6ueaGtzmIJaQlfqf43kjhN9GgvEcoJeXM8CDl6oj1bEuumuoE_APYjMgL3tqaOTnEA8S-zH_z-i5-h2MYt4mmTnT9AdYGvU6H8mPEGHu69XzVNgRLv6WT_lfwBCWPLM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CONSTRAINING+AGN+FEEDBACK+IN+MASSIVE+ELLIPTICALS+WITH+SOUTH+POLE+TELESCOPE+MEASUREMENTS+OF+THE+THERMAL+SUNYAEV-ZEL%27DOVICH+EFFECT&rft.jtitle=The+Astrophysical+journal&rft.au=Spacek%2C+Alexander&rft.au=Scannapieco%2C+Evan&rft.au=Cohen%2C+Seth&rft.au=Joshi%2C+Bhavin&rft.date=2016-03-10&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=819&rft.issue=2&rft_id=info:doi/10.3847%2F0004-637X%2F819%2F2%2F128&rft.externalDocID=apj522355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon