CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT
ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrai...
Saved in:
Published in | The Astrophysical journal Vol. 819; no. 2; pp. 128 - 149 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
The American Astronomical Society
10.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/0004-637X/819/2/128 |
Cover
Loading…
Abstract | ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at , which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at and one with 924 galaxies at with typical stellar masses of We then co-add the emission around these galaxies, resulting in a measured tSZ signal at significance for the lower redshift bin and a contaminating signal at for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to for low redshifts and for high redshifts. We find the mean angularly integrated Compton-y values to be Mpc2 for low redshifts and Mpc2 for high redshifts, corresponding to total thermal energies of erg and erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation. |
---|---|
AbstractList | Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. The numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation. Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev–Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at z⩾0.5, which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at 0.5⩽z⩽1.0 and one with 924 galaxies at 1.0⩽z⩽1.5, with typical stellar masses of 1.5×10{sup 11}M{sub ⊙}. We then co-add the emission around these galaxies, resulting in a measured tSZ signal at 2.2σ significance for the lower redshift bin and a contaminating signal at 1.1σ for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to 3.6σ for low redshifts and 0.9σ for high redshifts. We find the mean angularly integrated Compton-y values to be 2.2{sub −0.7}{sup +0.9}×10{sup −7} Mpc{sup 2} for low redshifts and 1.7{sub −1.8}{sup +2.2}×10{sup −7} Mpc{sup 2} for high redshifts, corresponding to total thermal energies of 7.6{sub −2.3}{sup +3.0}×10{sup 60} erg and 6.0{sub −6.3}{sup +7.7}×10{sup 60} erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation. ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at , which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at and one with 924 galaxies at with typical stellar masses of We then co-add the emission around these galaxies, resulting in a measured tSZ signal at significance for the lower redshift bin and a contaminating signal at for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to for low redshifts and for high redshifts. We find the mean angularly integrated Compton-y values to be Mpc2 for low redshifts and Mpc2 for high redshifts, corresponding to total thermal energies of erg and erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation. Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev–Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at , which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at and one with 924 galaxies at with typical stellar masses of We then co-add the emission around these galaxies, resulting in a measured tSZ signal at significance for the lower redshift bin and a contaminating signal at for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to for low redshifts and for high redshifts. We find the mean angularly integrated Compton- y values to be Mpc 2 for low redshifts and Mpc 2 for high redshifts, corresponding to total thermal energies of erg and erg, respectively. These numbers are higher than expected from simple theoretical models that do not include AGN feedback, and serve as constraints that can be applied to current simulations of massive galaxy formation. |
Author | Spacek, Alexander Scannapieco, Evan Cohen, Seth Mauskopf, Philip Joshi, Bhavin |
Author_xml | – sequence: 1 givenname: Alexander surname: Spacek fullname: Spacek, Alexander organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA – sequence: 2 givenname: Evan surname: Scannapieco fullname: Scannapieco, Evan organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA – sequence: 3 givenname: Seth surname: Cohen fullname: Cohen, Seth organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA – sequence: 4 givenname: Bhavin surname: Joshi fullname: Joshi, Bhavin organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA – sequence: 5 givenname: Philip surname: Mauskopf fullname: Mauskopf, Philip organization: Arizona State University School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ-85287, USA |
BackLink | https://www.osti.gov/biblio/22890143$$D View this record in Osti.gov |
BookMark | eNqFkc9vmzAUx62qk5p2-wt2sbTDdmHY2AZzZNQkqASiQLIfF4sao1GlkGJy2K1_eo1S7bDDevCznvT5vie9zzW47IdeA_ARo6-E08BFCFHHJ8EPl-PQ9Vzs8QuwwIxwhxIWXILFX-IKXBvzMLdeGC7Ac1zkZbWN0jzNlzBa5jAR4vZbFN_BNIfrqCzTvYAiy9JNlcZRVsLvabWCZbGzdVNkAlYiE2VcbARci6jcbcVa5FUJiwRWKzG_7TrKYLnLf0Zi7_wS2efbYp_GKyiSRMTVe_CurQ9Gf3j9b8AuEVW8crJiOS90FOFkcrhCqvV9jtk9a9U9RszXPsNBzTGiOGS0CRrKGKUsYCGnTaN0XSN7gKb2GhK25AZ8Os8dzNRJo7pJq99q6HutJul5PESYEkt9OVPHcXg6aTPJx84ofTjUvR5ORmKOOMYUefRtNOBBGFCfMIuGZ1SNgzGjbqVdX0_d0E9j3R0kRnLWKGcrcpYkrUbpSavRZsk_2ePYPdbjnzdS7jnVDUf5MJzG3t72v4kXplWkBg |
CitedBy_id | crossref_primary_10_3847_1538_4357_abb403 crossref_primary_10_1093_mnras_stz2751 crossref_primary_10_1007_s11214_018_0571_9 crossref_primary_10_1093_mnrasl_slw205 crossref_primary_10_3847_1538_4357_834_2_102 crossref_primary_10_3847_1538_4357_abf2b4 crossref_primary_10_3847_1538_4357_ace1e4 crossref_primary_10_1103_PhysRevD_105_023517 crossref_primary_10_3847_0004_637X_825_2_83 crossref_primary_10_1088_1361_6633_aa94d5 crossref_primary_10_1007_s11214_019_0581_2 crossref_primary_10_3847_1538_4357_aaf86b crossref_primary_10_3847_1538_4357_aada01 crossref_primary_10_1093_mnrasl_sly215 crossref_primary_10_3847_1538_4357_acfd26 crossref_primary_10_3847_1538_4357_ab3db2 crossref_primary_10_3847_1538_4357_aa64d6 crossref_primary_10_3847_1538_4357_abe387 crossref_primary_10_1103_PhysRevD_97_063514 crossref_primary_10_1103_PhysRevD_97_083501 crossref_primary_10_1093_mnras_stx492 crossref_primary_10_1088_1475_7516_2016_08_058 crossref_primary_10_1088_1475_7516_2017_11_040 crossref_primary_10_3847_1538_4357_ab5b96 crossref_primary_10_3847_1538_4357_acdcf4 crossref_primary_10_3847_1538_3881_aace5f crossref_primary_10_3847_1538_4357_aacf04 |
Cites_doi | 10.1111/j.1365-2966.2007.12153.x 10.1088/0067-0049/216/2/27 10.1111/j.1365-2966.2009.15961.x 10.1093/mnras/202.3.615 10.1086/429549 10.1088/0004-637X/700/1/221 10.1086/426915 10.1086/659879 10.1086/170483 10.1086/377475 10.1086/376392 10.1051/aas:1996164 10.1046/j.1365-8711.2003.06897.x 10.1111/j.1365-2966.2009.15216.x 10.1093/mnras/stu2207 10.1093/mnras/stt1285 10.1088/0004-637X/709/2/611 10.1111/j.1365-2966.2008.13081.x 10.1086/508650 10.1093/mnras/179.4.541 10.1086/175105 10.1051/0004-6361/201321524 10.1111/j.1365-2966.2009.15058.x 10.1111/j.1365-2966.2004.07711.x 10.1111/j.1745-3933.2010.00881.x 10.1038/nature11096 10.1117/12.552473 10.1088/0004-6256/140/6/1868 10.1086/591786 10.1146/annurev-astro-081811-125521 10.1038/nature03202 10.1111/j.1365-2966.2008.13472.x 10.1086/588006 10.1093/mnras/183.3.341 10.1111/j.1365-2966.2008.14247.x 10.1088/0004-637X/762/1/49 10.1093/mnras/stv572 10.1111/j.1365-2966.2005.09192.x 10.1093/mnras/262.3.627 10.1088/2041-8205/798/2/L38 10.1111/j.1365-2966.2006.10519.x 10.1051/0004-6361:200811071 10.1086/319733 10.1086/318372 10.1086/307944 10.1093/mnras/264.1.201 10.1088/0004-637X/736/1/39 10.1086/429289 10.1086/517927 10.1086/499915 10.1086/378940 10.1051/0004-6361/200913811 10.1086/499271 10.1086/591176 10.1046/j.1365-8711.2003.06605.x 10.1088/0004-637X/706/1/525 10.1088/2041-8205/733/1/L16 10.1086/498109 10.1093/mnras/stt689 10.1080/01621459.1954.10501232 10.1086/115307 10.1088/0004-637X/762/1/10 10.1086/187501 10.1046/j.1365-8711.2002.05907.x 10.1093/mnras/stu1592 10.1111/j.1365-2966.2004.08147.x 10.1093/mnras/stu1632 10.1088/0004-637X/779/1/61 10.1086/528948 10.1093/mnras/stt1946 10.1086/591240 10.1088/0004-637X/782/2/69 10.1086/380106 10.1088/0004-637X/712/2/833 10.1086/507672 10.1086/191939 10.1088/0004-637X/802/2/89 10.1111/j.1365-2966.2012.21626.x 10.1086/155378 10.1086/588749 10.1086/305772 10.1111/j.1365-2966.2004.07881.x 10.1086/368392 10.1093/mnras/stu2058 10.1088/0004-637X/722/1/642 10.1086/344249 10.1086/118058 10.1088/0004-637X/776/1/27 10.1093/mnras/stt1354 10.1086/341002 10.1086/318996 10.1046/j.1365-8711.1999.02693.x 10.1086/149449 10.1086/512364 10.1088/2041-8205/775/1/L16 10.1364/AO.47.004418 10.1086/160817 10.1086/386542 10.1088/0004-637X/755/2/173 10.1086/175551 10.1007/BF00653471 10.1088/0004-637X/743/2/146 10.1111/j.1365-2966.2012.21512.x 10.1111/j.1745-3933.2012.01309.x 10.1086/429374 10.1086/383519 10.1051/0004-6361/201015164 10.1111/j.1365-2966.2007.12487.x 10.1086/518860 10.1111/j.1365-2966.2008.14077.x 10.1088/0004-637X/745/2/178 10.1111/j.1365-2966.2006.10918.x 10.1086/342308 10.1088/0004-637X/802/2/135 10.1088/0004-637X/757/1/83 10.1086/524106 10.1088/0004-637X/743/1/90 10.1086/154972 10.1093/mnras/stu1023 10.1086/425569 10.1051/0004-6361:20077910 10.1111/j.1365-2966.2008.13784.x 10.1088/0004-637X/725/1/91 10.1016/S0370-1573(98)00080-5 10.1086/375804 10.1046/j.1365-8711.2000.03077.x 10.1088/0004-637X/794/1/69 |
ContentType | Journal Article |
Copyright | 2016. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2016. The American Astronomical Society. All rights reserved. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
DOI | 10.3847/0004-637X/819/2/128 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT |
EISSN | 1538-4357 |
ExternalDocumentID | 22890143 10_3847_0004_637X_819_2_128 apj522355 |
GeographicLocations | Antarctica, South Pole |
GeographicLocations_xml | – name: Antarctica, South Pole |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG KL. 8FD H8D L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c383t-8c0cf66815b5fcb1056e6517a81041954d7d45544575984ddceaa0538da2d39f3 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Fri May 19 01:42:43 EDT 2023 Thu Jul 10 20:04:02 EDT 2025 Fri Jul 11 05:45:28 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Tue Jul 01 01:05:19 EDT 2025 Wed Aug 21 03:33:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-8c0cf66815b5fcb1056e6517a81041954d7d45544575984ddceaa0538da2d39f3 |
Notes | High Redshift ApJ100317 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1787974635 |
PQPubID | 23462 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_1808114024 crossref_citationtrail_10_3847_0004_637X_819_2_128 proquest_miscellaneous_1787974635 iop_journals_10_3847_0004_637X_819_2_128 crossref_primary_10_3847_0004_637X_819_2_128 osti_scitechconnect_22890143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-10 |
PublicationDateYYYYMMDD | 2016-03-10 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2016 |
Publisher | The American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society |
References | Helou (apj522355bib60) 1988 Wright (apj522355bib140) 2010; 140 Costa (apj522355bib33) 2014; 444 Kriek (apj522355bib71) 2013; 775 Tremaine (apj522355bib129) 2002; 574 Kimm (apj522355bib68) 2012; 425 Schaye (apj522355bib119) 2015; 446 Carlstrom (apj522355bib21) 2011; 123 Ruan (apj522355bib112) 2015; 802 Battaglia (apj522355bib4) 2010; 725 White (apj522355bib137) 1991; 379 Brinchmann (apj522355bib15) 2004; 351 Wyithe (apj522355bib142) 2002; 581 White (apj522355bib138) 1978; 183 Kriek (apj522355bib72) 2009; 700 Hirschmann (apj522355bib62) 2014; 442 Schaffer (apj522355bib117) 2011; 743 Thacker (apj522355bib128) 2006; 653 Vergani (apj522355bib133) 2008; 487 Crichton (apj522355bib36) 2015 Platania (apj522355bib107) 2002; 337 Sunyaev (apj522355bib126) 1970; 7 Bundy (apj522355bib18) 2005; 625 Lapi (apj522355bib75) 2014; 782 Enoki (apj522355bib45) 2014; 794 Greco (apj522355bib57) 2014 Ishihara (apj522355bib64) 2010; 514 Merritt (apj522355bib83) 2001; 547 Fontanot (apj522355bib54) 2009; 397 Chartas (apj522355bib27) 2007; 133 Knigge (apj522355bib69) 2008; 386 Neistein (apj522355bib89) 2006; 372 Buchner (apj522355bib17) 2015; 802 Ganguly (apj522355bib55) 2008; 672 Brammer (apj522355bib14) 2008; 686 McNamara (apj522355bib79) 2005; 433 Dunn (apj522355bib42) 2010; 709 Cen (apj522355bib23) 2015a; 798 Fabian (apj522355bib46) 2012; 50 Merloni (apj522355bib82) 2008; 388 Murphy (apj522355bib87) 2010; 402 Fitzpatrick (apj522355bib53) 1999; 525 Richstone (apj522355bib111) 1998; 395 Kelly (apj522355bib67) 2014; 439 Hand (apj522355bib59) 2011; 736 Birkinshaw (apj522355bib9) 1999; 310 Page (apj522355bib95) 2012; 485 Moe (apj522355bib86) 2009; 706 Natarajan (apj522355bib88) 1997 Chen (apj522355bib31) 2009; 393 Chatterjee (apj522355bib30) 2007; 661 Oke (apj522355bib92) 1983; 266 Hewett (apj522355bib61) 2003; 125 Chatterjee (apj522355bib29) 2009 Wyithe (apj522355bib143) 2003; 595 Ueda (apj522355bib131) 2003; 598 Bauer (apj522355bib5) 2005; 621 Farrah (apj522355bib47) 2012; 745 Mocz (apj522355bib85) 2013; 432 Binney (apj522355bib8) 1977; 215 Schawinski (apj522355bib118) 2007; 382 Pipino (apj522355bib99) 2009; 392 Scannapieco (apj522355bib115) 2005; 635 Mocanu (apj522355bib84) 2013; 779 Arcila-Osejo (apj522355bib2) 2013; 435 Feldmann (apj522355bib49) 2015; 446 Chamberlain (apj522355bib26) 2015; 450 Cattaneo (apj522355bib22) 1999; 308 Cowie (apj522355bib35) 1996; 112 de Kool (apj522355bib38) 2001; 548 Conroy (apj522355bib32) 2010; 712 Best (apj522355bib7) 2005; 362 Eisenhardt (apj522355bib44) 2012; 755 Borguet (apj522355bib12) 2013; 762 Bleem (apj522355bib11) 2015; 216 Burns (apj522355bib19) 1990; 99 Kauffmann (apj522355bib66) 1993; 264 Hamann (apj522355bib58) 2001; 550 Ferrarese (apj522355bib50) 2002; 578 Desai (apj522355bib40) 2012; 757 Treu (apj522355bib130) 2005; 622 Sturm (apj522355bib125) 2011; 733 Faucher-Giguère (apj522355bib48) 2012; 425 Sunyaev (apj522355bib127) 1972; 4 Ruhl (apj522355bib113) 2004; 5498 Scannapieco (apj522355bib116) 2008; 678 Sijacki (apj522355bib121) 2007; 380 Anderson (apj522355bib1) 1954; 49 Padin (apj522355bib94) 2008; 47 Pei (apj522355bib98) 1995; 438 Debuhr (apj522355bib39) 2010; 406 McMahon (apj522355bib78) 2012; 37 Noeske (apj522355bib91) 2007; 660 Feruglio (apj522355bib51) 2010; 518 Planck Collaboration (apj522355bib106) 2015f Lacey (apj522355bib73) 1993; 262 Cen (apj522355bib24) 2015b Scannapieco (apj522355bib114) 2004; 608 Hirschmann (apj522355bib63) 2012; 426 Newton (apj522355bib90) 2013; 434 Wright (apj522355bib139) 1994; 91 Chatterjee (apj522355bib28) 2008; 390 Ostriker (apj522355bib93) 2010; 722 Yamamura (apj522355bib144) 2010; 2298 Bruzual (apj522355bib16) 2003; 344 Daddi (apj522355bib37) 2004; 617 Planck Collaboration (apj522355bib104) 2015d Rafferty (apj522355bib108) 2008; 687 Rees (apj522355bib110) 1977; 179 Planck Collaboration (apj522355bib102) 2015c Planck Collaboration (apj522355bib100) 2015a Cameron (apj522355bib20) 2011; 743 Bîrzan (apj522355bib10) 2004; 607 Rafferty (apj522355bib109) 2006; 652 Drory (apj522355bib41) 2008; 680 Veilleux (apj522355bib132) 2013; 776 Simionescu (apj522355bib124) 2009; 495 Bower (apj522355bib13) 2006; 370 Dünner (apj522355bib43) 2013; 762 Peacock (apj522355bib97) 1983; 202 Silk (apj522355bib123) 1977; 211 Wampler (apj522355bib136) 1995; 443 Bertin (apj522355bib6) 1996; 117 Kauffmann (apj522355bib65) 2000; 311 Planck Collaboration (apj522355bib103) 2014; 571 Bruggen (apj522355bib145) 2009; 398 Mauch (apj522355bib77) 2003; 342 Feulner (apj522355bib52) 2005; 633 Barger (apj522355bib3) 2005; 129 Wuyts (apj522355bib141) 2008; 682 Cowie (apj522355bib34) 2008; 686 Papovich (apj522355bib96) 2006; 640 Silk (apj522355bib122) 1968; 151 Chabrier (apj522355bib25) 2003; 115 Planck Collaboration (apj522355bib105) 2015e Schlegel (apj522355bib120) 1998; 500 Kodama (apj522355bib70) 2004; 350 Lapi (apj522355bib74) 2003; 597 Gralla (apj522355bib56) 2014; 445 Voit (apj522355bib135) 1994; 432 Merloni (apj522355bib81) 2004; 353 Planck Collaboration (apj522355bib101) 2015b Voges (apj522355bib134) 1999; 349 Marconi (apj522355bib76) 2003; 589 |
References_xml | – volume: 380 start-page: 877 year: 2007 ident: apj522355bib121 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12153.x – volume: 216 start-page: 27 year: 2015 ident: apj522355bib11 publication-title: ApJS doi: 10.1088/0067-0049/216/2/27 – volume: 402 start-page: 2403 year: 2010 ident: apj522355bib87 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15961.x – volume: 202 start-page: 615 year: 1983 ident: apj522355bib97 publication-title: MNRAS doi: 10.1093/mnras/202.3.615 – volume: 625 start-page: 621 year: 2005 ident: apj522355bib18 publication-title: ApJ doi: 10.1086/429549 – volume: 700 start-page: 221 year: 2009 ident: apj522355bib72 publication-title: ApJ doi: 10.1088/0004-637X/700/1/221 – volume: 129 start-page: 578 year: 2005 ident: apj522355bib3 publication-title: AJ doi: 10.1086/426915 – volume: 123 start-page: 568 year: 2011 ident: apj522355bib21 publication-title: PASP doi: 10.1086/659879 – volume: 379 start-page: 52 year: 1991 ident: apj522355bib137 publication-title: ApJ doi: 10.1086/170483 – volume: 595 start-page: 614 year: 2003 ident: apj522355bib143 publication-title: ApJ doi: 10.1086/377475 – volume: 115 start-page: 763 year: 2003 ident: apj522355bib25 publication-title: PASP doi: 10.1086/376392 – volume: 117 start-page: 393 year: 1996 ident: apj522355bib6 publication-title: A&AS doi: 10.1051/aas:1996164 – volume: 344 start-page: 1000 year: 2003 ident: apj522355bib16 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06897.x – volume: 398 start-page: 548 year: 2009 ident: apj522355bib145 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15216.x – volume: 2298 start-page: 0 year: 2010 ident: apj522355bib144 publication-title: yCat – volume: 446 start-page: 1939 year: 2015 ident: apj522355bib49 publication-title: MNRAS doi: 10.1093/mnras/stu2207 – volume: 37 year: 2012 ident: apj522355bib78 – volume: 434 start-page: 3606 year: 2013 ident: apj522355bib90 publication-title: MNRAS doi: 10.1093/mnras/stt1285 – volume: 709 start-page: 611 year: 2010 ident: apj522355bib42 publication-title: ApJ doi: 10.1088/0004-637X/709/2/611 – volume: 386 start-page: 1426 year: 2008 ident: apj522355bib69 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13081.x – volume: 653 start-page: 86 year: 2006 ident: apj522355bib128 publication-title: ApJ doi: 10.1086/508650 – volume: 179 start-page: 541 year: 1977 ident: apj522355bib110 publication-title: MNRAS doi: 10.1093/mnras/179.4.541 – volume: 438 start-page: 623 year: 1995 ident: apj522355bib98 publication-title: ApJ doi: 10.1086/175105 – volume: 571 start-page: A28 year: 2014 ident: apj522355bib103 publication-title: A&A doi: 10.1051/0004-6361/201321524 – volume: 397 start-page: 1776 year: 2009 ident: apj522355bib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15058.x – volume: 350 start-page: 1005 year: 2004 ident: apj522355bib70 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07711.x – volume: 406 start-page: L55 year: 2010 ident: apj522355bib39 publication-title: MNRAS doi: 10.1111/j.1745-3933.2010.00881.x – volume: 485 start-page: 213 year: 2012 ident: apj522355bib95 publication-title: Natur doi: 10.1038/nature11096 – volume: 5498 start-page: 11 year: 2004 ident: apj522355bib113 publication-title: Proc. SPIE doi: 10.1117/12.552473 – volume: 395 start-page: A14 year: 1998 ident: apj522355bib111 publication-title: Natur – volume: 349 start-page: 389 year: 1999 ident: apj522355bib134 publication-title: A&A – volume: 140 start-page: 1868 year: 2010 ident: apj522355bib140 publication-title: AJ doi: 10.1088/0004-6256/140/6/1868 – volume: 686 start-page: 1503 year: 2008 ident: apj522355bib14 publication-title: ApJ doi: 10.1086/591786 – volume: 50 start-page: 455 year: 2012 ident: apj522355bib46 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125521 – volume: 433 start-page: 45 year: 2005 ident: apj522355bib79 publication-title: Natur doi: 10.1038/nature03202 – volume: 388 start-page: 1011 year: 2008 ident: apj522355bib82 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13472.x – volume: 680 start-page: 41 year: 2008 ident: apj522355bib41 publication-title: ApJ doi: 10.1086/588006 – volume: 183 start-page: 341 year: 1978 ident: apj522355bib138 publication-title: MNRAS doi: 10.1093/mnras/183.3.341 – volume: 393 start-page: 406 year: 2009 ident: apj522355bib31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14247.x – volume: 762 start-page: 49 year: 2013 ident: apj522355bib12 publication-title: ApJ doi: 10.1088/0004-637X/762/1/49 – volume: 450 start-page: 1085 year: 2015 ident: apj522355bib26 publication-title: MNRAS doi: 10.1093/mnras/stv572 – volume: 362 start-page: 25 year: 2005 ident: apj522355bib7 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09192.x – volume: 262 start-page: 627 year: 1993 ident: apj522355bib73 publication-title: MNRAS doi: 10.1093/mnras/262.3.627 – volume: 798 start-page: L38 year: 2015a ident: apj522355bib23 publication-title: ApJL doi: 10.1088/2041-8205/798/2/L38 – volume: 370 start-page: 645 year: 2006 ident: apj522355bib13 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10519.x – volume: 495 start-page: 721 year: 2009 ident: apj522355bib124 publication-title: A&A doi: 10.1051/0004-6361:200811071 – volume: 550 start-page: 142 year: 2001 ident: apj522355bib58 publication-title: ApJ doi: 10.1086/319733 – volume: 547 start-page: 140 year: 2001 ident: apj522355bib83 publication-title: ApJ doi: 10.1086/318372 – volume: 525 start-page: 1011 year: 1999 ident: apj522355bib53 publication-title: ApJ doi: 10.1086/307944 – volume: 264 start-page: 201 year: 1993 ident: apj522355bib66 publication-title: MNRAS doi: 10.1093/mnras/264.1.201 – volume: 736 start-page: 39 year: 2011 ident: apj522355bib59 publication-title: ApJ doi: 10.1088/0004-637X/736/1/39 – volume: 621 start-page: L89 year: 2005 ident: apj522355bib5 publication-title: ApJL doi: 10.1086/429289 – year: 2015e ident: apj522355bib105 – volume: 660 start-page: L47 year: 2007 ident: apj522355bib91 publication-title: ApJL doi: 10.1086/517927 – volume: 640 start-page: 92 year: 2006 ident: apj522355bib96 publication-title: ApJ doi: 10.1086/499915 – year: 2015d ident: apj522355bib104 – volume: 598 start-page: 886 year: 2003 ident: apj522355bib131 publication-title: ApJ doi: 10.1086/378940 – volume: 514 start-page: A1 year: 2010 ident: apj522355bib64 publication-title: A&A doi: 10.1051/0004-6361/200913811 – volume: 635 start-page: L13 year: 2005 ident: apj522355bib115 publication-title: ApJL doi: 10.1086/499271 – volume: 686 start-page: 72 year: 2008 ident: apj522355bib34 publication-title: ApJ doi: 10.1086/591176 – volume: 342 start-page: 1117 year: 2003 ident: apj522355bib77 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06605.x – volume: 706 start-page: 525 year: 2009 ident: apj522355bib86 publication-title: ApJ doi: 10.1088/0004-637X/706/1/525 – year: 2015c ident: apj522355bib102 – volume: 733 start-page: L16 year: 2011 ident: apj522355bib125 publication-title: ApJL doi: 10.1088/2041-8205/733/1/L16 – volume: 633 start-page: L9 year: 2005 ident: apj522355bib52 publication-title: ApJL doi: 10.1086/498109 – year: 1988 ident: apj522355bib60 publication-title: Infrared Astronomical Satellite (IRAS) Catalogs and Atlases – volume: 432 start-page: 3381 year: 2013 ident: apj522355bib85 publication-title: MNRAS doi: 10.1093/mnras/stt689 – volume: 49 start-page: 765 year: 1954 ident: apj522355bib1 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1954.10501232 – volume: 99 start-page: 14 year: 1990 ident: apj522355bib19 publication-title: AJ doi: 10.1086/115307 – volume: 762 start-page: 10 year: 2013 ident: apj522355bib43 publication-title: ApJ doi: 10.1088/0004-637X/762/1/10 – volume: 432 start-page: L19 year: 1994 ident: apj522355bib135 publication-title: ApJL doi: 10.1086/187501 – volume: 337 start-page: 242 year: 2002 ident: apj522355bib107 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05907.x – volume: 445 start-page: 460 year: 2014 ident: apj522355bib56 publication-title: MNRAS doi: 10.1093/mnras/stu1592 – volume: 353 start-page: 1035 year: 2004 ident: apj522355bib81 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08147.x – volume: 444 start-page: 2355 year: 2014 ident: apj522355bib33 publication-title: MNRAS doi: 10.1093/mnras/stu1632 – volume: 4 start-page: 173 year: 1972 ident: apj522355bib127 publication-title: CoASP – volume: 779 start-page: 61 year: 2013 ident: apj522355bib84 publication-title: ApJ doi: 10.1088/0004-637X/779/1/61 – volume: 678 start-page: 674 year: 2008 ident: apj522355bib116 publication-title: ApJ doi: 10.1086/528948 – year: 2015 ident: apj522355bib36 – volume: 439 start-page: 28 year: 2014 ident: apj522355bib67 publication-title: MNRAS doi: 10.1093/mnras/stt1946 – volume: 687 start-page: 899 year: 2008 ident: apj522355bib108 publication-title: ApJ doi: 10.1086/591240 – volume: 782 start-page: 69 year: 2014 ident: apj522355bib75 publication-title: ApJ doi: 10.1088/0004-637X/782/2/69 – year: 1997 ident: apj522355bib88 – volume: 597 start-page: L93 year: 2003 ident: apj522355bib74 publication-title: ApJL doi: 10.1086/380106 – volume: 712 start-page: 833 year: 2010 ident: apj522355bib32 publication-title: ApJ doi: 10.1088/0004-637X/712/2/833 – volume: 652 start-page: 216 year: 2006 ident: apj522355bib109 publication-title: ApJ doi: 10.1086/507672 – volume: 91 start-page: 111 year: 1994 ident: apj522355bib139 publication-title: ApJS doi: 10.1086/191939 – volume: 802 start-page: 89 year: 2015 ident: apj522355bib17 publication-title: ApJ doi: 10.1088/0004-637X/802/2/89 – year: 2014 ident: apj522355bib57 – volume: 426 start-page: 237 year: 2012 ident: apj522355bib63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21626.x – volume: 215 start-page: 483 year: 1977 ident: apj522355bib8 publication-title: ApJ doi: 10.1086/155378 – volume: 682 start-page: 985 year: 2008 ident: apj522355bib141 publication-title: ApJ doi: 10.1086/588749 – volume: 500 start-page: 525 year: 1998 ident: apj522355bib120 publication-title: ApJ doi: 10.1086/305772 – volume: 351 start-page: 1151 year: 2004 ident: apj522355bib15 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07881.x – volume: 125 start-page: 1784 year: 2003 ident: apj522355bib61 publication-title: AJ doi: 10.1086/368392 – volume: 446 start-page: 521 year: 2015 ident: apj522355bib119 publication-title: MNRAS doi: 10.1093/mnras/stu2058 – year: 2015b ident: apj522355bib24 – volume: 722 start-page: 642 year: 2010 ident: apj522355bib93 publication-title: ApJ doi: 10.1088/0004-637X/722/1/642 – volume: 581 start-page: 886 year: 2002 ident: apj522355bib142 publication-title: ApJ doi: 10.1086/344249 – volume: 112 start-page: 839 year: 1996 ident: apj522355bib35 publication-title: AJ doi: 10.1086/118058 – volume: 776 start-page: 27 year: 2013 ident: apj522355bib132 publication-title: ApJ doi: 10.1088/0004-637X/776/1/27 – volume: 435 start-page: 845 year: 2013 ident: apj522355bib2 publication-title: MNRAS doi: 10.1093/mnras/stt1354 – volume: 574 start-page: 740 year: 2002 ident: apj522355bib129 publication-title: ApJ doi: 10.1086/341002 – volume: 548 start-page: 609 year: 2001 ident: apj522355bib38 publication-title: ApJ doi: 10.1086/318996 – year: 2009 ident: apj522355bib29 – volume: 308 start-page: 77 year: 1999 ident: apj522355bib22 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02693.x – volume: 151 start-page: 459 year: 1968 ident: apj522355bib122 publication-title: ApJ doi: 10.1086/149449 – volume: 133 start-page: 1849 year: 2007 ident: apj522355bib27 publication-title: AJ doi: 10.1086/512364 – year: 2015b ident: apj522355bib101 – volume: 775 start-page: L16 year: 2013 ident: apj522355bib71 publication-title: ApJL doi: 10.1088/2041-8205/775/1/L16 – volume: 47 start-page: 4418 year: 2008 ident: apj522355bib94 publication-title: ApOpt doi: 10.1364/AO.47.004418 – volume: 266 start-page: 713 year: 1983 ident: apj522355bib92 publication-title: ApJ doi: 10.1086/160817 – volume: 608 start-page: 62 year: 2004 ident: apj522355bib114 publication-title: ApJ doi: 10.1086/386542 – volume: 755 start-page: 173 year: 2012 ident: apj522355bib44 publication-title: ApJ doi: 10.1088/0004-637X/755/2/173 – volume: 443 start-page: 586 year: 1995 ident: apj522355bib136 publication-title: ApJ doi: 10.1086/175551 – volume: 7 start-page: 3 year: 1970 ident: apj522355bib126 publication-title: Ap&SS doi: 10.1007/BF00653471 – volume: 743 start-page: 146 year: 2011 ident: apj522355bib20 publication-title: ApJ doi: 10.1088/0004-637X/743/2/146 – volume: 425 start-page: 605 year: 2012 ident: apj522355bib48 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21512.x – volume: 425 start-page: L96 year: 2012 ident: apj522355bib68 publication-title: MNRAS doi: 10.1111/j.1745-3933.2012.01309.x – volume: 622 start-page: L5 year: 2005 ident: apj522355bib130 publication-title: ApJL doi: 10.1086/429374 – volume: 607 start-page: 800 year: 2004 ident: apj522355bib10 publication-title: ApJ doi: 10.1086/383519 – volume: 518 start-page: L155 year: 2010 ident: apj522355bib51 publication-title: A&A doi: 10.1051/0004-6361/201015164 – volume: 382 start-page: 1415 year: 2007 ident: apj522355bib118 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12487.x – volume: 661 start-page: L113 year: 2007 ident: apj522355bib30 publication-title: ApJL doi: 10.1086/518860 – volume: 392 start-page: 475 year: 2009 ident: apj522355bib99 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14077.x – volume: 745 start-page: 178 year: 2012 ident: apj522355bib47 publication-title: ApJ doi: 10.1088/0004-637X/745/2/178 – volume: 372 start-page: 933 year: 2006 ident: apj522355bib89 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10918.x – volume: 578 start-page: 90 year: 2002 ident: apj522355bib50 publication-title: ApJ doi: 10.1086/342308 – volume: 802 start-page: 135 year: 2015 ident: apj522355bib112 publication-title: ApJ doi: 10.1088/0004-637X/802/2/135 – volume: 757 start-page: 83 year: 2012 ident: apj522355bib40 publication-title: ApJ doi: 10.1088/0004-637X/757/1/83 – volume: 672 start-page: 102 year: 2008 ident: apj522355bib55 publication-title: ApJ doi: 10.1086/524106 – volume: 743 start-page: 90 year: 2011 ident: apj522355bib117 publication-title: ApJ doi: 10.1088/0004-637X/743/1/90 – volume: 211 start-page: 638 year: 1977 ident: apj522355bib123 publication-title: ApJ doi: 10.1086/154972 – volume: 442 start-page: 2304 year: 2014 ident: apj522355bib62 publication-title: MNRAS doi: 10.1093/mnras/stu1023 – volume: 617 start-page: 746 year: 2004 ident: apj522355bib37 publication-title: ApJ doi: 10.1086/425569 – volume: 487 start-page: 89 year: 2008 ident: apj522355bib133 publication-title: A&A doi: 10.1051/0004-6361:20077910 – year: 2015f ident: apj522355bib106 – year: 2015a ident: apj522355bib100 – volume: 390 start-page: 535 year: 2008 ident: apj522355bib28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13784.x – volume: 725 start-page: 91 year: 2010 ident: apj522355bib4 publication-title: ApJ doi: 10.1088/0004-637X/725/1/91 – volume: 310 start-page: 97 year: 1999 ident: apj522355bib9 publication-title: PhR doi: 10.1016/S0370-1573(98)00080-5 – volume: 589 start-page: L21 year: 2003 ident: apj522355bib76 publication-title: ApJL doi: 10.1086/375804 – volume: 311 start-page: 576 year: 2000 ident: apj522355bib65 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03077.x – volume: 794 start-page: 69 year: 2014 ident: apj522355bib45 publication-title: ApJ doi: 10.1088/0004-637X/794/1/69 |
SSID | ssj0004299 |
Score | 2.4118316 |
Snippet | ABSTRACT Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution... Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128 |
SubjectTerms | Active galactic nuclei Astronomical models ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BACKGROUND RADIATION Computer simulation COMPUTERIZED SIMULATION Constraining cosmic background radiation COSMIC DUST COSMOLOGY DETECTION EMISSION Feedback GALAXIES galaxies: evolution GALAXY NUCLEI intergalactic medium large-scale structure of universe Pollution sources QUASARS quasars: general RED SHIFT RELICT RADIATION Stacking Sunyaev-Zeldovich effect TELESCOPES UNIVERSE |
Title | CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT |
URI | https://iopscience.iop.org/article/10.3847/0004-637X/819/2/128 https://www.proquest.com/docview/1787974635 https://www.proquest.com/docview/1808114024 https://www.osti.gov/biblio/22890143 |
Volume | 819 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLboEBIXBAO0sjEZCQEHTInj_PAxZO4SaJNoTbvCxXLs5MSaiXYHbvzpPCcZCCEqDol8sBPLz-_5e8_29xB66XrcDbVniE-ZIszRnCjtKkIbqoOK-o2jbbxjnvnJkn1ce-sh4NbdhWmvB9P_Doo9UXA_hFa_XbCl9u4BI74brCewmk3oBCzsCN11Qz-0zlfuXv6-F0n5AH_7Bj3r0L8-8sfKNIK_g5VuQc_-stLd0jN9iB4MmBFHfQ8foTv15hAdRVsbxW6vvuNXuCv3QYrtIbpX9KXH6EecZzYrcpql2TmOzjM8FeLsQxR_wmmG5xGY0pXAAhz6orTECAt8mZYJXuRLeBf5TOBSzMQizguB5wJM8EVH_r_A-RSXibDPxTya4cUy-xyJFfkiZq_P8lUaJxgAsIjLJ2g5FWWckCHnAtHgq-5IqN_rxvdDx6u8RleAvvza95xAheC3WXY4ExjmWQafwOMhM0bXSoEih0ZR4_LGfYoONu2mPkIYwKKqTMgV5zVTNat4ExhqnJBXgIG0N0b0drylHgjJbV6MrxIcEyskuzHOpBWSBCFJKkFIY_T2V6Prno9jf_U3IEg56OV2f9UTK20J08_S52p7zkjvJLU7sQAqx-jF7SyQoIF2W0Vt6vYGvgk2D7wyQG576tgEJ-DLUvbs_3t0jO4DPPNJd3rwBB3svt3UzwEC7apTNErz4rSb7T8B25vv5g |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pj5QwFG7cNRovRlfNjq5aE6MeZEcKFDgiUxZcBsjCzI5emtLCSYeJM3vw5p_uK7D-iHHiAdJD2zS8vq_fa-n3EHppOb7lSUcZlNjCsE3pG0JawiAtkW5NaGtKvd8xz2i8sD-snNXvd2G6zQj9p1AchIKHT6j92wIs1XcPbINa7moKq9mUTAFhpxvVHqCbjkWpTt-QW5e_7kYSf6TAQ6NBeehfHf2xOh3ACACpO_C1v5C6X36ie-juyBtxMIzyPrrRrI_QcbDVO9ndl2_4Fe7Lw0bF9gjdKobSA_Q9zDOdGTnJkuwMB2cZjhibvQ_Cc5xkeB4AnC4ZZhDUF5UWRyjxZVLFuMwX8C7ylOGKpawM84LhOQMYvugTAJQ4j3AVM_1czIMUl4vsY8CWxieWvp7lyySMMZBgFlYP0SJiVRgbY94FQ0K8ujM8-U62lHqmUzutrIGB0YY6pis8iN20Qpxyle1oFR_X8T1bKdkIAc7sKUGU5bfWI3S47tbNMcJAGEWtPF_4fmOLxq791lVEmZ5fAw-SzgSR6-_N5ShKrnNjfOYQnGgj6cNxm2sjcTASJxyMNEFvfzbaDJoc-6u_AUPy0Te3-6ueaGtzmIJaQlfqf43kjhN9GgvEcoJeXM8CDl6oj1bEuumuoE_APYjMgL3tqaOTnEA8S-zH_z-i5-h2MYt4mmTnT9AdYGvU6H8mPEGHu69XzVNgRLv6WT_lfwBCWPLM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CONSTRAINING+AGN+FEEDBACK+IN+MASSIVE+ELLIPTICALS+WITH+SOUTH+POLE+TELESCOPE+MEASUREMENTS+OF+THE+THERMAL+SUNYAEV-ZEL%27DOVICH+EFFECT&rft.jtitle=The+Astrophysical+journal&rft.au=Spacek%2C+Alexander&rft.au=Scannapieco%2C+Evan&rft.au=Cohen%2C+Seth&rft.au=Joshi%2C+Bhavin&rft.date=2016-03-10&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=819&rft.issue=2&rft_id=info:doi/10.3847%2F0004-637X%2F819%2F2%2F128&rft.externalDocID=apj522355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |