SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis

Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem m...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 134; pp. 458 - 467
Main Authors Ma, Yuanzhen, Qi, Yijun, Wang, Lei, Zheng, Zhaoxu, Zhang, Yue, Zheng, Junfang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography–tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC. [Display omitted] •135 sites in 102 proteins were differentially succinylated between adjacent normal and ccRCC tissues.•Metabolic and oxidation-reduction processes were influenced by protein succinylation.•SDHA was desuccinylated and inactivated in ccRCC tissues.•SIRT5 mediated the desuccinylation of SDHA.•SIRT5 contributed to ccRCC tumorigenesis.
AbstractList Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography–tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC. [Display omitted] •135 sites in 102 proteins were differentially succinylated between adjacent normal and ccRCC tissues.•Metabolic and oxidation-reduction processes were influenced by protein succinylation.•SDHA was desuccinylated and inactivated in ccRCC tissues.•SIRT5 mediated the desuccinylation of SDHA.•SIRT5 contributed to ccRCC tumorigenesis.
Author Qi, Yijun
Wang, Lei
Ma, Yuanzhen
Zhang, Yue
Zheng, Junfang
Zheng, Zhaoxu
Author_xml – sequence: 1
  givenname: Yuanzhen
  surname: Ma
  fullname: Ma, Yuanzhen
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
– sequence: 2
  givenname: Yijun
  surname: Qi
  fullname: Qi, Yijun
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
– sequence: 4
  givenname: Zhaoxu
  surname: Zheng
  fullname: Zheng, Zhaoxu
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
– sequence: 5
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
– sequence: 6
  givenname: Junfang
  surname: Zheng
  fullname: Zheng, Junfang
  email: zhengjf@ccmu.edu.cn
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30703481$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1q3DAUhUVJyEymeYVi6KYbO1eWfyS6GtKkGRgINOmmGyFL10WDbaWSXMjbR9OZWTSrrCTEuUfnnu-SnE1uQkI-Uygo0OZ6V_Qe0SvTWTeiKUqgogBaAIMPZEl5y_KqFs0ZWQIXNK95JRbkMoQdAFQ14xdkwaAFVnG6JL8eNz-e6jz5WBXRZI_f7teZwTBrbaeXQUXrpuzZu9FFDJkeUPlM4zBkHic1HK5a-SR2o8riPDpvf-OEwYaP5LxXQ8Cr47kiP-9un27u8-3D983NeptrxlnMuWpaVvcGRNNQDk1XAnTGQKu1oKbkVcl6wRpuyg66FN_UohLpVRvTlR32bEW-HHxTzD8zhihHG_bB1IRuDrKkragYrUSbpJ-O0rlLK8tnb0flX-SpjyRYHwTauxA89lLb-K-E6JUdJAW5ZyB38j8Gcs9AApWJQfL4-sbj9M37pm8P05gq-2vRy6AtTjoB8qijNM6-y-cV-OOrIw
CitedBy_id crossref_primary_10_1002_2211_5463_13090
crossref_primary_10_1016_j_biochi_2023_02_008
crossref_primary_10_1186_s13046_022_02338_w
crossref_primary_10_1016_j_ejmech_2022_114363
crossref_primary_10_3389_fimmu_2025_1531246
crossref_primary_10_1007_s10815_024_03223_5
crossref_primary_10_3390_cancers11121949
crossref_primary_10_1016_j_geoderma_2022_115740
crossref_primary_10_1016_j_biopha_2023_115713
crossref_primary_10_1186_s12885_024_12792_8
crossref_primary_10_3390_genes13112122
crossref_primary_10_1016_j_yexcr_2019_06_028
crossref_primary_10_1186_s12935_025_03746_6
crossref_primary_10_1007_s10637_021_01144_z
crossref_primary_10_1080_10799893_2021_1883060
crossref_primary_10_1097_MD_0000000000031493
crossref_primary_10_1016_j_catena_2021_105276
crossref_primary_10_1080_08923973_2022_2143372
crossref_primary_10_1016_j_lfs_2022_121188
crossref_primary_10_3390_cells11162518
crossref_primary_10_1002_pmic_202100381
crossref_primary_10_1515_hsz_2019_0264
crossref_primary_10_1016_j_ijbiomac_2024_133883
crossref_primary_10_3390_ijms231911304
crossref_primary_10_1038_s41581_023_00800_2
crossref_primary_10_1186_s12964_019_0412_9
crossref_primary_10_1002_tox_22922
crossref_primary_10_1038_s41467_022_33903_8
crossref_primary_10_1111_febs_15879
crossref_primary_10_3390_cancers13020188
crossref_primary_10_3390_antiox12010081
crossref_primary_10_1016_j_arr_2024_102242
crossref_primary_10_1515_biol_2022_0832
crossref_primary_10_1002_mco2_495
crossref_primary_10_5582_irdr_2023_01114
crossref_primary_10_1016_j_lfs_2023_121572
crossref_primary_10_1016_j_biopha_2019_109750
crossref_primary_10_3390_biom14030251
crossref_primary_10_3389_fonc_2021_742460
crossref_primary_10_37349_etat_2023_00196
crossref_primary_10_1038_s41392_024_01938_6
crossref_primary_10_1007_s00210_024_03263_9
crossref_primary_10_18632_aging_103300
crossref_primary_10_1002_prca_202200102
crossref_primary_10_1016_j_bbrc_2019_02_060
crossref_primary_10_1146_annurev_biochem_082520_125411
crossref_primary_10_1007_s13205_022_03455_1
crossref_primary_10_1016_j_ejphar_2022_175216
crossref_primary_10_3389_fimmu_2022_985911
crossref_primary_10_3389_fonc_2021_639408
crossref_primary_10_1016_j_freeradbiomed_2023_07_023
crossref_primary_10_3389_fonc_2022_975517
crossref_primary_10_1016_j_jprot_2023_104889
crossref_primary_10_1016_j_celrep_2023_112041
crossref_primary_10_4103_1673_5374_382229
crossref_primary_10_1038_s41419_024_06502_2
crossref_primary_10_1016_j_cellsig_2025_111744
crossref_primary_10_1155_2021_6613151
crossref_primary_10_1016_j_gendis_2022_03_009
crossref_primary_10_3389_fonc_2020_00218
crossref_primary_10_1021_acs_jmedchem_2c00687
crossref_primary_10_1016_j_tranon_2024_102215
crossref_primary_10_1111_cas_16228
crossref_primary_10_1515_hsz_2020_0118
crossref_primary_10_1007_s00018_023_05104_z
crossref_primary_10_1007_s11418_024_01871_6
crossref_primary_10_1155_2022_1669664
crossref_primary_10_1007_s00011_024_01853_0
crossref_primary_10_1186_s12935_023_03098_z
crossref_primary_10_3389_fcell_2021_622198
crossref_primary_10_1038_s41392_021_00825_8
crossref_primary_10_1038_s41418_021_00886_w
crossref_primary_10_1038_s41598_025_85618_7
crossref_primary_10_1038_s41388_020_1297_1
crossref_primary_10_1038_s41392_020_00311_7
Cites_doi 10.1007/s13277-014-2372-4
10.15252/embr.201541643
10.1158/2159-8290.CD-13-0092
10.1371/journal.pone.0048694
10.1111/jcmm.13495
10.1126/science.1175689
10.1089/ars.2017.7264
10.1158/0008-5472.CAN-17-1912
10.1016/j.freeradbiomed.2016.04.197
10.1038/srep30212
10.1016/j.cmet.2013.11.013
10.1038/nchembio.495
10.1016/j.redox.2017.05.009
10.1016/j.ccr.2004.11.022
10.1126/science.1207861
10.1016/j.celrep.2018.02.037
10.1038/onc.2017.199
10.1016/j.jgg.2015.03.003
10.1186/s40170-016-0154-8
10.1038/srep37478
10.1080/10409238.2018.1458071
10.1016/j.jmb.2017.03.027
10.1016/j.molcel.2015.10.017
10.1096/fj.15-275586
10.1016/j.molcel.2013.06.001
10.1016/j.ccr.2013.04.018
10.1016/j.ebiom.2016.12.003
10.1038/srep42053
10.18632/oncotarget.7238
10.1074/jbc.M117.785022
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.freeradbiomed.2019.01.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 467
ExternalDocumentID 30703481
10_1016_j_freeradbiomed_2019_01_030
S0891584918322147
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c383t-8a6735fd09661806b200bdd07cc91d28423f9368d2b0b538d5949842cddb2bef3
IEDL.DBID .~1
ISSN 0891-5849
1873-4596
IngestDate Fri Jul 11 08:52:44 EDT 2025
Thu Apr 03 07:01:35 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 01:11:18 EDT 2025
Fri Feb 23 02:23:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CO1A1
TCGA_KIRC
PTM
PPI
DAVID
IDH
SPTN1
AL4A1
Desuccinylation
MDH
LC-MS/MS
LDH
SDH5
KEGG
Tumorigenesis
HMGCS2
WT
HPLC
HIF
GO
FIBG
FAD
SIRT5
GSEA
Clear cell renal cell carcinoma
Co-IP
SDHA
ES
NAD
ccRCC
TCA
RCC
ECHA
TMT
DLD
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-8a6735fd09661806b200bdd07cc91d28423f9368d2b0b538d5949842cddb2bef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30703481
PQID 2179431497
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2179431497
pubmed_primary_30703481
crossref_citationtrail_10_1016_j_freeradbiomed_2019_01_030
crossref_primary_10_1016_j_freeradbiomed_2019_01_030
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2019_01_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Letouze, Martinelli, Loriot, Burnichon, Abermil, Ottolenghi, Janin, Menara, Nguyen, Benit, Buffet, Marcaillou, Bertherat, Amar, Rustin, De Reynies, Gimenez-Roqueplo, Favier (bib26) 2013; 23
Yang, Wang, Li, Liu, Liu, Liu, Chen, Ren, Wang, Yu, Wang, Zou, Zhu, Yin, Gu, Luo (bib19) 2018; 78
Song, Wang, Cheng, Gao, Sun, Chen, Chen, Wang, Wang (bib9) 2017; 7
Osborne, Bentley, Montgomery, Turner (bib6) 2016; 100
Li, He, Ye, Lin, Yu, Yao, Huang, Zhang, Wang, Xu, Wu, Liu, Yang, Shi, Liu, Qu, Guo, Zhao, Xu, Zhao (bib16) 2015; 60
Cha, Lee, Hwan Kim, Kim, Lee, Lee, Lee, Park (bib32) 2017; 13
Tao, Yang, Zheng, Feng, Qin, Shi, Wang, Zhao, Peng, Liu, Jiang, He (bib11) 2017; 36
Xu, Chen, Xu, Shi, Suo, Cheng, Zheng, Wang, Wang, Zhao, Tian, Hua (bib7) 2016; 6
Du, Liu, Chen, Gao, Wu, Hu, Wei, Gao, Li (bib28) 2018; 22
Rardin, He, Nishida, Newman, Carrico, Danielson, Guo, Gut, Sahu, Li, Uppala, Fitch, Riiff, Zhu, Zhou, Mulhern, Stevens, Ilkayeva, Newgard, Jacobson, Hellerstein, Goetzman, Gibson, Verdin (bib4) 2013; 18
Zhu, Hou, Hu, Zhao, Sun, Wang, Meng (bib8) 2016; 6
Di Martile, Desideri, De Luca, Gabellini, Buglioni, Eramo, Sette, Milella, Rotili, Mai, Carradori, Secci, De Maria, Del Bufalo, Trisciuoglio (bib21) 2016; 7
Guo, German, Bai, Barnes, Guo, Qi, Lou, Liang, Jonasch, Mills, Ding (bib30) 2015; 42
Zhang, Bharathi, Rardin, Lu, Maringer, Sims-Lucas, Prochownik, Gibson, Goetzman (bib24) 2017; 292
Du, Zhou, Su, Yu, Khan, Jiang, Kim, Woo, Kim, Choi, He, Chen, Zhang, Cerione, Auwerx, Hao, Lin (bib14) 2011; 334
Chang, Xi, Liu, Liu, Wu, Jian (bib20) 2018; 17
Zhang, Tan, Xie, Dai, Chen, Zhao (bib5) 2011; 7
Hao, Khalimonchuk, Schraders, Dephoure, Bayley, Kunst, Devilee, Cremers, Schiffman, Bentz, Gygi, Winge, Kremer, Rutter (bib13) 2009; 325
Bringman-Rodenbarger, Guo, Lyssiotis, Lombard (bib15) 2018; 28
Qi, Zhang, Peng, Wang, Wang, Feng, He, Zheng (bib10) 2018; 22
Kumar, Lombard (bib22) 2018; 53
Killian, Kim, Miettinen, Smith, Merino, Tsokos, Quezado, Smith, Jahromi, Xekouki, Szarek, Walker, Lasota, Raffeld, Klotzle, Wang, Jones, Zhu, Wang, Waterfall, O'Sullivan, Bibikova, Pacak, Stratakis, Janeway, Schiffman, Fan, Helman, Meltzer (bib27) 2013; 3
Zheng, Wang, Peng, Yang, Feng, He (bib2) 2017; 15
Sun, Zheng, Wang, Song, Liu, Meng, Tao, Si, Jiang, He (bib12) 2016; 30
Selak, Armour, MacKenzie, Boulahbel, Watson, Mansfield, Pan, Simon, Thompson, Gottlieb (bib25) 2005; 7
Lu, Zuo, Feng, Zhang (bib17) 2014; 35
Tang, Li, Tang, Xie, Wu, Wei, Xiao (bib18) 2018
van der Mijn, Panka, Geissler, Verheul, Mier (bib1) 2016; 4
Venkat, Gregory, Sturges, Gan, Fan (bib23) 2017; 429
Sundelin, Stahlman, Lundqvist, Levin, Parini, Johansson, Boren (bib29) 2012; 7
Park, Chen, Tishkoff, Peng, Tan, Dai, Xie, Zhang, Zwaans, Skinner, Lombard, Zhao (bib3) 2013; 50
Zhou, Wang, Sun, Chen, Zhang, Xu, Wang, Wang, Xiong, Guan, Yang, Yu, Ye (bib31) 2016; 17
Li (10.1016/j.freeradbiomed.2019.01.030_bib16) 2015; 60
Zhang (10.1016/j.freeradbiomed.2019.01.030_bib24) 2017; 292
Selak (10.1016/j.freeradbiomed.2019.01.030_bib25) 2005; 7
Venkat (10.1016/j.freeradbiomed.2019.01.030_bib23) 2017; 429
Letouze (10.1016/j.freeradbiomed.2019.01.030_bib26) 2013; 23
Guo (10.1016/j.freeradbiomed.2019.01.030_bib30) 2015; 42
Kumar (10.1016/j.freeradbiomed.2019.01.030_bib22) 2018; 53
van der Mijn (10.1016/j.freeradbiomed.2019.01.030_bib1) 2016; 4
Song (10.1016/j.freeradbiomed.2019.01.030_bib9) 2017; 7
Tang (10.1016/j.freeradbiomed.2019.01.030_bib18) 2018
Zheng (10.1016/j.freeradbiomed.2019.01.030_bib2) 2017; 15
Di Martile (10.1016/j.freeradbiomed.2019.01.030_bib21) 2016; 7
Zhou (10.1016/j.freeradbiomed.2019.01.030_bib31) 2016; 17
Rardin (10.1016/j.freeradbiomed.2019.01.030_bib4) 2013; 18
Lu (10.1016/j.freeradbiomed.2019.01.030_bib17) 2014; 35
Chang (10.1016/j.freeradbiomed.2019.01.030_bib20) 2018; 17
Hao (10.1016/j.freeradbiomed.2019.01.030_bib13) 2009; 325
Du (10.1016/j.freeradbiomed.2019.01.030_bib28) 2018; 22
Cha (10.1016/j.freeradbiomed.2019.01.030_bib32) 2017; 13
Tao (10.1016/j.freeradbiomed.2019.01.030_bib11) 2017; 36
Bringman-Rodenbarger (10.1016/j.freeradbiomed.2019.01.030_bib15) 2018; 28
Park (10.1016/j.freeradbiomed.2019.01.030_bib3) 2013; 50
Killian (10.1016/j.freeradbiomed.2019.01.030_bib27) 2013; 3
Qi (10.1016/j.freeradbiomed.2019.01.030_bib10) 2018; 22
Zhang (10.1016/j.freeradbiomed.2019.01.030_bib5) 2011; 7
Sun (10.1016/j.freeradbiomed.2019.01.030_bib12) 2016; 30
Zhu (10.1016/j.freeradbiomed.2019.01.030_bib8) 2016; 6
Du (10.1016/j.freeradbiomed.2019.01.030_bib14) 2011; 334
Osborne (10.1016/j.freeradbiomed.2019.01.030_bib6) 2016; 100
Xu (10.1016/j.freeradbiomed.2019.01.030_bib7) 2016; 6
Yang (10.1016/j.freeradbiomed.2019.01.030_bib19) 2018; 78
Sundelin (10.1016/j.freeradbiomed.2019.01.030_bib29) 2012; 7
References_xml – volume: 50
  start-page: 919
  year: 2013
  end-page: 930
  ident: bib3
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Mol Cell
– volume: 334
  start-page: 806
  year: 2011
  end-page: 809
  ident: bib14
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
  publication-title: Science
– volume: 35
  start-page: 10699
  year: 2014
  end-page: 10705
  ident: bib17
  article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer
  publication-title: Tumour Biol.
– volume: 60
  start-page: 661
  year: 2015
  end-page: 675
  ident: bib16
  article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
  publication-title: Mol Cell
– volume: 23
  start-page: 739
  year: 2013
  end-page: 752
  ident: bib26
  article-title: SDH mutations establish a hypermethylator phenotype in paraganglioma
  publication-title: Cancer Cell
– volume: 42
  start-page: 343
  year: 2015
  end-page: 353
  ident: bib30
  article-title: The PI3K/AKT pathway and renal cell carcinoma
  publication-title: J Genet Genomics
– volume: 292
  start-page: 10239
  year: 2017
  end-page: 10249
  ident: bib24
  article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 2677
  year: 2018
  end-page: 2689
  ident: bib28
  article-title: Targeting a sirt5-positive subpopulation overcomes multidrug resistance in wild-type kras colorectal carcinomas
  publication-title: Cell Rep.
– volume: 17
  start-page: 811
  year: 2016
  end-page: 822
  ident: bib31
  article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense
  publication-title: EMBO Rep.
– year: 2018
  ident: bib18
  article-title: CDK2 Positively Regulates Aerobic Glycolysis by Suppressing SIRT5 in Gastric Cancer
– volume: 7
  start-page: 77
  year: 2005
  end-page: 85
  ident: bib25
  article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
  publication-title: Cancer Cell
– volume: 30
  start-page: 578
  year: 2016
  end-page: 589
  ident: bib12
  article-title: NHERF1 regulates actin cytoskeleton organization through modulation of alpha-actinin-4 stability
  publication-title: FASEB J.
– volume: 100
  start-page: 164
  year: 2016
  end-page: 174
  ident: bib6
  article-title: The role of mitochondrial sirtuins in health and disease
  publication-title: Free Radic. Biol. Med.
– volume: 22
  start-page: 1224
  year: 2018
  end-page: 1235
  ident: bib10
  article-title: SERPINH1 overexpression in clear cell renal cell carcinoma: association with poor clinical outcome and its potential as a novel prognostic marker
  publication-title: J. Cell Mol. Med.
– volume: 429
  start-page: 1396
  year: 2017
  end-page: 1405
  ident: bib23
  article-title: Studying the lysine acetylation of malate dehydrogenase
  publication-title: J. Mol. Biol.
– volume: 17
  start-page: 342
  year: 2018
  end-page: 349
  ident: bib20
  article-title: SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1
  publication-title: Mol. Med. Rep.
– volume: 15
  start-page: 62
  year: 2017
  end-page: 72
  ident: bib2
  article-title: Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma
  publication-title: EBioMedicine
– volume: 36
  start-page: 6119
  year: 2017
  end-page: 6131
  ident: bib11
  article-title: PDZK1 inhibits the development and progression of renal cell carcinoma by suppression of SHP-1 phosphorylation
  publication-title: Oncogene
– volume: 6
  start-page: 30212
  year: 2016
  ident: bib7
  article-title: Lysine acetylation and succinylation in HeLa cells and their essential roles in response to UV-induced stress
  publication-title: Sci. Rep.
– volume: 7
  start-page: 42053
  year: 2017
  ident: bib9
  article-title: Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer
  publication-title: Sci. Rep.
– volume: 3
  start-page: 648
  year: 2013
  end-page: 657
  ident: bib27
  article-title: Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor
  publication-title: Cancer Discov.
– volume: 78
  start-page: 372
  year: 2018
  end-page: 386
  ident: bib19
  article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation
  publication-title: Cancer Res.
– volume: 7
  start-page: 11332
  year: 2016
  end-page: 11348
  ident: bib21
  article-title: Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells
  publication-title: Oncotarget
– volume: 28
  start-page: 677
  year: 2018
  end-page: 690
  ident: bib15
  article-title: Emerging roles for SIRT5 in metabolism and cancer
  publication-title: Antioxidants Redox Signal.
– volume: 53
  start-page: 311
  year: 2018
  end-page: 334
  ident: bib22
  article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 13
  start-page: 32
  year: 2017
  end-page: 38
  ident: bib32
  article-title: Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis
  publication-title: Redox Biol
– volume: 7
  year: 2012
  ident: bib29
  article-title: Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma
  publication-title: PLoS One
– volume: 325
  start-page: 1139
  year: 2009
  end-page: 1142
  ident: bib13
  article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
  publication-title: Science
– volume: 4
  start-page: 14
  year: 2016
  ident: bib1
  article-title: Novel drugs that target the metabolic reprogramming in renal cell cancer
  publication-title: Cancer Metabol.
– volume: 18
  start-page: 920
  year: 2013
  end-page: 933
  ident: bib4
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metabol.
– volume: 7
  start-page: 58
  year: 2011
  end-page: 63
  ident: bib5
  article-title: Identification of lysine succinylation as a new post-translational modification
  publication-title: Nat. Chem. Biol.
– volume: 6
  start-page: 37478
  year: 2016
  ident: bib8
  article-title: Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate
  publication-title: Sci. Rep.
– volume: 35
  start-page: 10699
  year: 2014
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib17
  article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-014-2372-4
– volume: 17
  start-page: 811
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib31
  article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201541643
– volume: 3
  start-page: 648
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib27
  article-title: Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0092
– volume: 7
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib29
  article-title: Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048694
– volume: 22
  start-page: 1224
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib10
  article-title: SERPINH1 overexpression in clear cell renal cell carcinoma: association with poor clinical outcome and its potential as a novel prognostic marker
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.13495
– volume: 325
  start-page: 1139
  year: 2009
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib13
  article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
  publication-title: Science
  doi: 10.1126/science.1175689
– volume: 28
  start-page: 677
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib15
  article-title: Emerging roles for SIRT5 in metabolism and cancer
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7264
– volume: 78
  start-page: 372
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib19
  article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-1912
– volume: 100
  start-page: 164
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib6
  article-title: The role of mitochondrial sirtuins in health and disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.04.197
– volume: 6
  start-page: 30212
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib7
  article-title: Lysine acetylation and succinylation in HeLa cells and their essential roles in response to UV-induced stress
  publication-title: Sci. Rep.
  doi: 10.1038/srep30212
– year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib18
– volume: 18
  start-page: 920
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib4
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2013.11.013
– volume: 7
  start-page: 58
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib5
  article-title: Identification of lysine succinylation as a new post-translational modification
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.495
– volume: 13
  start-page: 32
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib32
  article-title: Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2017.05.009
– volume: 7
  start-page: 77
  year: 2005
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib25
  article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.11.022
– volume: 334
  start-page: 806
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib14
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
  publication-title: Science
  doi: 10.1126/science.1207861
– volume: 22
  start-page: 2677
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib28
  article-title: Targeting a sirt5-positive subpopulation overcomes multidrug resistance in wild-type kras colorectal carcinomas
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.037
– volume: 36
  start-page: 6119
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib11
  article-title: PDZK1 inhibits the development and progression of renal cell carcinoma by suppression of SHP-1 phosphorylation
  publication-title: Oncogene
  doi: 10.1038/onc.2017.199
– volume: 42
  start-page: 343
  year: 2015
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib30
  article-title: The PI3K/AKT pathway and renal cell carcinoma
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2015.03.003
– volume: 4
  start-page: 14
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib1
  article-title: Novel drugs that target the metabolic reprogramming in renal cell cancer
  publication-title: Cancer Metabol.
  doi: 10.1186/s40170-016-0154-8
– volume: 6
  start-page: 37478
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib8
  article-title: Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate
  publication-title: Sci. Rep.
  doi: 10.1038/srep37478
– volume: 53
  start-page: 311
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib22
  article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2018.1458071
– volume: 17
  start-page: 342
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib20
  article-title: SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1
  publication-title: Mol. Med. Rep.
– volume: 429
  start-page: 1396
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib23
  article-title: Studying the lysine acetylation of malate dehydrogenase
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.03.027
– volume: 60
  start-page: 661
  year: 2015
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib16
  article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.10.017
– volume: 30
  start-page: 578
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib12
  article-title: NHERF1 regulates actin cytoskeleton organization through modulation of alpha-actinin-4 stability
  publication-title: FASEB J.
  doi: 10.1096/fj.15-275586
– volume: 50
  start-page: 919
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib3
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 23
  start-page: 739
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib26
  article-title: SDH mutations establish a hypermethylator phenotype in paraganglioma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.04.018
– volume: 15
  start-page: 62
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib2
  article-title: Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.12.003
– volume: 7
  start-page: 42053
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib9
  article-title: Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep42053
– volume: 7
  start-page: 11332
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib21
  article-title: Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7238
– volume: 292
  start-page: 10239
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.01.030_bib24
  article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.785022
SSID ssj0004538
Score 2.5447845
Snippet Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 458
SubjectTerms Carcinoma, Renal Cell - metabolism
Carcinoma, Renal Cell - pathology
Carcinoma, Renal Cell - surgery
Cell Proliferation
Clear cell renal cell carcinoma
Desuccinylation
Electron Transport Complex II - metabolism
Humans
Kidney Neoplasms - metabolism
Kidney Neoplasms - pathology
Kidney Neoplasms - surgery
Male
Nephrectomy
Protein Interaction Maps
Protein Processing, Post-Translational
Proteome
SDHA
SIRT5
Sirtuins - metabolism
Succinic Acid - metabolism
Tumor Cells, Cultured
Tumorigenesis
Title SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis
URI https://dx.doi.org/10.1016/j.freeradbiomed.2019.01.030
https://www.ncbi.nlm.nih.gov/pubmed/30703481
https://www.proquest.com/docview/2179431497
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5MQkovoXH6cJsYhZTetl7tah_KIWCSGCclPtQ2mF7E6rHgEq-NHwdf-tuj0e6mCSQQyG1XSLtCM5qH9M0MwHduVbbBfNppjkm1lcy8TEruRaniLM-p5i4W5nYQ98fsZhJNGnBRx8IgrLKS_aVMd9K6aulUq9lZTKedoZ9yatUnd0xJGUaUM5Ygl__8Rx9lDHfVrLGzh73fwel_jFe-NAavrF2kO-K8uMvhiZDo57XUS1ao00a9D7BfmZGkW870ABqmaMJht7Au9GxLfhAH7HQn5k3YK-tNbg_hz_D69yjyXLSItTTJ8LLfJdqsNkpNi22JiiMLB9AzK6KwogTBk32yNPg396iw-FAxn2VkvZlhWS0UltPVRxj3rkYXfa8qruAp65SuvTSLkzDKtXVhYpr6sbTbRWrtJ0pxqq3SCsKch3GqA-lLu4Y64ozbVqW1DKTJw0-wU8wL8wVIFGZ4uZqpkOUskWkmqbUjJeOBSkyiaQvO6sUUqso8jgUw7kQNMfsrnlBCICWET4WlRAvYw-BFmYDjdcPOa6qJJ_wkrKp43QdOaloLu-NwhbPCzDcrEbiketazTFrwuWSCh5k5CcpS-vWtv_8G7_GtxAgdwc56uTHH1vxZy7bj7zbsdq9_9Qf3lXcF7Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6kKe36Mtbbml01WvZmYtnyRXsYhG7BWdo8NCmUvQjrYshYnJDLQ_79dGS7XWGDQt-MbFniHOlcpO-cA3DBrco2mE87LTCptpK5l0vJvShVnBUF1dzFwlyP4uyW_biL7lpw2cTCIKyylv2VTHfSum7p1tTsLqbT7thPObXqk7tFSVmyA7uYnSpqw25vMMxGfyUNdwWt8XsPO-zD-QPMq1gag7fWLtgdoV7cpfFEVPS_FdX_DFGnkPqv4GVtSZJeNdlDaJnyCI57pfWiZ1vymThspzs0P4K9quTk9hh-jgc3k8hzASPW2CTjb1mPaLPaKDUttxUwjiwcRs-siMKiEgQP98nS4GjuUWH9oXI-y8l6M8PKWigvp6sTuO1_n1xmXl1fwVPWL117aR4nYVRo68XENPVjaXeM1NpPlOJUW70VhAUP41QH0peWhjrijNtWpbUMpCnCU2iX89KcAYnCHO9XcxWygiUyzSW1pqRkPFCJSTTtwJeGmELVycexBsZv0aDMfolHnBDICeFTYTnRAXbfeVHl4Hhat68N18SjJSWstnjaDz41vBZ20yGF89LMNysRuLx61rlMOvC6WgT3M3NClKX0zXOH_wgvssn1lbgajIZv4QDfVJChd9BeLzfmvbWG1vJDvdr_AIQLCJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT5-mediated+SDHA+desuccinylation+promotes+clear+cell+renal+cell+carcinoma+tumorigenesis&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Ma%2C+Yuanzhen&rft.au=Qi%2C+Yijun&rft.au=Wang%2C+Lei&rft.au=Zheng%2C+Zhaoxu&rft.date=2019-04-01&rft.issn=0891-5849&rft.volume=134&rft.spage=458&rft.epage=467&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2019.01.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2019_01_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon