SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem m...
Saved in:
Published in | Free radical biology & medicine Vol. 134; pp. 458 - 467 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography–tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.
[Display omitted]
•135 sites in 102 proteins were differentially succinylated between adjacent normal and ccRCC tissues.•Metabolic and oxidation-reduction processes were influenced by protein succinylation.•SDHA was desuccinylated and inactivated in ccRCC tissues.•SIRT5 mediated the desuccinylation of SDHA.•SIRT5 contributed to ccRCC tumorigenesis. |
---|---|
AbstractList | Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC. Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC. Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography–tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC. [Display omitted] •135 sites in 102 proteins were differentially succinylated between adjacent normal and ccRCC tissues.•Metabolic and oxidation-reduction processes were influenced by protein succinylation.•SDHA was desuccinylated and inactivated in ccRCC tissues.•SIRT5 mediated the desuccinylation of SDHA.•SIRT5 contributed to ccRCC tumorigenesis. |
Author | Qi, Yijun Wang, Lei Ma, Yuanzhen Zhang, Yue Zheng, Junfang Zheng, Zhaoxu |
Author_xml | – sequence: 1 givenname: Yuanzhen surname: Ma fullname: Ma, Yuanzhen organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China – sequence: 2 givenname: Yijun surname: Qi fullname: Qi, Yijun organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei organization: Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China – sequence: 4 givenname: Zhaoxu surname: Zheng fullname: Zheng, Zhaoxu organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China – sequence: 5 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China – sequence: 6 givenname: Junfang surname: Zheng fullname: Zheng, Junfang email: zhengjf@ccmu.edu.cn organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30703481$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1q3DAUhUVJyEymeYVi6KYbO1eWfyS6GtKkGRgINOmmGyFL10WDbaWSXMjbR9OZWTSrrCTEuUfnnu-SnE1uQkI-Uygo0OZ6V_Qe0SvTWTeiKUqgogBaAIMPZEl5y_KqFs0ZWQIXNK95JRbkMoQdAFQ14xdkwaAFVnG6JL8eNz-e6jz5WBXRZI_f7teZwTBrbaeXQUXrpuzZu9FFDJkeUPlM4zBkHic1HK5a-SR2o8riPDpvf-OEwYaP5LxXQ8Cr47kiP-9un27u8-3D983NeptrxlnMuWpaVvcGRNNQDk1XAnTGQKu1oKbkVcl6wRpuyg66FN_UohLpVRvTlR32bEW-HHxTzD8zhihHG_bB1IRuDrKkragYrUSbpJ-O0rlLK8tnb0flX-SpjyRYHwTauxA89lLb-K-E6JUdJAW5ZyB38j8Gcs9AApWJQfL4-sbj9M37pm8P05gq-2vRy6AtTjoB8qijNM6-y-cV-OOrIw |
CitedBy_id | crossref_primary_10_1002_2211_5463_13090 crossref_primary_10_1016_j_biochi_2023_02_008 crossref_primary_10_1186_s13046_022_02338_w crossref_primary_10_1016_j_ejmech_2022_114363 crossref_primary_10_3389_fimmu_2025_1531246 crossref_primary_10_1007_s10815_024_03223_5 crossref_primary_10_3390_cancers11121949 crossref_primary_10_1016_j_geoderma_2022_115740 crossref_primary_10_1016_j_biopha_2023_115713 crossref_primary_10_1186_s12885_024_12792_8 crossref_primary_10_3390_genes13112122 crossref_primary_10_1016_j_yexcr_2019_06_028 crossref_primary_10_1186_s12935_025_03746_6 crossref_primary_10_1007_s10637_021_01144_z crossref_primary_10_1080_10799893_2021_1883060 crossref_primary_10_1097_MD_0000000000031493 crossref_primary_10_1016_j_catena_2021_105276 crossref_primary_10_1080_08923973_2022_2143372 crossref_primary_10_1016_j_lfs_2022_121188 crossref_primary_10_3390_cells11162518 crossref_primary_10_1002_pmic_202100381 crossref_primary_10_1515_hsz_2019_0264 crossref_primary_10_1016_j_ijbiomac_2024_133883 crossref_primary_10_3390_ijms231911304 crossref_primary_10_1038_s41581_023_00800_2 crossref_primary_10_1186_s12964_019_0412_9 crossref_primary_10_1002_tox_22922 crossref_primary_10_1038_s41467_022_33903_8 crossref_primary_10_1111_febs_15879 crossref_primary_10_3390_cancers13020188 crossref_primary_10_3390_antiox12010081 crossref_primary_10_1016_j_arr_2024_102242 crossref_primary_10_1515_biol_2022_0832 crossref_primary_10_1002_mco2_495 crossref_primary_10_5582_irdr_2023_01114 crossref_primary_10_1016_j_lfs_2023_121572 crossref_primary_10_1016_j_biopha_2019_109750 crossref_primary_10_3390_biom14030251 crossref_primary_10_3389_fonc_2021_742460 crossref_primary_10_37349_etat_2023_00196 crossref_primary_10_1038_s41392_024_01938_6 crossref_primary_10_1007_s00210_024_03263_9 crossref_primary_10_18632_aging_103300 crossref_primary_10_1002_prca_202200102 crossref_primary_10_1016_j_bbrc_2019_02_060 crossref_primary_10_1146_annurev_biochem_082520_125411 crossref_primary_10_1007_s13205_022_03455_1 crossref_primary_10_1016_j_ejphar_2022_175216 crossref_primary_10_3389_fimmu_2022_985911 crossref_primary_10_3389_fonc_2021_639408 crossref_primary_10_1016_j_freeradbiomed_2023_07_023 crossref_primary_10_3389_fonc_2022_975517 crossref_primary_10_1016_j_jprot_2023_104889 crossref_primary_10_1016_j_celrep_2023_112041 crossref_primary_10_4103_1673_5374_382229 crossref_primary_10_1038_s41419_024_06502_2 crossref_primary_10_1016_j_cellsig_2025_111744 crossref_primary_10_1155_2021_6613151 crossref_primary_10_1016_j_gendis_2022_03_009 crossref_primary_10_3389_fonc_2020_00218 crossref_primary_10_1021_acs_jmedchem_2c00687 crossref_primary_10_1016_j_tranon_2024_102215 crossref_primary_10_1111_cas_16228 crossref_primary_10_1515_hsz_2020_0118 crossref_primary_10_1007_s00018_023_05104_z crossref_primary_10_1007_s11418_024_01871_6 crossref_primary_10_1155_2022_1669664 crossref_primary_10_1007_s00011_024_01853_0 crossref_primary_10_1186_s12935_023_03098_z crossref_primary_10_3389_fcell_2021_622198 crossref_primary_10_1038_s41392_021_00825_8 crossref_primary_10_1038_s41418_021_00886_w crossref_primary_10_1038_s41598_025_85618_7 crossref_primary_10_1038_s41388_020_1297_1 crossref_primary_10_1038_s41392_020_00311_7 |
Cites_doi | 10.1007/s13277-014-2372-4 10.15252/embr.201541643 10.1158/2159-8290.CD-13-0092 10.1371/journal.pone.0048694 10.1111/jcmm.13495 10.1126/science.1175689 10.1089/ars.2017.7264 10.1158/0008-5472.CAN-17-1912 10.1016/j.freeradbiomed.2016.04.197 10.1038/srep30212 10.1016/j.cmet.2013.11.013 10.1038/nchembio.495 10.1016/j.redox.2017.05.009 10.1016/j.ccr.2004.11.022 10.1126/science.1207861 10.1016/j.celrep.2018.02.037 10.1038/onc.2017.199 10.1016/j.jgg.2015.03.003 10.1186/s40170-016-0154-8 10.1038/srep37478 10.1080/10409238.2018.1458071 10.1016/j.jmb.2017.03.027 10.1016/j.molcel.2015.10.017 10.1096/fj.15-275586 10.1016/j.molcel.2013.06.001 10.1016/j.ccr.2013.04.018 10.1016/j.ebiom.2016.12.003 10.1038/srep42053 10.18632/oncotarget.7238 10.1074/jbc.M117.785022 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2019.01.030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 467 |
ExternalDocumentID | 30703481 10_1016_j_freeradbiomed_2019_01_030 S0891584918322147 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c383t-8a6735fd09661806b200bdd07cc91d28423f9368d2b0b538d5949842cddb2bef3 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Jul 11 08:52:44 EDT 2025 Thu Apr 03 07:01:35 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 01:11:18 EDT 2025 Fri Feb 23 02:23:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO1A1 TCGA_KIRC PTM PPI DAVID IDH SPTN1 AL4A1 Desuccinylation MDH LC-MS/MS LDH SDH5 KEGG Tumorigenesis HMGCS2 WT HPLC HIF GO FIBG FAD SIRT5 GSEA Clear cell renal cell carcinoma Co-IP SDHA ES NAD ccRCC TCA RCC ECHA TMT DLD |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-8a6735fd09661806b200bdd07cc91d28423f9368d2b0b538d5949842cddb2bef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30703481 |
PQID | 2179431497 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2179431497 pubmed_primary_30703481 crossref_citationtrail_10_1016_j_freeradbiomed_2019_01_030 crossref_primary_10_1016_j_freeradbiomed_2019_01_030 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2019_01_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Letouze, Martinelli, Loriot, Burnichon, Abermil, Ottolenghi, Janin, Menara, Nguyen, Benit, Buffet, Marcaillou, Bertherat, Amar, Rustin, De Reynies, Gimenez-Roqueplo, Favier (bib26) 2013; 23 Yang, Wang, Li, Liu, Liu, Liu, Chen, Ren, Wang, Yu, Wang, Zou, Zhu, Yin, Gu, Luo (bib19) 2018; 78 Song, Wang, Cheng, Gao, Sun, Chen, Chen, Wang, Wang (bib9) 2017; 7 Osborne, Bentley, Montgomery, Turner (bib6) 2016; 100 Li, He, Ye, Lin, Yu, Yao, Huang, Zhang, Wang, Xu, Wu, Liu, Yang, Shi, Liu, Qu, Guo, Zhao, Xu, Zhao (bib16) 2015; 60 Cha, Lee, Hwan Kim, Kim, Lee, Lee, Lee, Park (bib32) 2017; 13 Tao, Yang, Zheng, Feng, Qin, Shi, Wang, Zhao, Peng, Liu, Jiang, He (bib11) 2017; 36 Xu, Chen, Xu, Shi, Suo, Cheng, Zheng, Wang, Wang, Zhao, Tian, Hua (bib7) 2016; 6 Du, Liu, Chen, Gao, Wu, Hu, Wei, Gao, Li (bib28) 2018; 22 Rardin, He, Nishida, Newman, Carrico, Danielson, Guo, Gut, Sahu, Li, Uppala, Fitch, Riiff, Zhu, Zhou, Mulhern, Stevens, Ilkayeva, Newgard, Jacobson, Hellerstein, Goetzman, Gibson, Verdin (bib4) 2013; 18 Zhu, Hou, Hu, Zhao, Sun, Wang, Meng (bib8) 2016; 6 Di Martile, Desideri, De Luca, Gabellini, Buglioni, Eramo, Sette, Milella, Rotili, Mai, Carradori, Secci, De Maria, Del Bufalo, Trisciuoglio (bib21) 2016; 7 Guo, German, Bai, Barnes, Guo, Qi, Lou, Liang, Jonasch, Mills, Ding (bib30) 2015; 42 Zhang, Bharathi, Rardin, Lu, Maringer, Sims-Lucas, Prochownik, Gibson, Goetzman (bib24) 2017; 292 Du, Zhou, Su, Yu, Khan, Jiang, Kim, Woo, Kim, Choi, He, Chen, Zhang, Cerione, Auwerx, Hao, Lin (bib14) 2011; 334 Chang, Xi, Liu, Liu, Wu, Jian (bib20) 2018; 17 Zhang, Tan, Xie, Dai, Chen, Zhao (bib5) 2011; 7 Hao, Khalimonchuk, Schraders, Dephoure, Bayley, Kunst, Devilee, Cremers, Schiffman, Bentz, Gygi, Winge, Kremer, Rutter (bib13) 2009; 325 Bringman-Rodenbarger, Guo, Lyssiotis, Lombard (bib15) 2018; 28 Qi, Zhang, Peng, Wang, Wang, Feng, He, Zheng (bib10) 2018; 22 Kumar, Lombard (bib22) 2018; 53 Killian, Kim, Miettinen, Smith, Merino, Tsokos, Quezado, Smith, Jahromi, Xekouki, Szarek, Walker, Lasota, Raffeld, Klotzle, Wang, Jones, Zhu, Wang, Waterfall, O'Sullivan, Bibikova, Pacak, Stratakis, Janeway, Schiffman, Fan, Helman, Meltzer (bib27) 2013; 3 Zheng, Wang, Peng, Yang, Feng, He (bib2) 2017; 15 Sun, Zheng, Wang, Song, Liu, Meng, Tao, Si, Jiang, He (bib12) 2016; 30 Selak, Armour, MacKenzie, Boulahbel, Watson, Mansfield, Pan, Simon, Thompson, Gottlieb (bib25) 2005; 7 Lu, Zuo, Feng, Zhang (bib17) 2014; 35 Tang, Li, Tang, Xie, Wu, Wei, Xiao (bib18) 2018 van der Mijn, Panka, Geissler, Verheul, Mier (bib1) 2016; 4 Venkat, Gregory, Sturges, Gan, Fan (bib23) 2017; 429 Sundelin, Stahlman, Lundqvist, Levin, Parini, Johansson, Boren (bib29) 2012; 7 Park, Chen, Tishkoff, Peng, Tan, Dai, Xie, Zhang, Zwaans, Skinner, Lombard, Zhao (bib3) 2013; 50 Zhou, Wang, Sun, Chen, Zhang, Xu, Wang, Wang, Xiong, Guan, Yang, Yu, Ye (bib31) 2016; 17 Li (10.1016/j.freeradbiomed.2019.01.030_bib16) 2015; 60 Zhang (10.1016/j.freeradbiomed.2019.01.030_bib24) 2017; 292 Selak (10.1016/j.freeradbiomed.2019.01.030_bib25) 2005; 7 Venkat (10.1016/j.freeradbiomed.2019.01.030_bib23) 2017; 429 Letouze (10.1016/j.freeradbiomed.2019.01.030_bib26) 2013; 23 Guo (10.1016/j.freeradbiomed.2019.01.030_bib30) 2015; 42 Kumar (10.1016/j.freeradbiomed.2019.01.030_bib22) 2018; 53 van der Mijn (10.1016/j.freeradbiomed.2019.01.030_bib1) 2016; 4 Song (10.1016/j.freeradbiomed.2019.01.030_bib9) 2017; 7 Tang (10.1016/j.freeradbiomed.2019.01.030_bib18) 2018 Zheng (10.1016/j.freeradbiomed.2019.01.030_bib2) 2017; 15 Di Martile (10.1016/j.freeradbiomed.2019.01.030_bib21) 2016; 7 Zhou (10.1016/j.freeradbiomed.2019.01.030_bib31) 2016; 17 Rardin (10.1016/j.freeradbiomed.2019.01.030_bib4) 2013; 18 Lu (10.1016/j.freeradbiomed.2019.01.030_bib17) 2014; 35 Chang (10.1016/j.freeradbiomed.2019.01.030_bib20) 2018; 17 Hao (10.1016/j.freeradbiomed.2019.01.030_bib13) 2009; 325 Du (10.1016/j.freeradbiomed.2019.01.030_bib28) 2018; 22 Cha (10.1016/j.freeradbiomed.2019.01.030_bib32) 2017; 13 Tao (10.1016/j.freeradbiomed.2019.01.030_bib11) 2017; 36 Bringman-Rodenbarger (10.1016/j.freeradbiomed.2019.01.030_bib15) 2018; 28 Park (10.1016/j.freeradbiomed.2019.01.030_bib3) 2013; 50 Killian (10.1016/j.freeradbiomed.2019.01.030_bib27) 2013; 3 Qi (10.1016/j.freeradbiomed.2019.01.030_bib10) 2018; 22 Zhang (10.1016/j.freeradbiomed.2019.01.030_bib5) 2011; 7 Sun (10.1016/j.freeradbiomed.2019.01.030_bib12) 2016; 30 Zhu (10.1016/j.freeradbiomed.2019.01.030_bib8) 2016; 6 Du (10.1016/j.freeradbiomed.2019.01.030_bib14) 2011; 334 Osborne (10.1016/j.freeradbiomed.2019.01.030_bib6) 2016; 100 Xu (10.1016/j.freeradbiomed.2019.01.030_bib7) 2016; 6 Yang (10.1016/j.freeradbiomed.2019.01.030_bib19) 2018; 78 Sundelin (10.1016/j.freeradbiomed.2019.01.030_bib29) 2012; 7 |
References_xml | – volume: 50 start-page: 919 year: 2013 end-page: 930 ident: bib3 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Mol Cell – volume: 334 start-page: 806 year: 2011 end-page: 809 ident: bib14 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase publication-title: Science – volume: 35 start-page: 10699 year: 2014 end-page: 10705 ident: bib17 article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer publication-title: Tumour Biol. – volume: 60 start-page: 661 year: 2015 end-page: 675 ident: bib16 article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance publication-title: Mol Cell – volume: 23 start-page: 739 year: 2013 end-page: 752 ident: bib26 article-title: SDH mutations establish a hypermethylator phenotype in paraganglioma publication-title: Cancer Cell – volume: 42 start-page: 343 year: 2015 end-page: 353 ident: bib30 article-title: The PI3K/AKT pathway and renal cell carcinoma publication-title: J Genet Genomics – volume: 292 start-page: 10239 year: 2017 end-page: 10249 ident: bib24 article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain publication-title: J. Biol. Chem. – volume: 22 start-page: 2677 year: 2018 end-page: 2689 ident: bib28 article-title: Targeting a sirt5-positive subpopulation overcomes multidrug resistance in wild-type kras colorectal carcinomas publication-title: Cell Rep. – volume: 17 start-page: 811 year: 2016 end-page: 822 ident: bib31 article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense publication-title: EMBO Rep. – year: 2018 ident: bib18 article-title: CDK2 Positively Regulates Aerobic Glycolysis by Suppressing SIRT5 in Gastric Cancer – volume: 7 start-page: 77 year: 2005 end-page: 85 ident: bib25 article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase publication-title: Cancer Cell – volume: 30 start-page: 578 year: 2016 end-page: 589 ident: bib12 article-title: NHERF1 regulates actin cytoskeleton organization through modulation of alpha-actinin-4 stability publication-title: FASEB J. – volume: 100 start-page: 164 year: 2016 end-page: 174 ident: bib6 article-title: The role of mitochondrial sirtuins in health and disease publication-title: Free Radic. Biol. Med. – volume: 22 start-page: 1224 year: 2018 end-page: 1235 ident: bib10 article-title: SERPINH1 overexpression in clear cell renal cell carcinoma: association with poor clinical outcome and its potential as a novel prognostic marker publication-title: J. Cell Mol. Med. – volume: 429 start-page: 1396 year: 2017 end-page: 1405 ident: bib23 article-title: Studying the lysine acetylation of malate dehydrogenase publication-title: J. Mol. Biol. – volume: 17 start-page: 342 year: 2018 end-page: 349 ident: bib20 article-title: SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1 publication-title: Mol. Med. Rep. – volume: 15 start-page: 62 year: 2017 end-page: 72 ident: bib2 article-title: Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma publication-title: EBioMedicine – volume: 36 start-page: 6119 year: 2017 end-page: 6131 ident: bib11 article-title: PDZK1 inhibits the development and progression of renal cell carcinoma by suppression of SHP-1 phosphorylation publication-title: Oncogene – volume: 6 start-page: 30212 year: 2016 ident: bib7 article-title: Lysine acetylation and succinylation in HeLa cells and their essential roles in response to UV-induced stress publication-title: Sci. Rep. – volume: 7 start-page: 42053 year: 2017 ident: bib9 article-title: Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer publication-title: Sci. Rep. – volume: 3 start-page: 648 year: 2013 end-page: 657 ident: bib27 article-title: Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor publication-title: Cancer Discov. – volume: 78 start-page: 372 year: 2018 end-page: 386 ident: bib19 article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation publication-title: Cancer Res. – volume: 7 start-page: 11332 year: 2016 end-page: 11348 ident: bib21 article-title: Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells publication-title: Oncotarget – volume: 28 start-page: 677 year: 2018 end-page: 690 ident: bib15 article-title: Emerging roles for SIRT5 in metabolism and cancer publication-title: Antioxidants Redox Signal. – volume: 53 start-page: 311 year: 2018 end-page: 334 ident: bib22 article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 13 start-page: 32 year: 2017 end-page: 38 ident: bib32 article-title: Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis publication-title: Redox Biol – volume: 7 year: 2012 ident: bib29 article-title: Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma publication-title: PLoS One – volume: 325 start-page: 1139 year: 2009 end-page: 1142 ident: bib13 article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma publication-title: Science – volume: 4 start-page: 14 year: 2016 ident: bib1 article-title: Novel drugs that target the metabolic reprogramming in renal cell cancer publication-title: Cancer Metabol. – volume: 18 start-page: 920 year: 2013 end-page: 933 ident: bib4 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metabol. – volume: 7 start-page: 58 year: 2011 end-page: 63 ident: bib5 article-title: Identification of lysine succinylation as a new post-translational modification publication-title: Nat. Chem. Biol. – volume: 6 start-page: 37478 year: 2016 ident: bib8 article-title: Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate publication-title: Sci. Rep. – volume: 35 start-page: 10699 year: 2014 ident: 10.1016/j.freeradbiomed.2019.01.030_bib17 article-title: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer publication-title: Tumour Biol. doi: 10.1007/s13277-014-2372-4 – volume: 17 start-page: 811 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib31 article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense publication-title: EMBO Rep. doi: 10.15252/embr.201541643 – volume: 3 start-page: 648 year: 2013 ident: 10.1016/j.freeradbiomed.2019.01.030_bib27 article-title: Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0092 – volume: 7 year: 2012 ident: 10.1016/j.freeradbiomed.2019.01.030_bib29 article-title: Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma publication-title: PLoS One doi: 10.1371/journal.pone.0048694 – volume: 22 start-page: 1224 year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib10 article-title: SERPINH1 overexpression in clear cell renal cell carcinoma: association with poor clinical outcome and its potential as a novel prognostic marker publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.13495 – volume: 325 start-page: 1139 year: 2009 ident: 10.1016/j.freeradbiomed.2019.01.030_bib13 article-title: SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma publication-title: Science doi: 10.1126/science.1175689 – volume: 28 start-page: 677 year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib15 article-title: Emerging roles for SIRT5 in metabolism and cancer publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7264 – volume: 78 start-page: 372 year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib19 article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-1912 – volume: 100 start-page: 164 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib6 article-title: The role of mitochondrial sirtuins in health and disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.04.197 – volume: 6 start-page: 30212 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib7 article-title: Lysine acetylation and succinylation in HeLa cells and their essential roles in response to UV-induced stress publication-title: Sci. Rep. doi: 10.1038/srep30212 – year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib18 – volume: 18 start-page: 920 year: 2013 ident: 10.1016/j.freeradbiomed.2019.01.030_bib4 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metabol. doi: 10.1016/j.cmet.2013.11.013 – volume: 7 start-page: 58 year: 2011 ident: 10.1016/j.freeradbiomed.2019.01.030_bib5 article-title: Identification of lysine succinylation as a new post-translational modification publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.495 – volume: 13 start-page: 32 year: 2017 ident: 10.1016/j.freeradbiomed.2019.01.030_bib32 article-title: Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis publication-title: Redox Biol doi: 10.1016/j.redox.2017.05.009 – volume: 7 start-page: 77 year: 2005 ident: 10.1016/j.freeradbiomed.2019.01.030_bib25 article-title: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.11.022 – volume: 334 start-page: 806 year: 2011 ident: 10.1016/j.freeradbiomed.2019.01.030_bib14 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase publication-title: Science doi: 10.1126/science.1207861 – volume: 22 start-page: 2677 year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib28 article-title: Targeting a sirt5-positive subpopulation overcomes multidrug resistance in wild-type kras colorectal carcinomas publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.037 – volume: 36 start-page: 6119 year: 2017 ident: 10.1016/j.freeradbiomed.2019.01.030_bib11 article-title: PDZK1 inhibits the development and progression of renal cell carcinoma by suppression of SHP-1 phosphorylation publication-title: Oncogene doi: 10.1038/onc.2017.199 – volume: 42 start-page: 343 year: 2015 ident: 10.1016/j.freeradbiomed.2019.01.030_bib30 article-title: The PI3K/AKT pathway and renal cell carcinoma publication-title: J Genet Genomics doi: 10.1016/j.jgg.2015.03.003 – volume: 4 start-page: 14 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib1 article-title: Novel drugs that target the metabolic reprogramming in renal cell cancer publication-title: Cancer Metabol. doi: 10.1186/s40170-016-0154-8 – volume: 6 start-page: 37478 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib8 article-title: Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate publication-title: Sci. Rep. doi: 10.1038/srep37478 – volume: 53 start-page: 311 year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib22 article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2018.1458071 – volume: 17 start-page: 342 year: 2018 ident: 10.1016/j.freeradbiomed.2019.01.030_bib20 article-title: SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1 publication-title: Mol. Med. Rep. – volume: 429 start-page: 1396 year: 2017 ident: 10.1016/j.freeradbiomed.2019.01.030_bib23 article-title: Studying the lysine acetylation of malate dehydrogenase publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.03.027 – volume: 60 start-page: 661 year: 2015 ident: 10.1016/j.freeradbiomed.2019.01.030_bib16 article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance publication-title: Mol Cell doi: 10.1016/j.molcel.2015.10.017 – volume: 30 start-page: 578 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib12 article-title: NHERF1 regulates actin cytoskeleton organization through modulation of alpha-actinin-4 stability publication-title: FASEB J. doi: 10.1096/fj.15-275586 – volume: 50 start-page: 919 year: 2013 ident: 10.1016/j.freeradbiomed.2019.01.030_bib3 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Mol Cell doi: 10.1016/j.molcel.2013.06.001 – volume: 23 start-page: 739 year: 2013 ident: 10.1016/j.freeradbiomed.2019.01.030_bib26 article-title: SDH mutations establish a hypermethylator phenotype in paraganglioma publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.04.018 – volume: 15 start-page: 62 year: 2017 ident: 10.1016/j.freeradbiomed.2019.01.030_bib2 article-title: Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.12.003 – volume: 7 start-page: 42053 year: 2017 ident: 10.1016/j.freeradbiomed.2019.01.030_bib9 article-title: Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer publication-title: Sci. Rep. doi: 10.1038/srep42053 – volume: 7 start-page: 11332 year: 2016 ident: 10.1016/j.freeradbiomed.2019.01.030_bib21 article-title: Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells publication-title: Oncotarget doi: 10.18632/oncotarget.7238 – volume: 292 start-page: 10239 year: 2017 ident: 10.1016/j.freeradbiomed.2019.01.030_bib24 article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.785022 |
SSID | ssj0004538 |
Score | 2.5447845 |
Snippet | Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 458 |
SubjectTerms | Carcinoma, Renal Cell - metabolism Carcinoma, Renal Cell - pathology Carcinoma, Renal Cell - surgery Cell Proliferation Clear cell renal cell carcinoma Desuccinylation Electron Transport Complex II - metabolism Humans Kidney Neoplasms - metabolism Kidney Neoplasms - pathology Kidney Neoplasms - surgery Male Nephrectomy Protein Interaction Maps Protein Processing, Post-Translational Proteome SDHA SIRT5 Sirtuins - metabolism Succinic Acid - metabolism Tumor Cells, Cultured Tumorigenesis |
Title | SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2019.01.030 https://www.ncbi.nlm.nih.gov/pubmed/30703481 https://www.proquest.com/docview/2179431497 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5MQkovoXH6cJsYhZTetl7tah_KIWCSGCclPtQ2mF7E6rHgEq-NHwdf-tuj0e6mCSQQyG1XSLtCM5qH9M0MwHduVbbBfNppjkm1lcy8TEruRaniLM-p5i4W5nYQ98fsZhJNGnBRx8IgrLKS_aVMd9K6aulUq9lZTKedoZ9yatUnd0xJGUaUM5Ygl__8Rx9lDHfVrLGzh73fwel_jFe-NAavrF2kO-K8uMvhiZDo57XUS1ao00a9D7BfmZGkW870ABqmaMJht7Au9GxLfhAH7HQn5k3YK-tNbg_hz_D69yjyXLSItTTJ8LLfJdqsNkpNi22JiiMLB9AzK6KwogTBk32yNPg396iw-FAxn2VkvZlhWS0UltPVRxj3rkYXfa8qruAp65SuvTSLkzDKtXVhYpr6sbTbRWrtJ0pxqq3SCsKch3GqA-lLu4Y64ozbVqW1DKTJw0-wU8wL8wVIFGZ4uZqpkOUskWkmqbUjJeOBSkyiaQvO6sUUqso8jgUw7kQNMfsrnlBCICWET4WlRAvYw-BFmYDjdcPOa6qJJ_wkrKp43QdOaloLu-NwhbPCzDcrEbiketazTFrwuWSCh5k5CcpS-vWtv_8G7_GtxAgdwc56uTHH1vxZy7bj7zbsdq9_9Qf3lXcF7Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6kKe36Mtbbml01WvZmYtnyRXsYhG7BWdo8NCmUvQjrYshYnJDLQ_79dGS7XWGDQt-MbFniHOlcpO-cA3DBrco2mE87LTCptpK5l0vJvShVnBUF1dzFwlyP4uyW_biL7lpw2cTCIKyylv2VTHfSum7p1tTsLqbT7thPObXqk7tFSVmyA7uYnSpqw25vMMxGfyUNdwWt8XsPO-zD-QPMq1gag7fWLtgdoV7cpfFEVPS_FdX_DFGnkPqv4GVtSZJeNdlDaJnyCI57pfWiZ1vymThspzs0P4K9quTk9hh-jgc3k8hzASPW2CTjb1mPaLPaKDUttxUwjiwcRs-siMKiEgQP98nS4GjuUWH9oXI-y8l6M8PKWigvp6sTuO1_n1xmXl1fwVPWL117aR4nYVRo68XENPVjaXeM1NpPlOJUW70VhAUP41QH0peWhjrijNtWpbUMpCnCU2iX89KcAYnCHO9XcxWygiUyzSW1pqRkPFCJSTTtwJeGmELVycexBsZv0aDMfolHnBDICeFTYTnRAXbfeVHl4Hhat68N18SjJSWstnjaDz41vBZ20yGF89LMNysRuLx61rlMOvC6WgT3M3NClKX0zXOH_wgvssn1lbgajIZv4QDfVJChd9BeLzfmvbWG1vJDvdr_AIQLCJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT5-mediated+SDHA+desuccinylation+promotes+clear+cell+renal+cell+carcinoma+tumorigenesis&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Ma%2C+Yuanzhen&rft.au=Qi%2C+Yijun&rft.au=Wang%2C+Lei&rft.au=Zheng%2C+Zhaoxu&rft.date=2019-04-01&rft.issn=0891-5849&rft.volume=134&rft.spage=458&rft.epage=467&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2019.01.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2019_01_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |